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AbstrAct

The identity of patients must be protected when patient data are shared. The two most commonly used 
models to protect identity of patients are L-diversity and K-anonymity. However, existing work mainly 
considers data sets with a single sensitive attribute, while patient data often contain multiple sensitive 
attributes (e.g., diagnosis and treatment). This article shows that although the K-anonymity model can 
be trivially extended to multiple sensitive attributes, the L-diversity model cannot. The reason is that 
achieving L-diversity for each individual sensitive attribute does not guarantee L-diversity over all sensi-
tive attributes. We propose a new model that extends L-diversity and K-anonymity to multiple sensitive 
attributes and propose a practical method to implement this model. Experimental results demonstrate the 
effectiveness of our approach.
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IntroDuctIon
Patient data are often shared for research and 
disease control purposes. For example, the 
Center for Disease Control and Prevention has 
a National Program of Cancer Registries which 
collects data on cancer patients. Such data are 
made available to public health professionals 
and researchers to understand and address the 
cancer burden more effectively. 

Privacy is one of the biggest concerns in 
sharing patient data because without appropriate 

protection, personal information is vulnerable 
to misuse. For example, identity theft remains 
the top concern among customers contacting 
the Federal Trade Commission (Federal Trade 
Commission, 2007). According to a Gartner 
study (Gartner Inc., 2007), there were 15 million 
victims of identity theft in 2006. Another study 
showed that identity theft cost U.S. businesses 
and customers $56.6 billion in 2005 (MacVittie, 
2007). Therefore, legislation such as the Health 
Insurance Portability and Accountability Act 
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(HIPAA) requires that health care agencies 
protect the privacy of patient data. This article 
focuses on models that protect identity of pa-
tients and at the same time still allow analysis 
to be conducted on the sanitized data. 

K-Anonymity and L-Diversity Privacy 
Protection Model: The two most commonly 
used privacy protection models for identity pro-
tection are K-anonymity (Sweeney, 2002b) and 
L-diversity (Machanavajjhala, Gehrke, Kifer, 
& Venkitasubramaniam, 2006). K-anonymity 
prevents linking attack, which recovers private 
information by linking attributes such as race, 
birth date, gender, and ZIP code with publicly 
available data sets such as voter’s records. 
Such attributes that appear in both public and 
private data sets are called quasi-identifiers. 
The K-anonymity model divides records into 
groups with sizes ≥ K such that each group 
has identical value or range on quasi-identifier 
attributes. 

Example 1: Figure 1 shows some patient 
records, where age is the quasi-identifier and 
disease type and treatment are sensitive at-

tributes (i.e., attributes with privacy sensitive 
information). Figure 2 shows the anonymized 
data where the first four rows belong to the 
same group and have the same range of age. 
Linking attack cannot discover the identity of 
a patient using the age attribute because there 
are at least K (K = 4) patients with the same 
age range. 

L-diversity further enhances K-anonymity 
by preventing another type of privacy attack 
called elimination attack (which was used by 
Sherlock Holmes to solve mysteries by exclud-
ing the impossible). We use an example to il-
lustrate elimination attack. In Figure 2, if K=3, 
then the first three patients satisfy 3-anonymity. 
However, they have only two different disease 
type values: heart disease and flu. If someone 
knows that the patient with ID 3 is unlikely to 
have heart disease, then he can infer that the 
patient most likely has flu.

L-diversity prevents elimination attack by 
requiring that the values of privacy sensitive 
attributes (e.g., the attribute disease type) in a 
group have enough degree of diversity. Several 

Patient ID Age Disease Type Treatment

1 42 Heart disease Medicine

2 41 Heart disease Surgery

3 49 Flu Intravenous therapy 

4 43 Stomach disease Intravenous therapy 

… … … …

Patient ID Age Disease Type Treatment

1 41-50 Heart disease Medicine

2 41-50 Heart disease Surgery

3 41-50 Flu Intravenous therapy 

4 41-50 Stomach disease Intravenous therapy 

… … … …

Figure 1. Original patient data

Figure 2. Anonymized patient data with K=4
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different definitions of diversity were proposed 
in Machanavajjhala et al. (2006). In this article, 
we use the definition of L-diversity where a 
sensitive attribute in a group contains at least L 
different values. For example, in Figure 2, the 
group of first four patients has three different 
disease types and is thus 3-diverse. If the at-
tacker knows that a patient does not have heart 
disease, he cannot decide which type of disease 
the patient has because he may have either 
stomach disease or flu. In general, L-diversity 
can protect privacy against attackers who are 
able to eliminate up to L-2 values.

Problem of data with multiple sensitive 
attributes: There has been a rich body of work 
on implementation and application of K-ano-
nymity and L-diversity (Bayardo & Agrawal, 
2005; LeFevre, DeWitt, & Ramakrishnan, 2005; 
Menon & Sarkar, 2006; Samarati, 2001; Xiao & 
Tao, 2006). However, existing research consid-
ers data sets with only one sensitive attribute, 
while many data sets such as patient data have 
multiple sensitive attributes (e.g., disease and 
treatment). Since K-anonymity does not have 
any condition on sensitive attributes, it can 
be applied to data sets with multiple sensitive 
attributes. However, we will next show that 
L-diversity cannot be directly applied to data 
sets with multiple sensitive attributes. 

