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1. Introduction

With an ever-increasing volume of data collected and archived by
organizations, it has become critical to efficiently and effectively
navigate through large, multidimensional cubes to identify interesting
hidden surprises. While On-Line Analytical Processing (OLAP) tools
provide various operations such as roll-up, drill-down, and slicing-
dicing for viewing datasets from different angles [13], they offer only
minimal guidance to the users in the actual knowledge discovery
process. Moreover, the viewing possibilities are combinatorially
explosive in number, making it a daunting task to manually detect
interesting hidden surprises in the voluminous and complex lattices of
multidimensional cubes.

As the size of database increases, the number of navigation paths
grows which may overwhelm the users. It then becomes difficult for
users to manually go through enormous sets of rules to identify
interesting ones. This problem could be alleviated if users were
presented with a short list of rules, or a list of navigation paths for
analytical studies. We approach the issue of cube navigation by using
skewness based navigation rules, also called sk-navigation rules,
which identify interesting surprises in data cube lattices. In this
context, a surprise reveals how anomalous a set of transactions is,
when compared with another set of closely related transactions in the
fact table. The anomalous transactions could be defined either by few
yay).

.V.
outliers in the datasets influencing the aggregated datasets or by a
group of transactions showing substantial difference on facts, such as
profit or cost, from the remaining transactions. Because the notion of a
surprise is an intuitive one, different users may have different
impressions on what constitutes a surprise. Our rule-driven system
allows the users to control the knowledge discovery process by letting
them set the baseline for surprises by simply adjusting the skewness
level of significance.

The contributions of this paper are as follows. We evaluate the
interestingness of discovered sk-navigation rules and then assist users
to selectively navigate along the paths that lead to interesting
surprises in data lattices. Using the measures of interestingness,
users can simply prune the large number of generated rules to only
the ones that are interesting. Since sk-navigation rules are discovered
based on ameasure of skewness, we adopt the interestingness of rules
in terms of their expectedness of skewness from the rules in the
neighborhood. We also introduce an Axis Shift Theory (AST) to
determine interesting navigation paths based on the global measures
of axis shifts of sk-navigation rules. The rules complement each other
to yield interesting navigation paths leading to low-level interesting
surprises. Lastly, we introduce a method of generalizing sk-navigation
rules to identify interesting dimensional attributes to augment cube
navigation. Specifically, we measure the interestingness of attributes
in terms of their attribute influence, a metric based on the unique
navigation paths provided by sk-navigation rules.

The rest of the paper is organized as follows. Section 2 presents the
related work while Section 3 provides the preliminaries on data cube
model and discovery of sk-navigation rules. In Section 4 we present
the different measures of interestingness of sk-navigation rules, and in
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Fig. 1. A partial lattice of cuboids.

430 N. Kumar et al. / Decision Support Systems 46 (2008) 429–439
Section 5 we discuss applying our methodology in the context of a
real-world application. An experimental evaluation of interestingness
is presented in Section 6 followed by a comparisonwith previouswork
in Section 7. Section 8 presents the conclusions and future work.

2. Related work

Interestingness measures are used to filter out irrelevant or
mundane patterns from a set of mined patterns such as association
or classification rules. A large number of interestingness measures
have been proposed in the literature on data mining and knowledge
discovery (see [8,19] for a comprehensive discussion). These interest-
ingness measures can be categorized into objective, subjective, and
semantic measures. Objective measures require no user input and can
be further categorized into probability-based measures and form-
dependent measures. Thirty eight probability-based objective mea-
sures have been discussed in [8], some examples of which are support,
coverage, example and counter example rate, and Laplace correction.
Form-dependent objective measures [4,5,7] such as neighborhood-
based unexpectedness, surprisingness and logical redundancy have
been applied for ranking and clustering patterns such as association
rules. Subjective interestingness measures require some form of user
input in determining the utility of a mined pattern [18,21,27]. Utility-
based measures have been used for objective-oriented association
mining (for example, [26,33]), with user-specified objectives. In
addition, numerous interestingness measures for summaries have
been proposed in the literature including diversity (e.g., [12,33]),
conciseness and generality [5], peculiarity [22–25], and surprising-
ness/unexpectedness [9]. Most of thesemethodswith the exception of
[9,10,20,30,32] have been applied for identifying patterns that have
been mined from a given static dataset as opposed to providing
guidance for navigating through multi-dimensional data cubes of
graphs, which is the focus of our paper. Hence, in the rest of this
section we focus on those methods that are closely related to our
work.

Query driven knowledge discovery [6] and discovery-driven
exploration of OLAP data cubes [22–25] have been proposed to
address identification of surprises. The authors in [22–23] have used
precomputed measures indicating exceptions as surprises. Being
precomputed, the surprises cannot be defined by users. Furthermore,
it is overwhelming for users to examine surprises by looking at data
values in a large number of rows and columns. This work was further
extended in [24,25] by discovering surprises in unexplored parts of a
data cube using maximum entropy principles computed on the
aggregate differences. However, these studies deal with aggregated
datasets which often hide the characteristic of detailed data: an
“extremely high” value and an “extremely low” value could be
aggregated to a “moderate” value, hiding both extreme values. Other
work in the area of subgroup patterns [16] addresses the general
problem of defining and identifying local subgroups.While important,
such methods also presume how a surprise is defined and do not
provide a generalized navigational methodology. Another recent
approach is presented in [5] where the authors use Simpson's paradox
as the basis for defining surprises in multidimensional data but do not
address the navigational techniques to reach surprises of interest.
Recently, in [17], skewness based navigation rules for data cube
exploration were proposed. These rules provide navigation support to
users to explore data cubes at the transaction level. While the authors
address the navigational techniques to reach surprises of interest, they
focus only on the skewness metric to reach surprises.

In another closely related work, interestingness has been used in
attribute selection, for attribute-oriented generalization [2], where the
authors examine different strategies for choosing the next attribute
for generalization. Also, the discovery of interesting summaries in
generalization space graphs has been studied in [17,22], using the
expectations of users, and relative variance as an interestingness
measure. However, unlike the method described in [17,22] we do not
require users to specify probability distributions. In addition we deal
with the lowest level transactions instead of summaries.

