
An Algebraic Compression Framework for Query Results1

Zhiyuan Chen and Praveen Seshadri
Cornell University

zhychen, praveen@cs.cornell.edu, contact: (607)255-9124, fax:(607)255-4428

1 This work on the Cornell Jaguar project was funded in part through an IBM Faculty Development award and a Microsoft research grant to Praveen Seshadri, through a
contract with Rome Air Force Labs (F30602-98-C-0266) and through a grant from the National Science Foundation (IIS-9812020).

Abstract
Decision-support applications in emerging environments
require that SQL query results or intermediate results be
shipped to clients for further analysis and presentation.
These clients may use low bandwidth connections or have
severe storage restrictions. Consequently, there is a need to
compress the results of a query for efficient transfer and
client-side access. This paper explores a variety of
techniques that address this issue. Instead of using a fixed
method, we choose a combination of compression methods
that use statistical and semantic information of the query
results to enhance the effect of compression. To represent
such a combination, we present a framework of
“compression plans” formed by composing primitive
compression operators. We also present optimization
algorithms that enumerate valid compression plans and
choose an optimal plan. Our experiments show that our
techniques achieve significant performance improvement
over standard compression tools like WinZip.

1. Introduction

Most database applications have multi-tier client-server
architectures. The database back-end server is used to run
queries over the stored data. The query results are shipped
across a hierarchy of clients, with possible transformations
along the way. Increasingly, these “clients” reside on a
desktop machine, a laptop, or a palmtop computer. In this
paper, we apply compression to the results of SQL queries.

1. In OLAP applications, the query results need to be
moved to the clients for ready visualization. The clients may
download the query results across an expensive and/or a
slow connection such as a wireless network.

2. In mobile computing applications, the clients are
usually disconnected, and consequently need to download
large query results for offline use. For the emerging class of
palmtop computers, storage is severely constrained. For
instance, the only storage for a PalmPilot III is 2MB of
RAM (there is no hard disk). Usually users only need to
access a small portion of the results. For instance, a user may

browse the results and only access those tuples that can be
shown on the screen. Compression is a very effective
approach under such situations because the clients can keep
the results compressed and only decompress the portion
being accessed. Therefore, for efficient transfer and client-
side storage conservation, the query results need to be
compressed.

3. In heterogeneous database systems, a query is also
often divided into sub-queries executed on several sites
separately and each site will transfer intermediate results
across an often slow and unreliable network. Recent
research [MP99] has demonstrated the use of client-side
functions (UDFs) within SQL queries. This requires that
partial results be shipped from the server to the client. A
slightly different motivation underlies the research on
semantic caching [DFJ96] that also expects that the results
of queries are cached at clients.

This work is motivated by all these environments, where
the ability to compress query results enhances the usability,
functionality and/or performance of the application.

1.1. Summary of contributions

Data compression has traditionally been applied to
database indexing structures [WAG73, COM79, GRS98].
While there has been some work on compression techniques
for query evaluation [RH93, RHS95, GRS98, GS91], this
activity is typically restricted to the internals of decision-
support systems. There is also much existing research in the
data compression community, mostly focused on
compression algorithms for specific data types (like text and
multimedia). Three issues make it non-trivial to apply
compression in database systems:

1. Compression and decompression are CPU intensive
operations. The cost is especially important at low-end
clients.

2. Database applications often need random access to
data in small pieces (tuples, attributes, etc). This makes some
popular compression methods such as LZ77 (used in
WinZip, PKZIP, and Gzip) not appropriate for low-end
clients. The reason is such methods only work well for large

chunks of results, and a large chunk of results must be
decompressed even if only a small piece is needed.
Therefore, these methods have prohibitive decompression
costs for low-end clients because both the processors of
these clients are slow and the power supplies are limited
(these clients usually use batteries).

3. A DBMS holds domain specific knowledge of the
query results, which can be used to enhance the effect of
compression. For instance, values of the same attribute have
many similarities while values of different attributes usually
have very different characteristics. This implies that a single
method may not be appropriate for all attributes. Instead, a
combination of compression methods that compress each
attribute separately based on the domain knowledge usually
can achieve better effect [BBC 99]. The choice of an
appropriate combination is not obvious.