Suppose in Figure 2 both disease type and 
treatment are sensitive attributes. The group of 
the first four patients has three distinct values on 
both attributes. However, if the attacker knows 
that a patient does not have heart disease, he 
can decide that this patient has IV (intravenous 
therapy) as treatment because only patients with 
heart diseases received the other two types of 
treatment. Thus this group is not 3-diverse. The 
root cause of this problem is that the elimina-
tion of rows containing one sensitive attribute 
value may eliminate multiple values of other 
sensitive attributes. In this case, the elimina-
tion of rows containing the value heart disease 
(i.e., the first two rows) also eliminates values 
medicine and surgery. Therefore, preserving 
L-diversity on each individual sensitive attri-
bute will not preserve L-diversity for multiple 
sensitive attributes.

Our contributions: This article has made 
the following contributions. 

• We propose a privacy model that extends 
K-anonymity and L-diversity to data with 
multiple sensitive attributes.  

• We provide a method to implement our 
model. Experimental results show that 
our method also introduces little distortion 
to data, which will help subsequent data 
analyses. 

The rest of the article is organized as fol-
lows. The next section describes related work. 
We then describe the proposed privacy model 
for multiple sensitive attributes and describe 
how to implement the model. Finally we pres-
ent the experimental results and conclude the 
article.

related Work
The existing work on privacy protection tech-
niques can be divided into two categories: 
those that protect personal identity (called data 
anonymization) and those that protect sensitive 
attribute values or sensitive patterns. We first 
review literature in both categories and then 
describe the relationship of this articles to the 
literature.

Data anonymization: The research in this 
field is based on two privacy protection models: 
K-anonymity and L-diversity. The K-anonymity 
model was first proposed by Sweeney (2002b) 
and it protects the data against linking attacks. 
The L-diversity model was proposed as a com-
plement to K-anonymity in Machanavajjhala 
et al. (2006). L-diversity further protects the 
data against elimination attack. It is a general 
consensus in the field that both models need to 
be implemented to protect privacy. 

There are two approaches to implement 
K-anonymity and L-diversity. The first ap-
proach is generalization, that is, replacing 
values of quasi-identifiers with more general 
values (Samarati, 2001; Sweeney, 2002a). The 
second approach is called anatomy and it 
divides data into multiple tables, one storing 
the quasi-identifier attributes and group ID of 
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each record, and the others storing the count of 
sensitive attribute values in each group (Xiao 
et al., 2006). This approach introduces less 
distortion to data (Xiao et al., 2006). LeFevre 
et al. (2005) proposed a method based on full 
domain generalization, which maps the domain 
(or range) of attribute values to a more general 
domain. For example, all five-digit zip codes can 
be generalized to a domain that contains only the 
first four digits (e.g., 21250 will become 2125*). 
A method that uses k-d tree to divide data into 
groups was proposed in LeFevre, DeWitt, and 
Ramakrishnan (2006). K-d tree puts data with 
similar values into the same group, leading to 
less data distortions. 

Hiding sensitive values and patterns: 
Research in this field is also called privacy-
preserving data mining because the goal is to 
preserve privacy and at the same time allow 
data mining on the modified data. A survey 
can be found in Verykios, Bertino, Fovino, 
Provenza, Saygin, and Theodoridis (2004a). 
The most well known method in this field is 
random perturbation, which adds some random 
noise to sensitive attribute values (Agrawal & 
Aggarwal, 2001; Agrawal & Srikant, 2000; Zhu 
& Liu, 2004). However, Kargupta, Datta, Wang, 
and Sivakumar (2003) showed that random 
perturbation method is subjected to attacks 
using correlations of data. A similar method 
for association rule mining was proposed in 
Evfimevski, Gehrke, and Srikant (2003) and 
Evfimevski, Srikant, Agrawal, and Gehrke 
(2002). A tree-based approach (Li & Sarkar, 
2006) was also proposed. The basic idea is 
to divide data into groups using k-d tree, and 
replace values of sensitive attributes with the 
average of their values within a group. 

There has also been work to hide sensitive 
patterns such as association rules in the data 
(Hintoglu, Inan, Saygin, & Keskinoz, 2005; 
Menon & Sarkar, 2006; Menon, Sarkar, & 
Mukherjee, 2005; Oliveira & Zaiane, 2002; 
Saygin, Verykios, & Clifton, 2001; Verykios, 
Elmagarmid, Elisa, Saygin, & Elena, 2004).  

Relationship of this article to existing 
research: This article focuses on data anony-
mization (i.e., the first category) for two rea-

sons. First, it is important to hide the identity 
of patients. Second, many privacy protection 
methods proposed in the second category of 
research only work for numerical attribute val-
ues, while patient data contain many categori-
cal attributes. For example, for the tree-based 
approach (Li et al., 2006), it is unclear how to 
compute the average of a categorical attribute 
such as disease type. 

As mentioned in the Introduction, existing 
work on data anonymization mainly considers 
the data set with only one sensitive attribute, 
while patient data often contains multiple 
sensitive attributes. We have also shown in 
the Introduction that the L-diversity model 
cannot be directly extended to multiple sensi-
tive attributes. This article proposes a privacy 
protection model that works for multiple sensi-
tive attributes.

Privacy Model over Multiple  
sensitive Attributes
This section proposes our privacy model. The 
first subsection reviews the existing K-anonym-
ity and L-diversity models over a single sensi-
tive attribute. The second subsection proposes 
a novel privacy model over multiple sensitive 
attributes. The third subsection proposes a 
variant of our model that deals with data sets 
with very few distinct values on some sensi-
tive attributes.

Existing Model
Let T be the data to be shared. T contains d 
quasi-identifiers attributes AQ1, …, AQd, and m 
sensitive attributes AS1, …, ASm. Based on the 
literature (Sweeney, 2002b), we assume quasi-
identifier attributes and sensitive attributes have 
no overlap because sensitive attributes normally 
do not appear in public available data sets. Next 
we give a few definitions. 

