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Abstract—Users often need to integrate large amounts of
RDF data from multiple sources. Although there has been a
lot of work on data cleaning and integration for structured
data, relatively little work has been done for RDF data. We
consider two different approaches to data integration: 1) a
traditional data warehouse approach where relevant RDF data
is extracted from different sources and then integrated in a data
warehouse; 2) a virtual integration approach where RDF data
still resides at each source and data integration happens when
the data is queried, through a mediator that coordinates with
wrappers at each source. It is often unclear how to choose
the appropriate approach given an application scenario. This
paper proposes RDFINT, a benchmark to compare these two
approaches for integrating RDF data. We describe typical data
integration operations, metrics that can be used to compare
these two approaches, and factors that affect these metrics. We
also report preliminary results of an implementation of these
two approaches using the Apache Jena Fuseki framework.

I. INTRODUCTION

The Resource Description Framework (RDF) [1] provides
a set of specifications for describing resources and relation-
ships between them. Semantic queries for RDF data can be
written in the SPARQL language [2]. Billions of RDF triples
are now available on the internet. In practice, RDF data is
often distributed at many different sources so the data needs
to be integrated and cleaned before it can be used.

There are two popular approaches to integrate RDF data.
The first is the traditional data warehouse approach where
relevant RDF data is extracted from the original sources,
transformed, cleaned, and then integrated at one place. The
second is a virtual integration approach where RDF data
remains in the original sources and data integration happens
at the time the data is being queried. In this approach, a
mediator coordinates with wrappers at each source to map
the query to local sources, combine results, and perform
further data cleaning operations over the results if needed
(e.g., to remove duplicates). In the data warehouse approach,
more work is required up-front, when data is integrated into
the warehouse, but then queries can be processed faster as
all the data is stored in one place. On the other hand, using
a virtual integration approach, queries might be slower, but
have a more up-to-date answer, since data is queried directly

from the original sources. It is often unclear how to choose
the appropriate approach given an application scenario.

In this paper we propose RDFINT (RDF Integration
Benchmark), a benchmark to be used in comparing a data
warehouse approach with a virtual integration approach
for integrating RDF data. Given a scenario where multiple
sources produce data and queries are issued over the union
of all of the data, we compare a data warehouse approach
where all data is transformed and stored in one centralized
database, versus a virtual integration approach where data
is stored at the local sources and data integration is imple-
mented by rewriting queries and/or post-processing of query
results. This paper describes the following contributions:

• We propose measures of performance relevant to com-
paring the data warehouse approach and the virtual
integration approach.

• We determine some of the factors that affect the per-
formance of a data warehouse approach and the virtual
integration approach.

• We provide a prototype implementation for a bench-
mark to compare the data warehouse and virtual in-
tegration approach. The benchmark includes a data
generator and a set of data integration operations and
their sample implementations in both approaches.

• Finally, we provide preliminary experimental evaluation
comparing the warehouse approach with the virtual
data integration approach using Apache Jena Fuseki
Framework [3].

II. METRICS, FACTORS, AND DATA INTEGRATION
OPERATORS USED IN THE BENCHMARK

We propose the following metrics to quantify the differ-
ences between different RDF data integration approaches:
(M1) Time for ETL operations including time to load

historical data (the initial load), time to load new
data (incremental load), and time to address ontology
mismatch and various data quality issues.

(M2) Scalability of the system with respect to the number
of triples and the number of sources.

(M3) Completeness of the query results when a certain
fraction of source data gets updated. Completeness
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means any correct result is being returned.
(M4) Usability, including ease of implementation, required

skill levels, etc.

We also varied the following factors that affect the per-
formance of the data warehouse approach and the virtual
integration approach.

(F1) Size of the data sets
(F2) The number of data sources
(F3) Fraction of the data being updated
(F4) Characteristics of the data sets (e.g., fraction of dupli-

cates)
(F5) Network delay, which has an impact on the perfor-

mance of the virtual integration approach.

We consider the following data integration and data qual-
ity issues that have to be solved for data integration in either
approach:

(I1) Existence of exact duplicates of some RDF triples
between multiple data sources

(I2) Existence of approximate duplicates between data
sources where different resource IDs or IRIs refer to
the same conceptual or real-life resource

(I3) Missing values for the object or subject of some triples
(I4) Ontology mismatch, for example when the same con-

cept is expressed by different predicates in different
data sources.