An examination of interestingness measures for data mining
appears in [19] and a comprehensive categorization of interestingness
measures including analysis of their properties is found in [8]. A rule
trivial to one user may not be trivial to another; therefore, with proper
guidance users can explore the ruleset by only examining the rules
which match their expectations. System guidance is also necessary
because it is unrealistic to expect every discovered rule to be a surprise
[31]. We model cube navigation by measures of interestingness of
navigation rules, so that the users can quickly identify rules of interest,
aided by the system's pruning of uninteresting rules. Our work differs
from previous work in the sense that we measure the interestingness
of navigation rules by their skewness based differences. We use
skeweness measure to discover useful interesting rules. These rules
assist in the cube navigation resulting in the identification of
interesting paths. The paths together with the selected rules, ensure
that users reach interesting low level surprises in data cubes.

3. Preliminaries

3.1. Overview of the data cube model

Adapting from the terminology given in [29] let us assume that the
data cube consists of m dimensions, d1, d2,…, dm. A dimension di is
associated with a concept hierarchy containing one or more levels of
aggregation. Level lij represents the jth level of dimension di, such that
1≤ j≤Li where Li is the number of levels associated with di. A level lij
contains a set of attributes. Let vijk be the kth attribute at level lij. The
facts are numerical measures, usually the objects of analysis. Assume
that there are s facts, f1, f2,…, fs in the fact table, and wpq is the qth
value for fact fp, where 1≤p≤s, wpq∈Wp where Wp is the domain of
possible values of fact fp. The fact table contains the complete
transaction set T=[τ1, τ2,…, τn] where n is the total number of
transactions. A transaction, τ is represented as {(x1, x2,…, xi ,…, xm), (f1,
f2,…, fp ,…, fs)}, where xi is an attribute (vijk) from the lowest level (=Li)
of di, and fp is an associated fact. In the data warehouse literature, data
cubes formed at different levels of dimensional hierarchies store data
at different degrees of aggregation, each of which is called a cuboid.
The highest level of aggregation is called the apex cuboid, often
denoted as “ALL” [11]. We follow the same nomenclature in this paper.
However, instead of storing the aggregates, we utilize the lowest level
transactions that are used for calculating the aggregates at each
cuboid. Aggregation often hides characteristics of the detailed data: an
“extremely high” value and an “extremely low” value can be
aggregated to a “moderate” value, hiding both extreme values. Using
the lowest level of granularity, the problem of hiding a surprise as a
side effect of aggregation is avoided [17].

Fig. 1 illustrates a partial lattice for a grocery database with
product (P), time (T) and store (S) dimensions. Every node in the
lattice corresponds to a set of transactions, also referred to as a
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dataset. A cuboid consists of a set of nodes. For example, (P1)
represents a one-dimensional cuboid containing level-1 (product
category) for the product dimension. Similarly, (P1,T1) represents a
two-dimensional cuboid constructed by level-1 of product (category)
and time (year) dimensions. Given m dimensions, latt(m) is a lattice
of cuboids, each being a distinct combination of hierarchical levels of
dimensions. An edge shows the possible navigation from one cuboid
to another, for instance from (P1) to (P1,T1). A navigation path
describes a traversal through the nodes in the lattice. For example,
the path (P1)→ (P2)→ (P2,T1)→ (P2,T1,S1) suggests that a user first
looks at a node at (P1) Product category, drills down to a node at (P2)
product subcategory, and subsequently views the nodes at (P2,T1)
product subcategory and year and finally (P2,T1,S1) product sub-
category, year, and region. Given a node in a navigation path,
subsequent nodes are determined either by drilling down one
dimension from a preceding node or by including a new dimension
that does not exist in the preceding node. One drill-down operation
may only involve navigation by one level in a given dimension or
traversing to a different dimension, but not both. This process may
continue until there are no more nodes to traverse. For example,
starting from a current node containing the rule “Year=1992”, the
candidate nodes to be examined for traversal include the rules
{“Quarter=Q1-1992”, “Quarter=Q2-1992”, …, “Year=1992 and Pro-
duct Category=Drinks”, …, “Year=1992 and Region=Eastern”, …}.

3.2. Discovery of sk-navigation rules

To discover the surprises in data cubes, the property of skewness, a
measure of the asymmetry in data distribution, has been applied in a
four-step recursive algorithm [15] as follows. (1) Given a current node,
generate a set of candidate nodes, (2) Measure the skewness of
candidate nodes, (3) Apply the test of significance of skewness on
candidate nodes, and (4) Transform nodes with significant skewness
into sk-navigation rules. Each candidate node in the data cube
corresponds to a subset of transactions. Thus, the skewness is computed
for the sample values of the random variable fact attribute in the set of
transactions corresponding to that node e.g., for a node “category=
drinks” and fact as profit, the skewness of that node is computed over
the profit values of all transactions with “category=drinks”.
Fig. 2. Navigation paths based on s
Once a node with significant skewness is identified, it acts as the
current node for generating candidate nodes at the next level. The
algorithm terminates when either it reaches the lowest level nodes in
the lattice, or no more nodes exhibit significant skewness in the
current iteration.

An sk-navigation rule skr, as shown below, contains information
about the dimensional levels, facts, their corresponding values and the
level of significance and skewness.

d1 : l1j ¼ v1jk;d2 : l2j ¼ v2jk; N ;di : lij ¼ vijk; N ;dm : lmj ¼ vmjk
� �

Yfp

¼ wpq α;
ffiffiffiffiffi
b1

ph i
:

Here α and
ffiffiffiffiffi
b1

p
are the level of significance and skewness of the

random variable fact [3,17]. For instance, if the profit for a node
“category=drinks” is positively skewed at α=0.05 and

ffiffiffiffiffi
b1

p
¼ 2:63,

the corresponding sk-navigation rule would be “product category=
drinks→profit= sk-high [0.05, 2.63].” relative to its parent node
“product category=All”. Sk-high in the consequent means a positive
skewness in profit. Similarly, a negatively skewed node is repre-
sented by sk-low.

A partial discovery of sk-navigation rules is illustrated in Fig. 2.
Starting fromthesk-navigation rule 2: “year=1993→profit=sk-low”, the
next set of rules that can be generated are “year=1993: quarter=1993-
Q2→profit=sk-low”, and “year=1993: quarter=1993-Q4→profit=sk-
high” assuming that both the two new set of rules are significantly
skewed at α=0.05. Cube navigation is facilitated by comparing the
discrete sk-high or sk-low values at a prespecified α value for the parent
and the child nodes as described in greater details in Section 4.