Definition 1: (Partition/Group) A partition 
consists of several subsets of T, such that each 
record in T belongs to exactly one subset. We 
refer to these subsets as groups and denote 
them as G1, …, Gp. 
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Next we describe two approaches to imple-
ment K-anonymity and L-diversity: generaliza-
tion (Samarati, 2001; Sweeney, 2002a) and 
anatomy (Xiao & Tao, 2006). 

Definition 2: (Generalization) Given a 
partition of T, generalization of T makes all 
records in group Gi to have the same values 
on quasi-identifier attributes AQ1, …, AQd. For 
example, Figure 2 in the Introduction shows a 
generalization of T, where the first four records 
belong to one group. Numerical values such as 
ages can be generalized to ranges, and categori-
cal values can be generalized according to a 
predefined hierarchy.  

Definition 3: (Anatomy) Anatomy of T pro-
duces a quasi-identifier table (QIT) and m 
sensitive tables (ST) as follows. The QIT stores 
all quasi-identifier attributes AQ1,…, AQd and the 
group ID of each record. Each ST stores the 
group ID, distinct values of a sensitive attribute 
ASj (1 ≤ j ≤ m), and the count of the value of ASj 
in each group.

For example, Figure 3 shows anatomy of 
T where the table on the left is the QIT table, 
and the other two tables are ST for sensitive 
attribute “disease type” and “treatment.” It 
has been shown in Xiao and Tao (2006) that 
anatomy and generalization are equivalent in 
terms of privacy protection. For example, sup-
pose an attacker knows that a patient’s age is 

49 (the third patient). All four patients in the 
generalized table (Figure 2) have age in the 
range of 41–50. Thus, the attacker cannot decide 
which record belongs to this patient. He can do 
a random guess and the probability of getting 
the correct disease type (flu) is 25% because 
only one of four patients has the flu. Similarly, 
when the attacker looks at the anatomized table 
in Figure 3, the attacker can learn that the patient 
with age 49 belongs to the first group using the 
QIT table. However, he cannot figure out the 
exact disease type of the patient because the 
ST table only stores counts of disease types 
for the first group. Thus the attacker can only 
do a random guess of the patient’s disease type 
and the probability of a correct guess is again 
25%. This article uses the anatomy approach 
to implement our privacy model because as 
shown in the work of Xiao and Tao (2006), 
anatomy often leads to a smaller degree of data 
distortion and benefits subsequent analysis of 
anonymized data.

Definition 4: (K-anonymity). A data set T 
satisfies K-anonymity if it is divided into a 
partition and each group Gi (1 ≤ i ≤ p) in the 
partition contains at least K records, and T is 
either generalized or anatomized. 

Definition 5: (L-diversity for a single sensitive 
attribute). A data set T satisfies L-diversity if 
it is divided into a partition and the sensitive 
attribute AS1 contains at least L different val-

Patient 
ID Age Group 

ID

1 42 1

2 41 1

3 49 1

4 43 1

… … …

Group 
ID

Disease 
Type Count

1 Heart 
disease 2

1 Flu 1

1 Stomach 
disease 1

… … …

Group 
ID Treatment Count

1 Medicine 1

1 Surgery 1

1 IV 2

… … …

Figure 3. Anatomized patient data
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ues in each group Gi. T is also generalized or 
anatomized.

The data in Figure 2 satisfies 4-anonym-
ity because each group contains at least four 
records. If disease type is the only sensitive 
attribute, this data set is also 3-diverse. It is clear 
that K-anonymity has no condition on sensitive 
attributes, thus K-anonymity model applies to 
data sets with any number of sensitive attributes. 
However, as shown in the Introduction, L-di-
versity cannot be directly extended to multiple 
sensitive attributes because making each sensi-
tive attribute L-diverse does not guarantee that 
all sensitive attributes are L-diverse.

our Model
This section presents our privacy model. We 
assume that when a distinct sensitive attri-
bute value is deleted from a group, all rows 
containing that value will be deleted. For ex-
ample, if the value “heart disease” is deleted 
in Figure 1, the first two rows are both deleted. 

Definition 6. (K-anonymity and L-diversity 
for multiple sensitive attributes). T satisfies 
both K-anonymity and L-diversity if T is divided 
into a partition and each group Gi (1 ≤ i ≤ p) in 
the partition satisfies the group containing at 
least K records, and (2) at least L distinct values 
(possibly from multiple sensitive attributes) need 
to be deleted to delete all rows in the group. T 
is also anatomized or generalized.

The first four patients in Figure 2 satisfy 
4-anonymity. They also satisfy 2-diversity 
because we need to delete at least two values 
(e.g., “heart disease” and “IV”) to delete all 
the rows in the group. The new model survives 
linking attack because it ensures K-anonymity. 
The next theorem shows that it also survives 
elimination attacks.

Theorem 1: Our privacy model survives 
elimination attacks with up to L-2 values, the 
same as the L-diversity model over a single 
sensitive attribute.
Proof: If the attacker eliminates L-2 sensitive 
attribute values, the remaining rows must have 

at least two distinct values for each sensitive 
attribute. This is because if the remaining rows 
have only one distinct value, all rows in the 
group will get deleted after deleting L-1 val-
ues, and this violates the second requirement 
of L-diversity. 