III. DATA GENERATOR

We modified the data generator used in Lehigh University
Benchmark (LUBM) [4] to fit the purposes of this bench-
mark. This provides several benefits: 1) LUBM is a well
known benchmark for RDF storage and query processing so
many users are already familiar with it; 2) the LUBM data
model is relatively easy to understand; 3) LUBM provides
a set of test queries with sufficient variety so we can reuse
some of its test queries as well.

The LUBM benchmark generates data of different uni-
versities, where each university contains a number of de-
partments, professors, students, and courses. Since data
integration requires data from multiple sources, we consider
each university’s data as a data source.

Data integration also needs to address a number of data
quality issues. We modified the data generator to simulate
the data quality issues (I1)-(I4) introduced in Section II:

• Exact duplicates: a certain fraction of randomly se-
lected triples are duplicated in the data.

• Approximate duplicates: we generate a certain fraction
of professors at different universities who have different
IRIs, but they as likely the same person as they have the
same name, and graduated from the same institutions,
both for their graduate and undergraduate degrees. In
real life, such cases may happen when a professor
moves from one university to another.

• Missing values: emails and phone numbers of some
professors are randomly selected and replaced with
blank nodes.

• Ontology mismatch: we generate a few ontology mis-
matches, including in one university the predicate
used to represent a student takes a class is called
“takesClass” and in another university it is called
“takesCourse”.

IV. VIRTUAL INTEGRATION APPROACH

We discuss now the implementation of the virtual inte-
gration approach. We assume that each data source exposes
its data through a SPARQL query endpoint. In the virtual
integration approach, a mediator issues SPARQL federated
queries [2] to do most of the integration tasks. The queries
contain fragments that are sent to different SPARQL query
endpoints and the mediator combines the results through
join or union. Each fragment has an associated SERVICE
keyword to specify which source will receive this fragment.
Note that different sources may have data in different schema
so the mediator needs to map the query fragment to the
schema at the corresponding source.

Next we describe how to address the data quality issues
(I1)-(I4) listed in Section II using the virtual integration
approach.

(I1) Exact duplicates: The removal of exact duplicates
can be implemented by using the DISTINCT keyword in
SPARQL. For example below is test query 1 in LUBM
benchmark.

PREFIX rdf: <http://www.w3.org/1999
/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004
/0401/univ-bench.owl#>
SELECT ?X
WHERE
{?X rdf:type ub:GraduateStudent .
?X ub:takesCourse

http://www.Department0.University0.edu
/GraduateCourse0 .}

Suppose there are two data sources, one local and one
with a SPARQL endpoint at IP 192.168.56.103,

The mediated query will be rewritten as

PREFIX rdf: <http://www.w3.org/1999
/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/˜zhp2
/2004/0401/univ-bench.owl#>
SELECT DISTINCT ?X
WHERE
{{?X rdf:type ub:GraduateStudent .
?X ub:takesCourse

http://www.Department0.University0.edu
/GraduateCourse0}
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Union
{SERVICE <http://192.168.56.103:3030/lubm>
{?X rdf:type ub:GraduateStudent .

?X ub:takesCourse
http://www.Department0.University0.edu
/GraduateCourse0}}}

(I2) Approximate duplicates: The approximate dupli-
cates can be eliminated in the post-processing step if there
is a clear definition of what the approximate duplicates are.
Suppose a query returns professors in different universities.
Once the original query is executed, the mediator executes
a SPARQL query that returns pairs of professors that have
the same name, and the same institution where they get
undergraduate and graduate degree from, as shown below.
The mediator can then compare these pairs of professors to
the returned results to eliminate duplicates.

PREFIX rdf: <http://www.w3.org/1999
/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/˜zhp2/
2004/0401/univ-bench.owl#>
SELECT ?Professor ?Professor2
WHERE
{ ?Professor hasName ?N .
?Professor undergraduateDegreeFrom ?U1 .
?Professor graduateDegreeFrom ?U2
SERVICE <http://192.168.56.103:3030/lubm>

{?Professor2 hasName ?N .
?Professor2 undergraduateDegreeFrom ?U1 .
?Professor2 graduateDegreeFrom ?U2
}}

(I3) Missing values: In RDF, missing values can be
represented as blank nodes (i.e., nodes with no IRI or
literal). Blank nodes can be filtered out by adding a FILTER
predicate to the SPARQL query. For example, if we want
to make sure a variable ?Y is not blank, we can add the
following in the WHERE clause “FILTER (!isBlank(?Y))”.