3.3. Cube navigation using sk-navigation rules

We use the discovered sk-navigation rules to assist users in the
cube navigation process. A rule is also called a node of surprise,
because it essentially represents a lattice node containing a significant
skewed pattern relative to its parent. A user begins the navigation
with a root node, and drills down to children nodes. Similarly, a node
is rolled up bymoving to its parent. A navigation path is defined by the
complete traversal from a root node to a leaf node, and comprises the
nodes visited during the traversal.
k-navigation rules at α=0.05.



Fig. 3. sk-navigation rules and their neighborhood.
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4. Interestingness of sk-navigation rules

In this section, we formally define measures of interestingness.
Since our cube exploration approach is based on detecting surprises
using skewness, we adopt the interestingness of rules in terms of
unexpectedness of skewness and explain how sk-navigation rules can
yield interesting navigation paths and dimensional attributes. Speci-
fically, we propose three measures of interestingness as follows.

(1) Expectedness of sk-navigation rules. This measure determines
interestingness of rules in terms of their unexpected patterns of
skewness from the rules in the neighborhood.

(2) Axis shift in navigation paths. This measure identifies interest-
ingness of navigation paths based on the global measures of
axis shifts of sk-navigation rules.

(3) Generalization of sk-navigation rules. This measure quantifies
the interestingness of attributes by computing their influence
on lattice nodes of surprises.The three measures of interest-
ingness are complementary to each other as each may generate
different interesting rules (see examples using a real life data
set in Section 5). Put together, these interestingness measures
provide a high degree of flexibility to effectively and efficiently
navigate combinatorially explosive data cubes. We now present
each of the three measures in detail.

4.1. Expectedness of rules

To determine the interestingness of discovered sk-navigation rules,
we introduce a neighborhood-based categorization of rules and then
examine the rules for their expectedness based on their skewness. The
rules are grouped into three categories, ‘expected’, ‘unexpected’, and
‘not applicable (NA)’, according to specific business rules predefined
on skewness patterns for the pairs of navigation rules. An example of
such a business rule is “profit increases with lower costs”. A navigation
rule is called expected if it complies with other discovered navigation
rules, i.e., it exhibits a consistent pattern with respect to the other
discovered rules. On the contrary, an unexpected rule indicates a
directional change of skewness on pairs of parent-child rules. The
antecedents of two rules are identical if they correspond to the same
lattice node, whereas they are different if they correspond to parent-
child lattice nodes. Let ante(skri) represent the antecedent of a rule.
Let skew_diff(fp1

, fp2
) be the difference in the pattern of skewness of

two facts fp1
and fp2

which is determined as follows.

skewXdiff fp1 ; fp2
� �

¼ 0; if fp1 and fp2 comply with the business rule;
1; if fp1 and fp2 do not comply with the business rule

� �

An example business rule applied on two facts cost and profit is that
“the profit increases (decreases) when the cost decreases (increases),
assuming that the revenue is constant.” Therefore, if two sk-
navigation rules show positive skewness on profit and negative
skewness on cost, they comply with the business rule, hence,
skew_diff(profit, cost)=0. However, if the navigation rules show the
same pattern of skewness (either positive or negative) for both cost
and profit, they do not satisfy the business rule, thus skew_diff(profit,
cost)=1. For example, if profit is positively skewed for one navigation
rule and negatively skewed for another navigation rule, skew_diff
(profit, profit) equals 1 for this pair of rules. Note that the skewness
difference between two navigation rules for an identical fact,
skew_diff(fpi

, fpi
), can also be measured.

We now discuss the three possible cases which measure the
expectedness of navigation rules based on the skewness difference as
illustrated in Fig. 3. Lattice node 1 is a parent node and lattice node 2 is a
child node. The link b is a result of drilling-down, the links a, and c come
about due to users examining different facts. The navigation rules skri2,
skrj1, and skrj2 are in the neighborhood of navigation rule skri1.
4.1.1. Case (a) same lattice node, different facts
The navigation rules skri1 and skri2 represent the same lattice node

(identical antecedent) but contain different facts in the consequent i.e.
ante (skri1)=ante (skri2) and fp1

(skri1)≠ fp2
(skri2). The expectedness is

measured as follows:

(a) skri1 and skri2 are expected if skew_diff(fp1
(ski1), fp2

(ski2))=0.
(b) skri1 and skri2 are unexpected if skew_diff(fp1

(ski1), fp2
(ski2))=1.

(c) skri1 and skri2 are NA if there is no business rules that include fp1

and fp2
.

Example 1. Let the following set of navigation rules represent different
facts at the same lattice node.
skr1: “year=1996→profit=sk-high”
skr2: “year=1996→cost=sk-high”
skr3: “year=1996→ temperature=sk-low”

Assume that a business rule is defined on profit and cost such that
profit and cost are negatively correlated. Then, skr1 is NA when
compared with skr3 but is unexpected when compared to skr2.

4.1.2. Case (b) different lattice nodes, same fact
The navigation rules skri1 and skrj1 are connected by a parent-child

relationship and share the same fact in the consequent, i.e. ante
(skri1)⊂ante (skrj1) and fp1

(skri1)= fp1
(skrj1).

Based on the skewness patterns of navigation rules, we measure
the expectedness as follows.

(a) skrj1 is expected if skew_diff(fp1
(skri1), fp1

(skrj1))=0.
(b) skrj1 is unexpected skew_diff(fp1

(skri1), fp1
(skrj1))=1.

(c) skri1 is NA if lnavig (skri1)=1 or skri1 is a root node in its
navigation path.
Example 2. The following set of navigation rules represents the same
fact at different lattice nodes.
skr1: “year=1996→profit=sk-high”
skr2: “year=1996, month=Jan→profit=sk-high”
skr3: “year=1996, month=May→profit=sk-low”

skr4: “year=1996, product category=Drinks→profit=sk-high”

Here the parent skr1 shows a high profit for year 1996. The children
navigation rules representing ‘Jan 1996’ and ‘1996, drinks’ contribute
to high profits in 1996, and are identified as expected rules. However,
the profit was low for the same year in the month of May (see rule
skr3). This is a surprise, which the user would not have expected by
just looking at the parent, thus it is an unexpected rule.

4.1.3. Case (c) different lattice nodes, different facts
The navigation rules skri1 and skrj2 represent different lattice

nodes such that one rule's antecedent is a subset of another and they
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contain different facts in the consequent, i.e. ante (skri1)⊂ante (skrj2)
and fp1

(skri1)≠ fp2
(skrj2).