Machanavajjhala et al. (2006) proposed a 
definition of L-diversity over multiple sensitive 
attributes where each sensitive attribute must 
have at least L distinct values for records that 
have the same values on all other attributes. For 
example, if there are two sensitive attributes, 
disease type and treatment, then each disease 
type must have L corresponding treatment 
values and vice versa. For a data set with m 
sensitive attributes, the group must have at 
least Lm rows. Note that rows in the same group 
will be generalized or anatomized. Thus having 
such large group sizes will introduce too much 
data distortion, making the data not useful for 
subsequent analysis. We will compare our model 
with this model experimentally in experimental 
evaluation.

Variant of our Model with  
column-wise constraints
The model proposed so far treats all sensitive 
attributes uniformly. However, in practice some 
sensitive attributes may have very few distinct 
values while other attributes may have many. 
Thus sometimes it makes sense to allow a dif-
ferent degree of diversity on different attributes. 
We propose a variant of our model that adds 
this flexibility. 

Definition 7. (Privacy model with column-
wise constraints). T satisfies both K-anonymity 
and L-diversity with column-wise constraints 
if T is divided into a partition and each group 
Gj (1 ≤ j ≤ p) in the partition satisfies that:  (1) 
the group contains at least K records, and (2) to 
delete all rows in the group, at least L distinct 
values need to be deleted, and at most Li (0 ≤ 
Li ≤ L) of them are from sensitive attribute ASi. 
T is also anatomized or generalized.
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The definition is the same as the general 
model in Definition 6 except that at most Li 
values will be deleted from attribute ASi. For 
attributes with few distinct values, the user 
can set a Li < L such that fewer values can be 
deleted from this attribute. For attributes with 
many distinct values, the user can set Li = L 
(i.e., still allow L values to be deleted from 
that attribute). 

Consider the data set in Figure 4 (quasi-
identifier attributes are not shown). Let L1 and 
L2 be the constraints on disease type and treat-
ment, respectively. Disease type attribute has six 
distinct values and treatment attribute only has 
three distinct values. Thus, we can set L2 = 2 for 
treatment such that at most two treatment values 
can be deleted. After the deletion of two treat-
ment values (e.g., T1 and T2), there are always 
two disease types left (e.g., D5 and D6). Hence, 
at least four deletions (e.g., deleting T1, T2, and 
D5, D6) are needed to delete all rows and L = 
4. We set L1 = 4 because disease type has many 
values. Without column-wise constraints, L can 
be 3 at most because there are only 3 distinct 
treatment values. The next theorem shows the 
relationship of these two models.

Theorem 2: If a group G satisfies L-diversity 
without column-wise constraints (the general 
model), then G also satisfies L-diversity with 
constraints where Li ≤ L. 
Proof: Suppose G satisfies the L-diversity 
model without column-wise constraints. If G 
is not L-diverse with constraints, then there 

exists L’ < L such that G satisfies L’-diversity 
with constraints. Thus all rows in G will be 
deleted after deleting L’ values (with at most Li 
of them from attribute ASi). This conflicts with 
the condition that G satisfies L-diversity without 
constraints (i.e., at least L (L>L’) values need 
to be deleted to delete all rows in G). Thus 
G satisfies L-diversity with constraints. The 
reverse of Theorem 2 is not true. For example, 
the data in Figure 4 satisfies the column-wise 
model with L=L1=4, L2=2, but not the general 
model with L=4.

Method to Implement the Model
This section describes how to implement our 
privacy model. The first subsection shows an 
overview. The second subsection proposes a 
method to check L-diversity. The third sub-
section shows how to check L-diversity with 
column-wise constraints. 

overview
Figure 5 shows the algorithm to anonymize the 
data. It has three input parameters: the data set 
T, and the parameter K and L in our privacy 
model. It contains two steps. In the first step, 
data are divided into a partition such that each 
partition contains at least K records and satisfies 
L-diversity. In the second step data are anato-
mized. Next we describe these two steps.

Figure 5 also shows the algorithm (Split) 
to partition the data. The algorithm follows 
the K-d tree approach to generate the partition 
(LeFevre et al., 2006). The benefits of K-d tree 
is that records with similar values will be put 
in the same group, thus there will be less data 
distortion. The algorithm works top down, that 
is, starting with the whole data set as a single 
group G and then splitting the existing groups 
into smaller groups. The algorithm stops when 
further splits will violate K-anonymity or L-
diversity conditions.

At line 1 the algorithm selects a quasi-iden-
tifier attribute to split. Following the literature 
(LeFevre et al., 2006), we select the splitting 
attribute as follows. We first normalize each 
quasi-identifier attribute by subtracting the mean 
and then dividing the difference by the standard 

Figure 4. Example for column-wise con-
straints

Disease Type Treatment

D1 T1

D2 T1

D3 T2

D4 T2

D5 T3

D6 T3
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deviation of that attribute (i.e., computing the 
Z-score). We then select the attribute with the 
largest range. For categorical attributes, we first 
represent them using integer values such as 1, 
2, 3 (this is often already done in many patient 
data sets because categorical attributes are often 
represented by integer code), and then use the 
above method. Note that we only need to apply 
this conversion to quasi-identifier attributes. 
Sensitive attributes are not touched.

At line 2 to line 4, the algorithm splits the 
current data into two groups GL and GR by the 
median of the selected attribute. At line 5 to 8, 
the algorithm checks whether GL and GR satisfy 
our privacy model. The check for K-anonymity 
is straightforward: the group is K-anonymous if 
the group contains at least K records. The check 
for L-diversity is more complicated and will be 
discussed in the following subsections.