(I4) Ontology mismatch: The mediator can handle ontol-
ogy mismatch cases between different sources by mapping
the local schema to a global schema (the local as view
approach) or vice versa (the global as view approach). For
example, if the predicate “takesClass” is mapped to the
predicate “takesCourse” in a local schema, the mediator can
replace the former with the latter in the query fragment sent
to that source.

V. DATA WAREHOUSE APPROACH

The data warehouse approach first extracts data from
multiple sources, then transforms data to address data quality
issues, and finally loads data into the data warehouse.
Next we describe a possible implementation for the data
integration issues (I1)-(I4) described in Section II and a
new issue specific to this approach, (I5) which is detecting
changes in the original data sources.

(I1) Exact duplicates: Exact duplicates are automatically
removed when RDF data is loaded into a RDF triple store as
most triple stores build a primary index on the combination
of subject, predicate, and object of each triple so duplicate
triples will be automatically rejected.

(I2) Approximate duplicates: Approximate duplicates
can be removed at transform step by executing a similar
query as in the virtual integration approach. For example, to
remove professors with same name, and same undergraduate
and graduate institutions, a query can be executed to return
such pairs of professors as in Section IV. The only difference
is that data is already extracted to the same place so there
is no need for the SERVICE keyword.

(I3) Missing values: The data warehouse approach uses
the same FILTER predicate as the virtual integration ap-
proach to detect blank nodes. Triples with blank nodes are
typically removed.

(I4) Ontology Mismatch: The data warehouse approach
addresses ontology mismatch during the transform phase.
This often requires using a scripting or programming lan-
guage other than SPARQL. For example, the “takesClass”
predicate can be replaced with “takesCourse”.

(I5) Detecting changes: There are two possible scenarios.
In the first scenario, each data source periodically sends a
file that contains incremental update to the data warehouse.
In this case the new data just need to be loaded into the
data warehouse. In the second scenario, data sources will
not notify the data warehouse. Instead someone needs to
periodically visit each data source and detect changes in
source data. Suppose each source stores data in ttl files.
The following SPARQL query checks can be used to detect
triples in the first file but not in the second file.

PREFIX rdf: <http://www.w3.org/1999
/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/˜zhp2/
2004/0401/univ-bench.owl#>
SELECT *

FROM NAMED <a.ttl>
FROM NAMED <b.ttl>

WHERE {
GRAPH :a.ttl { ?s ?p ?o }
FILTER NOT EXISTS
{ GRAPH :b.ttl { ?s ?p ?o } }

}

VI. RELATED WORK

Lehigh University Benchmak (LUBM) [4] measures
SPARQL query performance for centralized RDF triple
stores and is the basis for the RDFINT benchmark proposed
in this paper. BSBM [5], SP2Bench [6], and DBPSB [7]
are other benchmarks for centralized RDF triple stores.
FedBench [8] and LargeRDFBench [9] are benchmarks
for federated RDF stores, but they do not consider data
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Data
Set

University0 University1 University2 Load
time

Load
time

(Triples) (Triples) (Triples) (Data
ware-
house)

(Virtual
integra-
tion)

Small 103,076 134,070 145,696 10 sec 2.6 sec
Medium 1,527,819 1,623,465 1,591,536 76.8 sec 58.4 sec
Large 20,196,566 19,820,895 20,320,636 1159 sec 601 sec

Table I
DATA SIZES AND INITIAL LOAD TIME

integration. There are several benchmarks to measure data
integration for relational data [10] but there is relatively
little work on benchmarking data integration of RDF data.
Linked Open Data Integration Benchmark (LODIB) [11]
is a benchmark for data integration of RDF data but it
focuses only on structure translation between different data
sources and does not consider comparison between the two
data integration approaches. It also does not consider a
wider range of data cleaning operations such as detecting
nontrivial duplicates. In [12] authors discuss issues that arise
when integrating data from different RDF triple stores to
support drug discovery, but there is no comparison between
a federated approach versus a warehouse approach.