Based on the skewness difference of navigation rules, we measure
the expectedness as follows.

(a) skri1 and skrj2 are expected if skew_diff(fp1
(skri1), fp2

(skrj2))=0.
(b) skri1 and skrj2 are unexpected if skew_diff(fp1(skri1), fp2 (skrj2))=1.
(c) skri1 and skrj2 are NA if fp1

and fp2
do not define any business

rule with each other.
Example 3. Assume the following set of navigation rules.
skr1: “year=1996→profit=sk-high”
skr2: “year=1996, month=Jan→cost=sk-high”
skr3: “year=1996, month=May→cost=sk-low”

skr4: “year=1996, month=Dec→ inventory=sk-low”

In this example thenavigation rules represent different lattice nodes.
Drilling down on skr1 reveals skr2 and skr3 while following another
navigation path reveals skr4. Based on the business rule, skr3 is expected
when compared with skr1. However, skr2 is unexpected compared to
skr1. The navigation rule skr4 is NA when compared to skr1.

4.1.3.1. Using the expectedness of navigation rules in path selec-
tion. The expectedness of navigation rules reveals useful infor-
mation for selecting navigation paths. For instance, the paths can be
ranked by the number of unexpected navigation rules. Users can
simply drill down on paths that contain a large number of
unexpected navigation rules, and examine the corresponding
datasets that contain many highs and lows in the transaction set.
Fig. 2 illustrates an example in path selection using the unexpect-
edness measure (a path is constructed by a set of sk-navigation
rules). Starting with navigation rules 1 (year=1991→profit = sk-
high) and 2 (year=1993→profit = sk-low), the first level navigation
paths are the following: 1→4, 1→5, 1→6, 1→7, 2→12, and 2→13.
From these navigation paths, rules 5, 6, and 13 are unexpected since
the skewness difference for these nodes compared to their parent
nodes is 1. A preference may be given to navigate the path 1→5→9,
1→6→11 2→13 over the other navigation paths.

4.2. Axis shift in navigation paths

While expectedness is a useful characteristic of individual sk-
navigation rules, the interestingness of navigation paths is another
valuable property. In practice, a user may seek a short list of paths
from a multitude of navigation paths that may lead to potentially
interesting surprises. If a measure of interestingness of paths is
provided, users can be selective in cube navigation by comparing
numerous paths. The following example demonstrates the need for
interestingness of paths and reveals that simply applying the
expectedness of navigation rules may not be sufficient to differentiate
between navigation paths.

Consider two navigation paths np1 and np2 with an equal number
of expected, unexpected, and NA navigation rules at the level of
significance α. Using the expectedness of navigation rules measure,
the user cannot discriminate between these paths since they contain
the same number of expected and unexpected surprises. However a
closer examination may suggest a difference in extremity of surprises
of individual navigation rules in the two paths. For instance, np1 may
contain the navigation rules representing surprises with very high
skewness. On the other hand, np2 may contain navigation rules that
have been identified as surprises but are just above the significance
level α. While np1 is a more interesting path than np2, users may
initially navigate np2 due to the lack of discriminatory power related
to the level of significance for the expectedness measure.

To address this problem, we propose an Axis Shift Theory (AST) to
measure the interestingness of navigationpaths. AST uses shiftmetrics
to discriminate between paths that contain multiple interesting
navigation rules. A shift is measured by the movement of the mean
reference axis when navigating from a parent to a child node. AST
evaluates the shifts made by individual navigation rules to determine
the overall interestingness of a navigation path. As mentioned earlier,
the navigation rules are discovered in parent–child pairs where both
parent and child represent their respective datasets and the char-
acteristics of datasets such as mean (μ), standard deviation (σ) and
variance (σ2). Given that f

_
p[parent] and f

_
p[child] are the respective means

for parent and child node on a fact fp, a shift in themean reference axis
is calculated by the difference (f

_
p[parent]− f

_
p[child]). We call it a shift

because the reference axis essentially shifts from f
_
p[parent] to f

_
p[child].

Once moved to nodchild, the newmean f
_
p[child] is subsequently used as

the reference axis for discovering its children nodes.
Assume that a navigation path npx contains t sk-navigation rules.

Then, npx={skri:1≤ i≤ t}. Let fp be the fact in the consequent for
navigation rule skri and f

_
p[i] be the mean value for fp. In order to

measure the interestingness of navigation paths, we define three shift
metrics as follows.

4.2.1. Linear shift (linSh)
We measure the linear shift of a navigation path by taking the

cumulative sum of shifts of individual navigation rules as follows.

linSh npxð Þ ¼ ∑
t

i¼1
f p i½ �−f p i−1½ �

� �
; skri 2 npx:

The linear shift, linSh(npx), measures the relative shift of the mean
reference axis when drilling down from the root node to a leaf node
(lowest level navigation rule) in the path. It identifies the paths that
contain a significant positive or negative movement of the mean
reference axis during navigation. Based on such individual shifts in a
path, the linear shift of a path can be positive, negative, or zero. We
consider the three cases individually as follows.

linSh npxð ÞN0 ðiÞ
A positive linear shift of a path indicates a significant movement of the
root mean reference axis on its right side (positive skewness). It also
suggests that the corresponding datasets in the path are likely to be
either less negatively or more positively skewed when drilling down
to low level sk-navigation rules. An interesting linear shift is observed
if a child of a root node is negatively skewed but the linear shift for the
path is positive, thereby indicating some unexpected navigation rules
with large axis shifts in the navigation path. The path 1→4→8 in
Fig. 2 illustrates a positive linear shift. The path 1→6→11may
indicate an interesting linear shift.

linSh npxð Þb0 ðiiÞ

A negative linear shift of a path indicates a significantmovement of the
root mean reference axis on its left side (negative skewness), which
also suggests the likelihood of less positively skewed or more
negatively skewed datasets at lower hierarchical levels. An interesting
linear shift is observed if a child of a root node is positively skewed but
the linear shift for the path is negative, thereby suggesting one ormore
unexpected navigation rules with large axis shifts in the navigation
path. The path 2→12→14 in Fig. 2 indicates a negative linear shift.

linSh npxð Þ ¼ 0 ðiiiÞ

If a child of a root node is skewed (positively or negatively) but the total
linear shift of the path is zero, then the path contains both positively and
negatively skewed datasetswhich balance out each other and result in a
zero axis shift. In this case, it is interesting to examine the square shift or
absolute shift (described later) to further examine the navigation path
for its interestingness. Based on Fig. 2, it is unclear whether the
navigation path 1→5→9 has a positive or a negative linear shift.
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The paths can be ranked according to their degree of interesting-
ness, by arranging them in a descending order of the magnitude of
linear shifts, |linSh(npx)|. The paths with higher linear shifts (positive
or negative) thus appear at the top for the user's selection list.