Our research makes the following contributions:
1. We analyze SQL queries and demonstrate how the

semantics of the queries, the statistics computed in query
processing or query optimization, and the underlying tables
can identify compression opportunities.

2. We present an algebraic framework to represent the
compression of an entire query result using the combination
of many methods. We define primitive compression
operators, and a compression plan as a sequence of
compression operators.

3. We demonstrate through implementation that well-
chosen compression plans can result in significantly better (
89% on average in our experiments) compression ratios (the
size of uncompressed results divided by the size of
compressed results) than standard compression methods like
LZ77. We apply compression plans to modified versions of
all the queries in the TPC-D benchmark and report on the
resulting compression ratios. We also show the superiority
of well-chosen compression plans in an experiment on
handheld devices.

4. The choice of an appropriate compression plan
requires “compression optimization”. The performance of a
combination of compression methods depends on various
factors such as the concerns of the client (whether the
storage is limited or the processor is slow, or both), the
characteristics of the query results, the network transmission
rate, etc. Further, compression decisions may have to be
made before the query is executed and before the query
result is materialized. We present a cost-based exhaustive
algorithm to enumerate valid compression plans and choose
the best plan, as well as a faster heuristic algorithm to choose
a reasonably good plan.

We briefly summarize related work in the next section.
Section 2 shows how the use of domain knowledge can
enhance the effect of compression. A general framework for
the combination of compression methods is presented in
section 3. Section 4 demonstrates the effect of compression
plans. Section 5 discusses compression optimization issues.
Section 6 presents the conclusion and the future work.

1.2. Brief summary of related work

A number of researchers have considered compression
methods on text and multimedia data. The methods they
consider can be roughly divided into two categories,
statistical and dictionary methods. Statistical methods
include Huffman encoding [Huf52], arithmetic encoding
[WNC87], etc. Dictionary methods include LZ78 [WEL84],
LZ77 (LZ77 is used in popular compression tools like
WinZip and Gzip) [LZ77, LZ76], etc. A comprehensive
survey of compression methods can be found in [SAL98].

Most related work on database compression has focused
on the development of new algorithms and the application of
existing techniques within the storage layer [ALM96,
COR85, GOY83, GRA93, LB81, SEV83]. [GRS98]
discusses page level offset encoding on indexes and
numerical data. The tuple differential algorithm is presented
in [NR95]. COLA (Column-Based Attribute Level Non-
Adaptive Arithmetic Coding) is presented in [RHS95].
Considerable research has dealt with compression of
scientific and statistical databases [BAS85, EOS81]. In
commercial database products, SYBASE IQ [SYB98] uses a
compression technique similar to LZ77. DB2 [IW94] also
uses Ziv-Lempel compression method in the storage layer.

Other researchers have investigated the effect of
compression on the performance of database systems
[RH93, RHS95, GRS98]. [GS91] discusses the benefits of
keeping data compressed as long as possible in query
processing. Our research is complementary to the above
work because we focus on the compression of query results
leaving the DBMS. To the best of our knowledge, there is no
research that directly addresses this topic.

Another related research area is mobile databases. Much
work has been done on caching [CSL98], data replication
and data management [HSW94], and transaction processing
[DL98]. However, our focus is on the compression of query
results shipped to handheld devices.

2. Compression methods

2.1. Data compression methods

2.1.1. Standard lossless compression methods. Table 2.1
presents a list of the standard lossless compression methods
that are used in this paper. Each method is described briefly,
and detailed algorithmic explanations can be found in
[RH93]. While this list is not exhaustive, any specific
database system will implement a finite number of
compression algorithms, and our work assumes this finite
list.

While we intend to leverage well-known data
compression algorithms, we also present two database-
specific compression methods - normalization and grouping
- in the next two subsections.

Name Description
Differential
encoding

Compute the difference of adjacent values
(same column or same tuple).

Offset encoding Encode the offset to a base value.
Null suppression Omit leading zero bytes for numerical

values and leading or ending spaces for
strings.

Non adaptive
dictionary
encoding

Use a fixed dictionary to encode data.