VII. PRELIMINARY RESULTS

A. Experimental Setup

The experiments for the virtual integration approach were
performed using up to four virtual machines (VMs), each
representing a data source in a real-world network. Each VM
ran Ubuntu 18.0.4 (64bit), 8GB RAM, and 100GB hard disk.
For the data warehouse experiment we used one of the VMs
but we increased the RAM to 16GB RAM. The host machine
had 64 GB RAM and 2 TB hard disk running Windows 10.
We used Apache Jena Fuseki as the RDF triple stores.

For our experiments we generated three data sets: Small
(approximately 100,000 to 150,000 triples per data source),
Medium (approximately 1.5 million triples per data source),
and Large (approximately 20 million triples per data source).
The exact number of triples is shown in Table I.

In the experiments we varied the factors (F1)-(F5) intro-
duced in Section II. The size of the data sets (F1) was Small,
Medium, or Large as defined above, the number of sources
(F2) was varied from 2 to 4, the fraction of the data being
updated (F3) was an additional 1%, 3%, 5% of new data
being added to each data source. As characteristics of the
data (F4) we varied the fraction of exact duplicates from
5%, 10% to 20% of the total triples. We simulated a network
delay between sources (F5) of 0 ms, 50 ms (typical US east
coast to west coast delay), 100 ms (typical US to Europe
delay), and 200 ms (typical US to Asia delay).

To simulate the data integration and quality issues intro-
duced in Section II, we modified the LUBM data generator
to generate exact duplicates (I1) as described above (F4).
About 15 approximate duplicates (I2) were generated as
professors from different universities that have the same
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Figure 1. Incremental load time for Medium data

name, undergraduate and graduate institutions. About 10-
20 blank nodes (I3) were also generated as email or phone
numbers of professors in each source. The structure change
(I4) happens in one of the sources.

For each experiment, we varied one of the factors and
kept the others at the default values. The default setting uses
Medium data set, 3 sources, no network delay, and 20%
exact duplicates. Each experiment was repeated 6 times and
the average time was reported.

Next we report the experimental results of evaluating the
data warehouse and the virtual integration approaches.

B. Experimental Results

Load Time: The initial load time is reported in Table I.
Figure 1 reports the time to load 1%, 3%, and 5% increment
of the Medium data set in the data warehouse approach. For
the virtual integration approach, we report the load time for
the data source with the most triples, as all sources can load
their data in parallel. The results show that the load time for
data warehouse approach is much higher, which is expected
as in virtual integration approach all sources can load their
data in parallel. However the incremental load time is still
much smaller than initial load time.

Removing exact duplicates: Only virtual integration
needs to explicitly remove exact duplicates, since the data
warehouse automatically removes duplicates when data is
inserted. We selected 4 LUBM queries: Query 1, 3, 4, and
9. These queries have various degree of complexity and
selectivity. In virtual integration approach, these queries are
rewritten to return results from multiple sources.

Figure 2 reports execution time of all four queries with
or without the use of DISTINCT keyword, for the default
setting. The results show that for LUBM queries 1, 3, and 4,
the execution time with or without DISTINCT is almost the
same. Note that the difference of these two execution times
is the overhead to remove exact duplicates. So there is very
little overhead to filter out exact duplicates. For query 9, the
overhead is about 0.5 seconds. It is higher than other queries
because Q9 is not selective and returns many results so it
takes more time to remove duplicates.
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Figure 2. Execution time of 4 Queries with and without distinct for
Medium data, 3 sources, no delay
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Figure 3. Execution time of Query 9 for varying network delay, Medium
data, 3 sources
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Figure 4. Execution time of Query 9 for varying duplicates, Medium data,
3 sources, no delay

Figure 3 shows the execution time for query 9 (the most
expensive one) when we vary the network delay. The results
show that execution time increases with network delay, and
the overhead of removing exact duplicates also increases.
The overhead of removing duplicates is still around 1.4
seconds with 200 ms delay.

Figure 4 reports time of query 9 when we vary the
fraction of duplicates between data sources. The results
show that the overhead of removing exact duplicates is quite
small when fraction of duplicates is no more than 10%.
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Figure 5. Execution time of removing approximate duplicates varying
network delay, Medium data, 3 sources
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Figure 6. Execution time of query 4 with or without the FILTER predicate
for various network delay, Medium data, 3 sources

The overhead does increase when the fraction of duplicates
reaches 20%.

Overall, the overhead of removing exact duplicates using
a virtual integration approach is acceptable.

Removing approximate duplicates: Both virtual integra-
tion and data warehouse approaches used a SPARQL query
(details in Section IV) to find pairs of professors who are
from different sources but have the same name, graduate
degree and undergraduate degree institutions.