4.2.2. Absolute shift (absSh)
The absolute shift measures the total shift of navigation rules in a

navigation path irrespective of the direction of individual axis shifts.
We define the absolute shift by taking the cumulative sum of scalar
axis shifts as follows.

absSh npxð Þ ¼ ∑
t

i¼1
jf p i½ �−f p i−1½ �j; skri 2 npx:

The absolute shift is a useful metric to identify the navigation paths that
contain larger shifts of mean reference axis regardless of individual
negative or positive shifts. It preserves the magnitude of total shift by
avoiding nullification of positive and negative axis shifts. For example, a
path npx having two axis shifts of +s and −s results in zero linear shift,
however it has an absolute shift of 2s. A nonzero absolute shift implies a
definite axis shift for the path. The larger the absolute shift, the greater
the axis shifts of navigation rules are expected to be. In conjunctionwith
linear shifts, users can select paths by their absolute shifts. While the
linear shift for path np2 is approximately zero, the absolute shift has a
larger value. This suggests that the path np2 is the result of significant
shifts on both the right and the left side of the root mean reference axis,
rather than an overall significant yet static shift in one direction.

4.2.3. Root square shift (rsSh)
The root square shift measures the interestingness of a path to

distinctively account for the influence of individual high axis shifts. For
instance, individual axis shifts, when combined together, may lead to a
high absolute shift even if the individual shifts are not high enough. On
the other hand, even a single high value shift can dictate the total shift
of a path and is interesting to examine. The root square shift identifies
these highs and lows in axis shifts to assist in comparing the navigation
paths. We define the root square shift as follows.

rsSh npxð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t

i¼1
f p i½ �−f i−1½ �

� �2
s

; skri 2 npx:

4.2.4. Using the three shift metrics
The three shift metrics complement each other. The linear shift can

be used to examine the paths with a significantly high positive or
negative movement of the root mean reference axis. The absolute shift
can be used to identify paths with high traversals of the root mean
reference axis. The root square shift can be used to reveal paths that
contain an unexpectedly high axis shiftmade byat least one navigation
rule. An example which describes the different shifts is provided next.

Example 4. Assume two navigation paths np1 and np2. The
individual node shifts and the three shift metrics for both paths are
shown in Table 1. In this case, the root square shift clearly distinguishes
between the interestingness of np1 and np2, which would not have
been identified using linear and/or absolute shifts.

4.3. Generalization of sk-navigation rules

The axis shift theory determines which navigation paths are
interesting as established by the shift metrics. As the size of database
Table 1
Comparison of shift metrics for two navigation paths

Node shifts

Path node_shift1 node_shift2 node_shift3 linear
shift

absolute
shift

root square
shift

np1 30 35 40 105 105 61.03
np2 3 2 100 105 105 100.06
increases, the number of sk-navigation rules (and thus the paths) can
also grow significantly thus overwhelming the users who typically need
to retrieve only a short list of navigation rules or paths for analysis, and
also expect proper systemguidancewithminimal intervention. This can
be achieved if the system provides the interestingness information at
the earliest possible stages of navigation. It also helps users to have
apriori knowledge about the types of surprises hidden in subsequent
lower level lattice nodes. For instance, if there are four product
categories, “Food”, “Drinks”, “Supplies”, and “Gifts” and all of them
provide sets of navigation paths to reach the surprises, a question arises
as to which of these dimensional attributes are more interesting than
others. While “Food” may provide more sk-navigation rules than the
others, “Gifts”may lead to more unique surprises. Therefore, a measure
of interestingness of attributes can effectively help users navigate only
through the paths containing interesting attributes. To determine the
interestingness of attributes, we introduce a simple and effective
method of generalization of sk-navigation rules, which determines the
attributes from dimensional hierarchies that substantially contribute to
the discovery of surprises. For example, when a user is given the
information that a large number of surprises exists when “Quar-
ter=1997-Q3”, then it is beneficial to navigate along the paths that
contain 1997-Q3 as the navigation rules' antecedent.

We examine the navigation rules' antecedents to determine the
relative influence or significance of attributes from different dimen-
sions and also detect the unique navigation paths that the attributes
belong to. To determine the attribute influence (attrInf) of an attribute
vijk of dimension di at level lij, we perform a two-step generalization of
navigation rules on the attribute as follows:

Step 1) Identify the navigation ruleset skr(vijk), at a skewness
significance level of α, in which every navigation rule must
either contain the attribute vijk or an attribute vi'j'k' in the
antecedent such that vi'j'k' is a lower level attribute (i= i', jb j')
from dimensional hierarchy of dimension di, and vijk is an
ancestor of vi'j'k'.

Step 2) Determine the attribute influence for vijk as follows.
attrInf vijk

� � ¼ jnpx vijkð Þj
∑8i;j;k jnpx vijkð Þj.

where npx(vijk) is identified by a navigation from the navigation rule
“di:lij=vijk” to a leaf rule skrj such that skrj∈skr(vijk) and |npx(vijk)|
represents the total number of paths belonging to attribute vijk. The
value of attrInf(vijk) ranges from 0 to 1. If an attribute does not lead to
any surprises, its attribute influence equals zero, suggesting that the
attribute is not an interesting one. On the contrary, an attribute
influence of 1 identifies a highly influential attribute.

To measure attribute influence we choose navigation paths as
opposed to the number of leaf nodes (lowest level surprises) to avoid the
deficiencies associated by the latter measure. A path essentially
considers both the leaf nodes and their accessibility from the attribute.
Two or more attributes can lead to an equal number of leaf nodes but
exhibit different number of paths to reach them. Also, an attribute can
link tomultiple paths leading to the same leaf node since a leaf nodewill
connect to at least one navigation path. However, the reverse is not true
i.e., two leaf nodes cannot be reached through the samenavigationpath.
If we consider the leaf nodes as the basis of a comparison, two or more
dimensional attributes with equal number of leaf nodes will not be
distinguishable using attribute influence despite the fact that one
attribute guides the users through higher number of paths to reach the
surprises. We illustrate such a scenario in Fig. 2: using this navigation
ruleset, we determine the unique navigation paths to measure the
attribute influence for year 1991 and 1993. For this navigation ruleset,
rules 8 and 10 on one hand, and rules 9 and 11 on the other, are identical
even though they were generated by different traversals. Table 2
presents the attributes, their attribute influence (given that the total
number of paths by all dimensional attributes is 15), and their leaf node
counts.