LZ77, LZ78 Adaptive dictionary encoding.
Huffman encoding Assign fewer bits to represent more

frequent characters.
Arithmetic
encoding

Represent a string by interval according to
probabilities of each character.

Table 2.1 standard compression methods.

2.1.2. Normalization as a compression method. Stored
tables are usually normalized to eliminate data redundancy.
However, when queries involve foreign key joins, the
results become unnormalized. For instance, assume there
are two tables R1 (A,B) and R2 (A,C). A is a primary key in
R1 and a foreign key in R2. Therefore, there exists a
functional dependency A->B. Assume the query is:

select * from R1, R2 where R1.A = R2.A and R1.A <
1000 order by R1.A;

Suppose the result contains 1000 distinct A values and
100,000 tuples. A and B values are stored 100,000 times
instead of 1000 times (they only have 1000 distinct values)!
Such redundancy can be reduced by normalizing the result
into two relations, AB and AC such that B values are only
stored 1000 times.

The simple normalization technique has two problems
(a) values of attribute A still have redundancy, (A values are
stored 101,000 times) (b) a join is needed to regenerate the
result. However, when the results are already sorted on A
(the LHS of the functional dependency), there is a more
efficient normalization algorithm that partitions the table
into equality partitions on A (and thereby on B as well). The
first tuple in each partition stores all attribute values while
the other tuples in this partition only store C values. There is
also a bitmap indicating the first tuple in each partition such
that the table can be decompressed at the attribute-level.
This physical representation of the normalized tables has
little redundancy (and hence occupies fewer bytes). We call
such a method sorted-normalization. However, the

application of this method is more limited than that of the
naïve normalization because the former requires certain
order of results.

Figure 2.1 shows the procedure of compression and
decompression using sorted normalization.

2.1.3. Grouping as a compression method. Even if there
is no functional dependency, a similar method is to group
together duplicate attribute values and merely record each
distinct value once along with the matching values of other
attributes. If the query results are sorted, the grouping
method can be applied on the sorted attributes without
significant additional cost.

2.2. Using compression methods

Clearly, it is possible to apply a general-purpose
compression technique like LZ77 compression to the result
of any query. However, this approach has following
drawbacks:

(a) A large chunk of result tuples needs to be
decompressed in order to access individual tuples or
attributes. The decompression overhead may defeat the
purpose of compression in some cases.

(b) The LZ77 method uses no available domain
knowledge about the query result.

(c) Since each table consists of different types of data in
each column, there is no reason to believe that a single
compression method is ideal for the whole table.

Consequently, we are faced with the non-trivial issue of
composing multiple compression methods in a consistent
and efficient way. We discuss the consistency issue in
Section 3 (what is a valid compression plan?) and the
efficiency issue in Section 5 (how is a good compression
plan chosen?). In the rest of this section, we further motivate
our work by demonstrating that domain knowledge can be
effectively used to accomplish better compression ratios on
query results.

2.3. Sources of domain knowledge for
compression

A database system can acquire the domain knowledge
about the result of a query from:
• The semantics of the query.
• The statistics computed during query optimization. Many
techniques [JKM98, HS92, PIHS96] such as histograms and
sampling have been proposed to maintain such information2.

2 If we assume that the query result is materialized, then it is possible to
obtain much of the necessary statistical information during or after query
processing. However, we do not make this simplified assumption, and
instead use estimates from query optimization so that we can decide the
compression strategy before query processing. Either approach is valid.

 A B C

2

1 6

1 5

3 2 4

2 1 6

5

4

2

23

 A B C

1

0

1

Bitmap

Figure 2.1 Application of sorted-normalization
method on attributes A and B.