Figure 5 reports execution time of the query to find
approximate duplicates for default setting (3 sources) with
various network delay. The time for data warehouse is a flat
line as data is stored in one place.

The results show that it takes about 1 second for the data
warehouse approach to remove approximate duplicates. The
time for virtual integration approach is higher, approaching
27 seconds under 200 ms delay. This is expected as the
SPARQL query needs to perform expensive joins between
different sources. However, the execution time increases
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linearly with network delay.
Note that we tested the case when all approximate dupli-

cates are from different sources. If approximate duplicates
are from the same source then the cost of the SPARQL query
will be lower as the joins will be done locally.

Filtering missing values: We ran LUBM Query 4 which
returns professors in a specific department as well as their
emails and phone numbers. We ran both the original version
and a version using a FILTER predicate to remove blank
nodes. The difference of execution time indicates the over-
head of removing blank nodes.

Figure 6 reports execution time of Query 4 with or
without the FILTER predicate for various network delays.
The execution time for data warehouse approach is also
reported as two flat lines because network delay has no
impact on the data warehouse. The results show that there
is very little overhead to filter out blank nodes in virtual
integration approach. In data warehouse approach, the time
of running the query with or without filtering is very low
and almost identical as well.

Ontology Mismatch: It took approximately 11 seconds
for the data warehouse approach to replace the “takesClass”
predicate with the “takesCourse” predicate for the Medium
data set. For virtual integration approach, the correct predi-
cate was used for each data source.

Impact of data size and number of data sources:
Figure 7 reports execution time of Query 9 with and without
DISTINCT when we vary the number of sources from 1 to
4 over the Medium data with a network delay of 200 ms.
The results show that overhead of removing exact duplicates
(the differences of execution time with and without distinct)
scales almost linearly with number of sources. For example,
the overhead is about 0.33 seconds in one source and about
1.4 seconds for 4 sources.

Figure 8 reports execution time of Query 9 with or without
use of keyword DISTINCT for various sized data for 3
sources and 200 ms network delay. The results show that
the execution time of Query 9 with or without distinct
grows almost linearly as data size increases (note that Large
data is approximately 100 times of Small and 10 times of
Medium). More importantly, the overhead of removing exact
duplicates is around 1-2 seconds for all data sizes. So the
virtual integration approach is scalable with respect to data
size.

Completeness of results: For the data warehouse ap-
proach, we ran LUBM Query 6, which returns all students,
on the original Medium data set as well as original data plus
1%, 3%, and 5% additional data. Table II shows the number
of results returned by the query. Clearly, more results are
returned in data sets with incremental updates.

Overall, virtual integration adds some overhead at run
time to address data quality issues compared to data ware-
house approaches. However this approach gives complete
and real time results while the data warehouse solution’s
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Figure 7. Execution time of Query 9 varying number of sources on
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delay, 3 sources

results are based on last batch update in the data warehouse.
So if data sources are updated more frequently than the data
warehouse, the data warehouse solution could give out-of-
date and incomplete results.

Usability: We found that virtual integration approach
requires more knowledge of federated SPARQL queries and
knowledge about different data sources, including their ser-
vice endpoint and schema. So usability-wise, data warehouse
approach is better than virtual integration approach.

VIII. CONCLUSION

We proposed RDFINT, a benchmark for comparing virtual
integration and data warehouse approaches to integrating
RDF data. This benchmark modifies well-known LUBM
benchmark data generator and test queries, and implements
several data integration operations. It can be used to compare
the above two data integration approaches over RDF data.

Original
data

Original +
1% incre-
ment

Original +
3% incre-
ment

Original +
5% incre-
ment

259,965 262,745 268,000 273,386

Table II
TOTAL NUMBER OF TRIPLES RETURNED FROM QUERY 6 ON MEDIUM

DATA ON DIFFERENT INCREMENTS
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Preliminary results showed that virtual integration does
pay some overhead at run time, but has the benefit of
result completeness. We also found that many data integra-
tion/cleaning operations can be implemented using simple
query rewriting in virtual integration approach. The overhead
of these operators is often quite small compared to cost of
the original queries. Most data integration operations also
scale linearly with data size and number of sources. As
future work we plan to include more comprehensive set of
data integration operations in the benchmark and conduct
more comprehensive experiments.
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