If GL or GR satisfies our model, it will be 
split further by recursively calling the algorithm. 
If neither of them satisfies our model, no further 
split is possible. Thus at line 10 the algorithm 
adds the current group G to the partition. Once 
the partition is generated, the data set T will be 
anatomized. Based on Xiao et al. (2006), we 

use the QIT table to store the quasi-identifier 
attributes and group ID for each record. The 
count of values of each sensitive attribute is 
stored in a separate ST table.

Complexity of our algorithm: let n be the 
number of records, m be the number of sensitive 
attributes, d be the number of quasi-identifier 
attributes, and |G| be number of rows in G. 
The cost of building the k-d tree is O(d n log 
n) (LeFevre et al., 2006), excluding the cost of 
checking L-diversity. The following subsection 
will show that the cost of checking L-diversity 
for a group Gi is O( |Gi| m + |Gi| log |Gi|). Note 
that in each level of the k-d tree, the union of 
all groups equals the complete data set T. Thus 
the cost of checking L-diversity for one level 
of k-d tree is O(n m + n log n). There can be at 
most O(log n) levels of the tree. Thus the total 
cost of checking L-diversity is O(  m n log n 
+ n (log n)2). The total cost of partitioning is 
thus O((m+d) n log n + n (log n)2). The cost of 
generating the anatomized the data is O((m+d) 
n) because the data only needs to be scanned 
once to generate the ST and QIT tables. There-
fore, the total cost of the algorithm is O((m + 
d) n log n + n (log n)2). The last subsection will 

Anonymize(data set T, K, L)
1) P = empty set
2) Split(T, K, L, P)
3) Anatomize(T, P) 

Split(Current group G, K, L, partition P)
1) AQj = choose_dimension()
2) splitVal = find_median(G, AQj)
3) GL = {records in G and with value on AQj ≤ splitVal}
4) GR = {records in G and with value on AQj > splitVal}
5) if Satisfy-Model(GL, K, L) 
6)    Split(GL, K, L, P)
7) if Satisfy-Model(GR, K, L) 
8)    Split(GR, K, L, P)
9) if neither GL nor GR satisfies our model
10)   Add T to P 

Satisfy-Model(G, K, L)
1) if |G| ≥ K and L-diverse(G)
2)  return true
3) else return false

Figure 5. Anonymize algorithm
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show that the cost for checking column-wise 
constraints is O(|Gi| m log m + |Gi| log |Gi|) 
and the total cost is O((m log m + d) n log n 
+ n (log n)2). Since log m and log n are quite 
small, both costs are almost linear with the data 
size (m+d) n.

checking L-Diversity
This section describes how to check L-diversity 
for a group. 

Theorem 3: Checking for L-diversity for mul-
tiple sensitive attribute is NP hard.

We can prove this theorem by reducing the 
minimal set cover problem to the problem of 
checking L-diversity. The detail of the proof is 
omitted due to space constraints. Here we just 
give some intuition about how we link these 
two problems. For each sensitive attribute value 
v, we create a set RID(v) that records the IDs 
of rows that contain that value. For example, 
consider the group of first four records in 
Figure 1; we have RID(heart disease)={1,2}, 
RID(flu) = {3}, RID(stomach disease)={4}, 
RID(medicine)={1}, RID(surgery)={2}, and 
RID(IV) = {3,4}. 

The definition of L-diversity means that at 
least L values need to be deleted to delete all 
rows in the group. This is equivalent to state that 
at least L RID sets are needed to cover all rows 
in the group. In the above example, at least two 
RID sets are needed to cover the group of four 
records. For example, we can choose RID(heart 
disease)={1,2} and RID(IV)={3,4}. 

However, finding the minimal number of 
RID sets to cover all row IDs is the minimal 
set cover problem which is NP hard. Thus we 
use a heuristic algorithm to check L-diversity 
in polynomial time. The next two theorems give 
the basis of our algorithm.

Theorem 4: If there exists a set C of at least L 
rows, and no two rows have the same value on 
any sensitive attribute, then C is L-diverse.
Proof: If no two rows have the same value on 
any sensitive attribute, then deleting one distinct 
sensitive value can delete at most one row in 
C. Thus at least L such deletions are needed 
and C is L-diverse. 

Theorem 5: If a subset C of a group G is L-
diverse, G is at least L-diverse.
Proof: If at least L distinct sensitive attribute 
values need to be deleted to delete a subset 

L-diverse(G)
1) compute for each sensitive attribute value v the number of rows in G contains that 

value, call it f(v)
2) for each row ri, compute a total frequency f(ri) = Σ f(v) for v in ri
3) sort rows in ascending order of total frequency, store them in G’
4) C = empty set
5) while G’ is not empty
6) pick the row ri with the minimal f(ri), delete it from G’ 
7) add ri to C if it does not share any common value with existing rows in C
8) return yes if C contains L rows
9) end while
10) return no

Figure 6. Algorithm to check L-diversity
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of a group, at least that many deletions are 
needed to delete the whole group. The heuristic 
algorithm tries to find a subset C that has no 
common values on sensitive attributes. Figure 
6 shows the algorithm. It starts with an empty 
set C, and then repeatedly adds rows to this 
set when no two rows in the set have common 
values on any sensitive attribute. Line 1 to 3 
also compute the total frequencies of sensi-
tive attribute values in a row and sort rows in 
ascending order of the frequency. This allows 
us to add rows that have values that are less 
frequent in the group first. The intuition is that 
such rows have smaller chances of sharing 
common values on sensitive attributes.

For the group of the first four records in 
Figure 1, suppose L = 2. Line 1 computes the 
frequencies of all sensitive attribute values. 
Thus, we have f(heart disease) = f(IV) = 2, 
and f(flu) =  f(stomach disease) = f(medicine) 
= f(surgery)=1. Line 2 computes the total 
frequency of each row. The total frequencies 
of all rows are 3. Suppose row 1 is added to 
C.  Next we try row 2, but it shares the disease 
type value with row 1. Thus we try row 3 and 
it is added to C. Now C contains 2 rows and the 
algorithm returns yes because L=2.