Table 2
Attribute influence for 1991 and 1993

Attribute Paths
(using rule_id)

attrInf # leaf nodes identified

1991 1→4→8 0.267 2
1→5→9 (“quarter=1991-Q1, state=VA”, “quarter=1991-

Q3, product category=Food”)1→6→11
1→7→10

1993 2→12→14 0.133 2
2→13→15 (“quarter=1993-Q2, product category=Drinks”,

“quarter=1993-Q4, state=TX”)
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While both 1991 and 1993 lead to equal number of leaf nodes,1991
is a more influential attribute than 1993 since it provides the users
with a higher number of unique paths to reach the surprises as
determined by attrInf(1991)NattrInf(1993).

5. Interestingness measures on a real world dataset

In 2003, motor vehicle crashes ranked third in terms of the number
of years of life lost, behind cancer and heart diseases [28] where the
number of years of life lost is estimated as the additional number of
years an individual is expected to live had he/she not died in the crash.
Using a combination of OLAP, GIS, and statistical tools, managers of the
road infrastructure are able to determine problem roads and
intersections and take corrective actions. Enforcement officers can
implement different tactics based on external factors e.g., time and
day of week, weather conditions, driving under influence, etc. A
prototype system named MSAC was described in [1], which described
a crash reduction system which provides OLAP capabilities to all
stakeholders through a unified architecture to facilitate collaborative
decision-making. MSAC users manually navigate paths of interest to
them. Based on our experience with the system implementation and
with discussions with various stakeholders, we identified that guided
knowledge discovery would be extremely desirable for improving the
functionality of the prototype.

Based on manual cube navigation using MSAC, the following prior
knowledge was known to the enforcement officers: the vehicle crash
costs are the highest on Friday nights after 8:00 pm, and in districts
with a large number of highways. In order to test the identification of
navigation paths with high degree of interestingness, we obtained the
dataset containing 534,941 commercial vehicle crash records from the
MSAC researchers that ranged from 1993 to 2001 in the state of
Maryland. Each individual crash record details the crash location, day
and time, severity of crash, and the crash cost. We examined the
interestingness of the skewed patterns for this dataset for the three
measures: expectedness of the navigation rules, axis shift in paths,
and attribute influence.

On the expectedness measure, 372 expected and 52 unexpected
sk-navigation rules were discovered within a total of 2.06 min. Using
the axis shift skewed interestingness measure, the most interesting
path identified by linear shift, absolute shift, and root square shift all
led to the following sk-navigation rule “District=3-Greenbelt, Coun-
Table 3
Seven best attribute influence for crash dataset

Dimensional attribute Attribute influence

District= ‘Frederick’ 0.390244
District= ‘Annapolis’ 0.317073
District= ‘Greenbelt’ 0.195122
Day of week= ‘Tuesday’ 0.195122
County= ‘Anne Arundel’ 0.170732
County= ‘Frederick’ 0.170732
Day of week= ‘Saturday’ 0.170732
Day of week= ’Friday’ 0.170732
Day of week= ‘Sunday’ 0.146341
ty=Prince George, Day_Of_Week=Tuesday, and Time_Interval=4 pm–

8 pm” with high positive shifts in the crash costs at each navigation
level. This fact is interesting since it does not conform to the apriori
knowledge that most crashes take place on Friday after 8:00 pm.
Without this information, users would have spent considerable
amount of time navigating the paths that have Friday as a node. The
second most interesting measures for navigation paths were different
at the second navigation level for linear shift, absolute shift, and root
square shift; however, in all three of these shifts, “District=3-
Greenbelt” was identified as the root navigation node.

Table 3 shows the attribute influence of the top seven attributes.
Interestingly “District=7-Frederick” was identified as the attribute
with the largest influence on the interesting navigation paths. While,
apriori, the user might suspect that Frederick district would be
interesting, since two Interstate Highways pass through the district,
the attribute influence clearly identifies this as an interesting starting
node. Thus, there are ample opportunities for enforcement officials to
navigate starting from the Frederick node in order to gain more
understanding on crashes.

6. Experimental results

In this section, we present a set of experiments to evaluate the
measures of interestingness and their scalability. Specifically, we
demonstrate the interestingness from: (a) expectedness of rules, (b)
navigation paths using axis shifts, (c) generalization of attributes,
along with (d) the execution time, and (e) the space overhead. All
experiments were performed on a 1.7 GHz Pentium IV machine with
512MB RAM runningWindows XP. The algorithmswere implemented
in PL/SQL on an Oracle 10g database.

6.1. Experimental setup

We adapted the Grocery database [14] to produce five test datasets
as shown in Table 4. The number of navigation nodes is obtained by
adding all lattice nodes in all possible cuboids. Each of the datasets
contains three dimensions, Product, Time, and Store, and two facts,
Profit and Cost. The dimensional hierarchies are Product {Category,
Subcategory, Brand}, Time {Year, Quarter, Month}, and Store {Region,
State, City}. The number of attributes at the lowest level varied from16
to 64 for Product, 20 to 192 for Time, and 14 to 31 for Store dimension.
We generated surprises which represent transactions containing 15–
20% high or low profit values compared to the rest of the transaction
set. The numbers of transactions with surprises varied from 1 to 25 for
each of the datasets. The surprises were also generated in a manner
such as to conceal their presence at the higher levels of aggregations
(for example, the aggregate “Product category=Drinks” would not
show the surprises in transactions “Product Brand=Pepsi” and
“Product Brand=Ahold 2% Milk”).

Due to the nature of navigating the lattice nodes, a surprise at the
lowest level affects its higher level lattice nodes, such as a surprise at a
node “city=Fairfax” will influence two additional nodes, “state=VA”
and “region=Eastern”. We measure this phenomenon by defining an
influence rate, which is calculated as the number of nodes affected
divided by the total number of nodes. Fig. 4 shows the number of
Table 4
Summary of the five experimental datasets

Dataset # records # nodes of navigation

DS-1 4480 5893
DS-2 32,240 37,119
DS-3 97,384 107,095
DS-4 20,736 131,759
DS-5 190,464 1,035,893



Fig. 6. Discovered unexpectedness rules for DS-5.