• The statistical and semantic information kept in the
catalog, which serves as the basis for statistics derived
during query optimization.
Example 2.1. We use an example to illustrate the use of such
semantic and statistical information. Example 2.1 selects for
each supplier, his nation, phone number, and revenue on
every possible order date and ship date. The underlying
database is a 100 MB scaled database from the TPC-D
benchmark [TPC95].

select S_SUPPKEY, N_NAME, S_PHONE, O_ORDERDATE,
L_SHIPDATE, SUM (L_EXTENDEDPRICE*(1- L_DISCOUNT))
AS REVENUE

from LINEITEM, SUPPLIER, NATION, ORDER
where L_SHIPDATE < O_ORDERDATE + 3 months
AND S_SUPPKEY = L_SUPPKEY
AND S_NATIONKEY = N_NATIONKEY
AND L_ORDERKEY = O_ORDERKEY

group by S_SUPPKEY, N_NAME, S_PHONE,
O_ORDERDATE, L_SHIPDATE

order by S_SUPPKEY, O_ORDERDATE
having REVENUE between 10,000 AND 100,000

Useful information is available at three granularities: (a)
about individual attributes, (b) about each tuple, (c) about the
entire relation.
For each individual attribute, it is useful to know:
• Range of values: If the range of the values of an
attribute is small, each value of this attribute may be encoded
by the offset from the lower bound of the range. For
example, in Example 2.1, from the having clause,
REVENUE is larger than 10,000 and smaller than 100,000.
Therefore, the ASCII form of REVENUE requires no more
than eight characters. Therefore, four bits can be used for
each numeric character in the ASCII format of REVENUE.
• Number of distinct values: When an attribute (such as
N_NAME) only has a small number of distinct values, non-
adaptive dictionary compression (refer to table 2.1) may be
applied.
• Character distribution for strings: Some string
encoding methods (e.g. Huffman) can be applied if the
character distribution of strings is available. For instance, in
example 2.1, S_PHONE represents the phone number and a
phone number can only hold characters corresponding to
digits and ‘-‘. Therefore, each character of S_PHONE can be
encoded with four bits.

For each tuple, it is useful to know the following “cross-
attribute” information:
• Value Constraints: In example 2.1, the where clause
constrains L_SHIPDATE <= O_ORDERDATE + 3 months;
so L_SHIPDATE – O_ORDERDATE can only differ by less
than 3 months. Therefore, L_SHIPDATE can be encoded
with 2 bits for the month difference and 5 bits for the day.
• Functional dependencies: Functional dependencies
between attributes indicate opportunities for normalization.
The FD information is available in catalogs where “the key
of the table -> other attributes in this table” is a trivial FD.
In example 2.1, FD “S_SUPPKEY -> N_NAME,

S_PHONE” indicates the opportunity for normalization
compression method.

At the level of the entire relation, the order of the results
suggests grouping or sorted-normalization compression
methods. In example 2.1, the order by clause indicates that
the results are sorted on S_SUPPKEY, which suggests the
sorted-normalization method.

2.4. Example of performance improvement

To motivate the rest of the paper, we present a
quantitative example of the effects of query result
compression. Consider the compression of the result of the
SQL query (approx. 10 MB) in example 2.1. Plan A (refer to
appendix for details) is the combination of various methods
discussed above to form a suitable “compression plan”. It
allows individual tuples and attribute values to be
decompressed. Plan B extends Plan A by applying LZ77 to
each column of the relation. While this gains additional
compression, the entire relation needs to be decompressed to
access any tuple or attribute value. We compare these plans
with WinZip (using file level LZ77) which of course
requires that the entire relation be decompressed. We present
the compression ratio, compression and decompression
throughput (uncompressed result size divided by
compression or decompression time). The experiment is run
on a machine with a Pentium-II 450 MHz processor and 256
MB RAM.

Compression Plans WinZip Plan A Plan B
Compression ratio 4.25 5.57 10.68

Compression
Throughput

1.25 MB/s 1.76 MB/s 1.39
MB/s

Decompression
Throughput

4.60 MB/s 3.46 MB/s 2.93
MB/s

Table 2.2 Comparison on compression ratio,
compression and decompression throughput.

Both plan A and B achieve more compression and higher
compression throughput than WinZip because of the use of
domain knowledge. Moreover, plan A allows the client to
decompress tuples and attributes individually. However, the
decompression throughput of plan A and B is lower than
that of WinZip due to the overhead of combining multiple
decompression methods.