Let m be the number of sensitive attributes 
and |G| be the group size. The frequency of 
values and rows can be computed in O(m |G|) 
time. The sort at line 3 takes O( |G| log |G|) 
time. We can use a hash table to keep track of 
the values of sensitive attributes in C. Thus 
checking whether a row contains values already 
in C (line 7) takes O(m) time. Since at most |G| 
rows can be added to C, the total complexity of 
the algorithm is thus O(m |G| + |G| log |G|).

The algorithm is sound in the sense that 
for any group that the algorithm returns yes, 
the group is indeed L-diverse. Thus using this 
algorithm will not affect privacy protection. On 
the other hand, the algorithm does not check all 
possible subsets of the group (doing so requires 
exponential time). Thus some of the groups may 
be L-diverse but the algorithm may return no. 
In consequence, the algorithm may generate 
groups larger than the optimal case because these 
groups may be split further. This is the price we 
pay for not spending exponential time. 

checking L-Diversity with column-
wise constraints
This section presents the algorithm to check 
L-diversity with column wise constraints. 

L-diverse-Column(G)
1) find a subset C with no common sensitive attribute values using the algorithm in Figure 6.
2) If |C| ≥ L, return yes.
3) sort rows not in C in ascending order of total frequency and store them in G’
4) x=|C|
5) while G’ is not empty
6)   pick row rj in G’ with the minimal f(rj), delete it from G’, add rj to C
7)   select values v1, …, vx+1 in C with the highest frequencies in C and with at most Li values 

from sensitive attribute i.  
Let vi’s frequency in C be fC(vi)

8)   if Σ fC(vi)> |C|, 1 ≤ i ≤ x
9)     delete rj 

 from C // C is not x-diverse
10)   else
11)     if Σ fC(vi)≤|C|, 1 ≤ i ≤ x+1
12)       x = x+1 // C is x+1-diverse
13)       if x = L return yes
14)  end while  
15)  return no

Figure 7. Algorithm to check L-diversity with column-wise constraints
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Figure 7 shows the algorithm. Figure 8 shows 
an example of how the algorithm works. The 
algorithm consists of two steps. In the first step 
(line 1), it finds a subset C without common 
sensitive attribute values as in the algorithm 
in Figure 6. For example, for the data set in 
Figure 4, C will contain 3 records as shown in 
Step 1 in Figure 8.

Now there are two possible cases. In 
the first case, C contains at least L rows. By 
Theorem 4, C is L-diverse without column-wise 
constraints. By Theorem 2, C is also L-diverse 
with column-wise constraints. Using Theorem 
5, the group G is also L-diverse and the algo-
rithm returns yes.

In the second case, C contains less than 
L rows. The example in Figure 8 is in this 
case because C contains 3 rows and L=4. The 
algorithm repeatedly adds rows to C and check 
whether C satisfies L-diversity. Each round 
the algorithm adds a remaining row with the 
minimal total frequency to C (line 6) and checks 

C’s diversity. A variable x is used to keep track 
of C’s diversity and x = |C| initially.

The algorithm uses the following lemma 
and theorem to check C’s diversity.

Lemma 1: Let v1, v2, …, vx be the values of 
sensitive attributes in a C,  and fC(vi) be the 
frequency of vi in C. Let V be a set of values to 
be deleted. Let SumF(V) = Σ fC(vi), where vi is 
in V. Then the maximal number of rows to be 
deleted is SumF(V).
Proof: Let RID(vi) be the IDs of rows contain-
ing value vi. Size of RID(vi) = fC(vi). When all 
values in V are deleted, the set of rows that gets 
deleted is the union of all RID(vi) for vi in V. 
The size of union is at most the sum of sizes of 
each RID sets, which equals SumF(V).

Theorem 6: Suppose frequencies of values are 
sorted in descending order, i.e., fC(v1) ≥ fC(v2) ≥ 
… ≥ fC(vx). Suppose set V contains the L most 
frequent values, with at most Li values from 

Figure 8. Example of check L-diversity with column-wise constraints

step 1: initial c
D1 T1

D3 T2

D5 T3
|C| = 3, C is 3-diverse

step 2: add row (D2, t1) to c
D1 T1

D3 T2

D5 T3

D2 T1
3 most frequent values: T1(2), T2(1), D1(1)
Total frequency = 4, C is still 3-diverse

step 3: add row (D4, t2) to c
D1 T1

D3 T2

D5 T3

D2 T1

D4 T2
3 most frequent values: T1(2), T2(2), 
D1(1)
Total frequency = 5, C is 3-diverse

step 4: add row (D6, t3) to c
D1 T1

D3 T2

D5 T3

D2 T1

D4 T2

D6 T3
4 most frequent values: T1(2), T2(2), D1(1), 
D2(1) 
Total frequency = 6, C is 4-diverse
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attribute ASi (if ASi has more than Li values, we 
select the Li most frequent ones). If SumF(V) 
≤ |C|, then C is L diverse with column-wise 
constraints.

The proof is straightforward. Consider any 
set U containing L values. By Lemma 1, deleting 
U will delete at most SumF(U) rows. Since set 
V contains the most frequent values, SumF(U) 
≤ SumF(V). Since SumF(V) ≤ |C|, SumF(U) ≤ 
|C|. Thus at least L deletions (with at most Li 
from attribute ASi) are needed to delete all rows 
in C and C is L-diverse.