Fig. 4. Surprise vs. total affected nodes.
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nodes in the grocery cube lattice that were affected by the lowest level
surprises. For instance in dataset DS-5, the existence of only one
lowest level surprise (affecting a single transaction) “Product
subcategory=Orange Juice, month=1991-Q1_Jan, city=Baltimore”
affected 62 nodes from a total 1,035,893 nodes in the lattice giving
an influence rate of 0.005%. As expected, increasing the number of
surprises to 5 in the same dataset resulted in a higher influence rate of
0.020% by affecting a total of 215 nodes. At the maximum, when 25
lowest level surprises existed in DS-5, the influence rate was 0.071%
affecting 738 nodes.

Apart fromvarying the number of surprises, we also discovered the
navigation rules at various levels of significance (α) ranging from
0.005 to 0.1.

6.2. Interestingness from expectedness of navigation rules

Fig. 5 examines the effect of α on the expectedness of discovered
navigation rules for the dataset DS-5 when the number of surprises was
set to25. Theplot “pos_exp” shows thepercentageof expectednavigation
rules with positive skewness; “neg_unexp” shows the percentage of
unexpected navigation rules with negative skewness, and so on. While
the total number of expected navigation rules is always greater than the
total number of unexpected navigation rules, we observe a higher
percentage of unexpected navigation rules discoveredwith an increase in
the value of α. When α was increased to 0.05, 8.17% unexpected
navigation rules were discovered. It further increased to 31.62% at α=0.1.
This happened as a result of a decrease in critical skewness with higher
α's. At lower α's, only the very highly skewed patterns, which were
more prominent and mostly expected, were detected. The discovery of
31.62% unexpected navigation rules also suggests that a large number of
unexpected skewed patterns were concealed in low level lattice nodes
and were not noticeable at higher levels of aggregation at smaller α's.
Finally, we notice that there is a relatively larger drop in the percentage of
Fig. 5. Interestingness of rules for DS-5 at surprises=25.
navigation rules for neg_exp (from 46.67% to 25.15%) curve compared to
pos_exp curve (52.08% to 42.55%). It is attributed to the discovery of large
number of unexpected navigation rules at higherα's. It also suggests that
there are more positively skewed patterns than negatively skewed
patterns in the dataset.

Fig. 6 further illustrates the discovery of unexpected skewed
patterns in DS-5 at various values of α and number of surprises. In
each of the instances, the percentage of unexpected navigation rules
increased with an increase in α. For example, when α increased from
0.025 to 0.05, the number of unexpected navigation rules increased
from 5 (1.93% of total) to 41(8.17% of total) for 25 surprises. At the
maximum, 45.63% unexpected skewed patterns were detected for 2
surprises and α=0.1.

Fig. 7 compares the percentages of interesting navigation rules for
the five datasets when the number of surprises and α were set to 25
and 0.05 respectively. We observe that DS-3 contained a higher
percentage of unexpected navigation rules (24.19%) compared to other
datasets. Also, this 24.19% was almost equally divided between
positively skewed unexpected (12.39%) and negatively skewed
unexpected (11.80%), highlighting an important issue with data
aggregation: it is difficult to detect skewed patterns by looking at
aggregated datasets. However, sk-navigation rules detect these
skewed patterns as explained in DS-3.

6.3. Interestingness from navigation paths using Axis Shift

Fig. 8(a) illustrates how the Axis Shift Theory is used in DS-5 to
reach surprises through interesting navigation paths when the
number of surprises and α were set to 25 and 0.05 respectively. We
Fig. 7. Interestingness of rules for five datasets with α=0.05.



Fig. 8. Interestingness of paths for (a) DS-5, and (b) Five datasets at α=0.05.

Fig. 9. Attribute influence for datasets at α=0.05.
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first calculated the linear shift (linSh), absolute shift (absSh), and root
square shift (rsSh) for discovered navigation paths. Then, the paths
were ranked from highest to lowest interestingness by arranging them
in descending order of shifts, for each of the three shift metrics. We
then examined the percentage of surprises detected by various sizes of
top interesting paths.

Fig. 8(a) shows that every shift metric required only a small set of
interesting paths to reach all surprises discovered by sk-navigation rules
(88% of total implanted surprises). For instance, only the top 15% (most
interesting) pathswere able to reach all discovered surprises using linSh.
Also, both absSh and rsSh reached the surprises by using only 10% of the
paths. We observe that rsSh is the steepest of the three shifts, thereby
indicating that it performed better than linSh and absSh to reach the
discovered surprises. A horizontal straight line after 15% paths for linSh
(and 10% for absSh and rsSh) suggests that the same sets of surprises
were reached afterwards using the less interesting navigation paths.

Fig. 8(b) further illustrates the use of rsSh to determine interesting
paths for five datasets when the number of surprises and α were set to
25 and 0.05 respectively. We observe that only the top 15% (32 out of a
total of 218 paths) and the top 10% (23 out of a total of 235 paths) ofmost
interesting paths were able to reach the surprises in DS-4 and DS-5
respectively. This clearly shows that the surprises were reachable by a
significantly smaller set of prunedpaths. Also, the top 35% and30%paths
were able to reach all the surprises in DS-2 and DS-3. A highest 45% of
the paths were needed to reach every surprise in DS-1 but in reality the
top 21% paths had detected 96% of the surprises. Only one less-skewed
surprise “product subcategory=Juice, quarter=1993-Q2, city=San
Diego” was reached by the 64th most interesting path from a total 142
paths, thus requiring 45% paths to reach every surprise in the dataset.
6.4. Interestingness from generalization of sk-navigation rules

Fig. 9 shows the top three most interesting attributes for the five
datasets when the number of surprises and α were set at 25 and 0.05
respectively. These attributes were identified based on the frequency of
their presence in navigation paths leading to surprises as discussed in the
section on generalization of attributes. As shown in the figure, ‘MD’,
‘Supplies’, and ‘PA’were the top three most interesting attributes in DS-1,
DS-2, and DS-3, though they showed different attribute influences for
different datasets. For instance, ‘MD’ in DS-1 identified 53.52% of the
possible navigationpaths leading to surprises, whereas the same attribute
identified 49.33% and 45.91% of the paths in DS-2 and DS-3 respectively.
The ‘Eastern’ regionwas identified as themost interesting attribute in DS-
5 with a 50.21% attribute influence. It is important to note that this
interestingness measure identified one attribute in each of the datasets
that led to the discovery of at least 45% of the surprises. The attributes
rankedbyattribute influenceprovideguidance tousers in cubenavigation.
For example,whennavigating throughDS-1, users aremost likely to reach
the surprises if they drill down on ‘MD’ followed by ‘Supplies’, and ‘PA’.