Based on Theorem 6, the algorithm checks 
C’s diversity as follows. At line 7, the algorithm 
selects the x most frequent values from C, with 
at most Li values selected from attribute i. At 
line 8, the algorithm checks whether the total 
frequency of these values is greater than size 
of C. If so, the newly added row is rejected be-
cause we cannot prove that C is x-diverse using 
Theorem 6. Otherwise, we can prove that C is 
x-diverse and the algorithm keeps the newly 
added row in C. Next, the algorithm checks 
whether C is x+1 diverse by computing the total 
frequency for the x+1 most frequent values. If 
the total frequency is less or equal to the size 
of C, C is x+1 diverse and x is increased by 1 
at line 12. Finally, if the value of x reaches L, C 
is L-diverse. By Theorem 5, G is also L-diverse 
and the algorithm returns yes.

For example, consider the data in Figure 
4. Figure 8 shows the process of the algorithm 
where the numbers in parenthesis are frequen-
cies. At step 2, the row with value (D2, T1) is 
added to C, and the total frequency of the 3 most 
frequent values (T1, T2, D1) equals the size 
of C. Thus C remains 3-diverse. At step 3, the 
row with value (D4, T2) is added and C is still 
3-diverse. At step 4, the row with values (D6, 
T3) is added. Now the 4 most frequent values 
are T1, T2, D1, and D2. Note that T3 is not 
counted because at most 2 treatment values can 
be selected according to the column-wise con-
straint L2=2. The total frequency is 2+2+1+1=6, 
which equals size of C. Thus C is 4-diverse. 
Since L=4, the algorithm returns yes. 

Complexity: This algorithm calls the al-
gorithm in Figure 6 first. Thus it takes at least 
O(m |G| + |G| log |G|) time. Line 7 is the most 
expensive step because it needs to find the x 
most frequent values in C. Each time only the m 
values in the new row rj will get their frequency 
increased by one (the frequency of other values 
stay the same). Thus the x most frequent values 
must come from the list of m values in the new 
row and the list of previously x most frequent 
values. If the previously most frequent values 
are already sorted, we just need to sort the m 
new values on their frequency and merge them 
with the previous list. Thus line 7 can be done 
in O(m log m +x) time. Since x ≤ L, the time is 
O(m log m + L). Line 7 can be executed at most 
|G| times, thus the complexity of the algorithm 
is O(|G| log |G| + |G| (m log m+L)). The value 
of L is typically quite small. If L and m are in 
the same order, the complexity becomes O( |G| 
log |G|+ |G| m log m).

Experimental Evaluation
The first subsection describes the setup of 
experiments. The second subsection reports 
the results of our privacy model. The third 
subsection reports the results of our model with 
column-wise constraints.

setup
Machine: Experiments were run on a Dell 
PowerEdge Server with 3 GHz CPU and 2 GB 
memory, running Windows Server 2003.

Data: We used a patient data set obtained 
from the Kentucky Cancer Registry. It contains 
information about 72,194 patients. We used 4 
quasi-identifier attributes: birth date, gender, 
race, and zip. We used 7 sensitive attributes: 
tumor topography, histology, survival years, 
diagnose date, age at diagnosis, tumor size, 
and tumor site. This is a real data set and the 
data distribution is skewed for many attri-
butes. Our method was implemented in Perl.  
Metrics: A successful privacy protection 
method protects privacy and introduces little 
data distortion. K and L indicate the degree of pri-
vacy protection. We use two metrics to measure 
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distortion. The first is discernability (Bayardo & 
Agrawal, 2005; LeFevre et al., 2006), which is 
the average group size of all records. Since each 
group needs to have at least K rows, the best 
possible value of discernability is K. Smaller 
discernability means less distortion. 

The second metric for distortion is the 
average relative error for a large number of 
randomly generated structured query language 
(SQL) queries. Ideally, if we know the details of 
the subsequent data analysis, we can measure 
data distortion by its impact on all types of data 
analysis that can be performed. However, it is 
difficult to know beforehand all types of data 
analysis, thus we use random SQL queries. 
These queries return the number of patients 
satisfying several randomly generated condi-
tions. The number of conditions was randomly 
selected from 1 to 4. At least one condition was 
on a randomly selected sensitive attribute. The 
other conditions were on randomly selected 
quasi-identifier attributes. The conditions were 
randomly generated equality or range condi-
tions. 8800 different queries were tested. The 
error is computed to compare the counts over 
the sanitized data to the counts over the origi-
nal data. 

Algorithms: We compare the following 
three algorithms:

• Anonymize: this is our algorithm proposed 
in Figure 6.

• Anonymize-Column: this is our algorithm 
implementing column-wise constraints in 
Figure 8. 

• Exponential-L: this algorithm implements 
the L-diversity model proposed by Mach-
anavajjhala et al. (2006), which requires 
that each attribute has at least L different 
values for all records with the same values 
on the other attributes. This algorithm is 
the same as our method except the way it 
checks L-diversity.

results for our Model
Discernability results: There are three im-
portant parameters: K, L, and the number of 
sensitive attributes (m) included in the data 
set. We fixed two of them and varied the third. 
Figure 9 reports the discernability for various L 
values when K=50 and m=3 (the first three sensi-
tive attributes are used). Figure 10 reports the 
discernability for various K values when L=10 
and m=3. Figure 11 reports the discernability 
when various number of sensitive attributes are 
included and K=50 and L=10.