6.5. Execution time and space overhead

Fig. 10(a) shows the total time to identify the interesting navigation
paths in DS-5 as a function of α. We first deduced the navigation paths
fromsk-navigation rules and thenapplied the axis shift theory tomeasure
the interestingness of paths in terms of linSh, absSh, and rsSh. The graph
suggests an increase in execution time for higher α's. This is expected
because at higher α's, a larger number of paths are discovered. However,
even for the largest dataset DS-5, the interesting paths were discovered
with a very low processing time. For instance, it took only 2083 ms to
discover 147 interesting paths with 10 surprises and α set at 0.05. The
execution time reached amaximum2613mswhen 495 interesting paths
were identified in DS-5 at a peakα value of 0.1 and 25 surprises. Fig.10(b)
shows the execution time fordifferent datasets atα=0.05. The interesting
navigationpathswerediscoveredwithina lowprocessing time foreachof
the five datasets: it took only 1810 and 1882 ms to discover interesting
paths inDS-3andDS-4 respectively for 20 surprises. It took themaximum
2464 ms to discover 235 interesting paths in DS-5 for 25 surprises.

The space overhead to store the interesting navigation rules and
navigation paths for the datasets at α=0.05 is very low. It ranges from
0.22% (in DS-5) to 2.05% (in DS-4). This small overhead is due to the
fact that the number of navigation rules does not increase in direct
proportion to the size of the datasets.

7. Comparison with previous work

We used the motor vehicle crash data described in the previous
section for comparing our method with previous work. Even though the
literature provides many interestingness measures such as support,
confidence, lift, conviction, surprisingness and novelty, none of these
measures have been developed for navigating multi-dimensional data



Fig. 10. Execution Time for (a) DS-5 as a function of α, and (b) five datasets at α=0.05.
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cubes. To the best of our knowledge, the onlymethod other thanwhatwe
describe in this paper was discovery driven cube exploration, developed
by Sarawagi et al. [22–25]. The crash dataset has nine dimensions and
several facts, of which, we will consider only one measure, namely,
crash_cost. The dimensions and the number of distinct values for each
level of the dimensional hierarchies are shown in the Table 5. The lowest
level is shown as “NONE” as there is no possible navigation from there.
Someof thedimensionshavebeenflattenedout for simplificationbut this
does not impact the generality or the comparison of the twomethods. In
the method described in [22–25], a user has to view 10,439 screens of all
possible exception values (InExp, SelfExp, and PathExp) which is the total
number of possible cuboids [11] since the navigation is based on the
values of the dimensions at each level. In addition, for each screen, the
userwill have tovisually inspect tableswithnumberof rows ranging from
2 to 9497. Both of the above are impractical for user-driven navigation.

In contrast, our method lists the rules instead of the actual values
of the dimensions. So a user can select a rule to drill-down the same
Table 5
Description of dimensions

Dimension Level 1 Level 2 Level 3 Total

Time 9 12 7 756
Location 25 1 None 25
Collision 2 25 None 50
Vehicle 24 None None 24
Route 9497 None None 9497
Environment 23 None None 23
Severity 2 None None 2
Junction 9 None None 9
Contribution 53 None None 53
Total 10,439
dimension or drill across another dimensions which limits the
number of cuboids visited. In our proposed method, the maximum
number of dimensional values is 88, calculated by counting the total
number of possible navigations. Each screen will have a rank-ordered
set of 10 rules. It means that in the worst case, the user can view 880
possible screens. Both of the above are worst case scenarios for user-
driver cube navigation as summarized in the Fig. 11 below.

8. Conclusions and future work

In this paper, we presented the measures of interestingness of
skewness based navigation rules which are used to discover interesting
surprises hidden in multidimensional cubes. We investigated interest-
ingness in three different ways examining: unexpectedness of naviga-
tion rules; an axis shift in the navigation path, and generalization of
navigation rules. First, unexpected navigation rules are discovered by
examining their skewness' differences from the navigation rules in the
neighborhood. Second, the theoryonaxis shifts identifies the interesting
navigation paths in terms of linear shift, absolute shift, and root square
shift,which are testedon a real-worlddataset. Finally, the generalization
of navigation rules identifies interesting dimensional attributes which
lead to large numbers of low level interesting surprises. We also
conducted detailed experiments on five different sets of grocery data to
evaluate these measures of interestingness.

Themeasures of interestingness suitably fit into business intelligence
arena. Executives andanalysts cannavigate throughOLAPcubesusing sk-
navigation rules to gain useful insights intomultidimensional datasets. In
BI dashboards, the interestingnessmeasures can fittingly work as a set of
cues to provide visibility into datasets and to help organizations reach
stated goals by leveraging information and analytics. For instance,
executives can begin cube navigation by first looking at attribute
generalization measure to instantly know about interesting attributes.
Then, they can select an interesting attribute and navigate through
unexpected sk-navigation rules. They can also filter on navigation paths
based on axis shifts so as to view the paths that interest them.

The measures of interestingness can suitably be applied to business
domains where metrics are real-valued to measure for skewnesss and
where the rules can be compared relative to each other (such as rules for
their unexpectedness or attributes for their attribute influence). Metrics
such as time (production time, shipment time, product assembly time),
cost (production cost, operational cost, cost of inventory), revenue, profit,
units of product sold, fit our measures of interestingness quite well.

As an example, reducing the “production time” is usually a goal for
manufacturing companies. A positively skewed production time (i.e. it is
taking longer than average) might suggest to the executives to look for
inefficiency factors by product by region. They can drill down on
navigation rules to identify the products in regions that have longer
than expected production times. This knowledge can then be used to
determine the underlying reasons for the production bottlenecks. On the
other hand, a negative skewness onproduction timemetric is a good sign.
Fig. 11. Comparison with Sarawagi et al. [24,25]
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We are currently extending our work on the concept of cube
navigation to allowusers toview ina tree structure, all possiblenavigation
paths froma navigation rule and then delve directly into a navigation rule
of interest. We are further enhancing our work to allow users to
investigate the corresponding transaction set for a navigation rule such
that the highly skewed transactions are displayed clearly at the top.
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