The discernability of Exponential-L is 
very high (meaning very high degree of data 
distortion). Exponential-L generates a single 
group that contains the whole data set for all 
cases except when there is only one sensitive 
attribute (in Figure 11). Exponential-L requires 
each attribute have at least L different values 
for all records with the same values on the other 

Figure 9. Varying L, K=50, m=3 Figure 10. Varying K, L=10, m=3
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attributes. This leads to very large group sizes 
and large distortions to data.

The discernability of our method (Anony-
mize) is lower than that of Exponential-L by 
several orders of magnitude (note that the scale 
for y-axis is logarithmic), and is not much higher 
than the best possible discernability (which is 
K). The discernability increases with K and 
L, because more data distortion is introduced 
by providing a higher degree of privacy. The 
increase of discernability is quite small when 
L increases because most groups cannot be 
split further due to violation of K-anonymity. 
Thus, the increase of L has a smaller impact on 
group size. The discernability of Anonymize 
also increases with the number of sensitive at-
tributes. As the number of sensitive attributes 
increases, two rows are more likely to have the 
same values on a sensitive attribute, and thus 
larger groups are needed to achieve L-diversity. 
However, the discernability of our approach is 
still not much higher than the best possible case 
(less than a factor of two in most cases). 

Error of random queries: Table 1 shows 
the average relative error for random queries 
when K=50, L=10, and m=3. The error of 
Anonymize algorithm for all queries is 11.3%. 
The error for queries returning less than 1% of 
the total number of patients is 14.6% and the 
error for queries returning 1% or more patients 
(there are 1117 such queries) is only 1.6%. The 
error for the first subset is higher because data 
distortion has a larger impact on these queries. 
For example, if a query returns just one patient 
and the distortion makes it return two, the error 
is 100%. The results show that our method in-
troduces small error, especially when a medium 
to large number of records are returned. This 
property is suitable for data analysis because 
it is not very meaningful to study a very small 
fraction (e.g., less than 1%) of a data set. The 
relative error for Exponential-L is about twice 
of the error for Anonymize on all queries, and 
is about five times of the error for Anonymize 
on queries returning more than 1% of patients. 

Figure 12. Vary L3, L=L1=L2=10, K=50,  
m = 3

Figure 11. Vary number of sensitive attributes, 
K=50, L=10
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Table 1. Average relative error of random queries when K=50, L=10, and m=3

Algorithm All queries Queries returning < 1% of 
patients Queries returning ≥ 1% of patients

Anonymize 11.3% 14.6% 1.6%

Exponential-L 23.2% 28.6% 8.5%
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This is expected because Exponential-L gener-
ates very large groups and introduces larger 
data distortion. Since Exponential-L has very 
bad performance, we only show the results of 
Anonymize and Anonymize-Column in the 
remaining sections.

results for L-Diversity with  
column-wise constraints
Figure 12 shows the results for L-diversity with 
column-wise constraints. We use three sensi-
tive attributes: tumor topography, histology, 
and recur status. The attribute “recur status” 
has very few distinct values (31). Let L1, L2, 
and L3 represent the column wise constraints 
for each attribute, we set L = L1 = L2 = 10, and 
varies L3 from 0 to 10. Note that L3=0 means 
none of the values of “recur status” attribute 
will be deleted and thus there is no L-diversity 
requirement on that attribute. L3 = 10 means it 
has the same requirement as other attributes. The 
results show that the discernability increases for 
larger L3 values, and becomes the same as the 
discernability of the case without column-wise 
constraints as L3 = 8. This is expected because 
a smaller L3 means fewer values are deleted 
from “recur status” attribute, making it easier 
to achieve L-diversity because this attribute has 
very few distinct values. The average relative 
error of random queries for L3 = 2 is 10.4%. 
The average relative error for L3 = 10 is 11.7%. 
Thus using column-wise constraints also leads 
to lower average relative error. The difference 

is not as big as the difference for discernability, 
because in both settings many groups are gener-
ated and thus the estimation of query results is 
quite accurate.

Execution time
Figures 13 and 14 report the execution time of 
our algorithms when the number of rows and 
number of attributes are varied. We vary the 
number of sensitive attributes in the same way 
as in the previous subsection and use all rows 
in the data set. We vary the number of rows by 
selecting a fraction of rows in the data set, and 
use all seven sensitive attributes. K=50 and 
L=10 in all cases, and Li of the last attribute 
is set to 2 for the Anonymize-Column. The 
results show that the execution time of both 
Anonymize and Anonymize-Column scale 
almost linearly with the number of rows and 
number of attributes. The execution time also 
increases at a slower pace when the number 
of sensitive attributes increase because it is 
more difficult to satisfy L-diversity for more 
sensitive attributes, and thus fewer groups 
are generated. Anonymize-Column also takes 
slightly more time than Anonymize because it 
calls the Anonymize algorithm first. However, 
the difference is not big because many groups 
also satisfy L-diversity without constraints, and 
Anonymize-Column does not need to do extra 
work for these groups. 
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Figure 13. Execution time when varying number 
of sensitive attributes

Figure 14. Execution time when varying number 
of rows (as fraction as total data set)
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concLusIon
This article proposes a privacy model that pro-
tects identity of patients for data with multiple 
sensitive attributes. A variant of this model is 
also proposed, which allows the user to specify 
a lower degree of diversity for attributes with 
very few distinct values. This article also pro-
poses efficient algorithms to implement the 
model. Experiments show that the proposed 
approach introduces distortion orders of lower 
magnitude than the distortions introduced by 
the existing approach in the literature, and in-
troduces small relative error for random SQL 
queries. As future work, we will study how to 
extend other formats of L-diversity to multiple 
sensitive attributes.
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