We should view query result compression in the context
of an end-to-end system. Assume that a PC client
communicates with the database server over a 56.6 kbs
modem. The “cost” of accessing the query result is some
combination of the compression, decompression and
transmission time. Consider that we simply add these times
to compute the cost. Using no compression requires 1,408
seconds; using WinZip requires 341 seconds; using plan A
requires 262 seconds; using Plan B requires 143 seconds,
which is 42% of the end-to-end time of WinZip, 55% of that
of plan A, and 10% of that of no compression.

3. A framework for query result compression

Section 2 shows that the combination of different
compression methods applied on different columns of the
query results has better performance than the naïve WinZip
compression method. We now present a framework that
captures the combination of individual compression methods
as a composite compression strategy. Therefore, the
framework we present contains three components:

(a) Compressed table (Section 3.1): This is the basic
abstraction representing the relational data in compressed
form. The uncompressed query result is also a special-case
instance of a compressed table.

(b) Compression operator (Section 3.2): This is the
basic abstraction representing a compression method. It
operates on a (input) compressed table and defines a new
(output) compressed table.

(c) Compression plan (Section 3.3): This is the
abstraction representing the entire combination of
compression methods.

3.1. Compressed tables

We first present some intuition and then give the formal
definition of a compressed table.

Attributes and tuples may become inaccesable in a
compressed table because a compression method may
compress several attributes from several tuples to a single
unit. For instance, figure 3.1 shows an uncompressed table
on the left-hand side. The uncompressed table contains two
attributes – “Customer ID” and “Order Number”. Four
tuples are in the table, where the first two tuples have the
same “Customer ID” and so do the next two tuples. The
grouping compression method is applied on “Customer ID”
and the offset encoding is applied on “Order Number” with
the offset from 1,000,000. The figure shows that the
grouping method compresses the “Customer ID”s from the
first two tuples in the uncompressed table to a single unit
(block 1).

Therefore, we use the notion compressed data blocks
(blocks in abbreviation) to represent the minimal accessable
units in a compressed table. In a compressed table, a block

contains a given value, which is compressed from a set of
attributes in one or several tuples. For instance, block 1 in
the compressed table shown in figure 3.1 contains a string
“C1”, which is compressed from the “Customer IDs” of the
first two tuples.

Now we define the compressed table based on the
intuition.
Definition 1. A compressed table is a collection of
compressed data blocks and a compression schema that
represents meta information.
• Each compressed data block is a value with a certain data
type that is compressed from a set of attributes in one or
several tuples. Each attribute from a tuple must be
compressed to one and only one compressed data block.
• The compression schema consists of the following meta
information that enables the decompression:

- For each compressed data block, what set of attributes
from what tuples are compressed to that block.
- For each compressed data block, what compression
method is used to generate that block.
- The original relational schema of the uncompressed
table that the compressed table is compressed from.
An uncompressed table can be seen as a special

compressed table where each block just contains one
attribute in one tuple.

Although our definition of compressed table allows a
compressed data block includes arbitrary set of attributes
from arbitrary set of tuples, we only consider more regular
data blocks in this paper. Here we assume that the blocks in
the compressed table will have no indents down the column
(as shown in figure 3.2). Further, we define a block belongs
to a set of columns if the value contained in the block is
compressed from attribute values from and only from those
columns. We also assume that blocks belong to the same set
of columns will be compressed by the same compression
method because usually there are more redundancies down
the column than across the column [RHS95].

3.2. Compression operators

A compression operator specifies how a compression
method is applied on one or several columns of an input
compressed table to generate an output compressed table.

We define a compression operator as a mapping from a
set of blocks in the input table and belonging to columns that
the operator will compress (input blocks in abbreviation) to a
single block in the output table (an output block in

Figure 3.1 A table compressed by grouping and
offset-encoding methods.

C1
(Block 1)

C2
(Block 2)

0 (Block 3)

90(Block4)

999(Block5)

102(Block6)

Grouping
Offset-
encodingCustomer Order

C1

C1

C2

C2

1000999

1000102

1000090

1000000 Figure 3.2

A regular compressed
table.

An irregular compressed table.

abbreviation). For instance, a per-page LZ77 operator maps
each page of blocks in the input table to a single block in the
output table. Blocks in the input table belonging to columns
not compressed by the operator are not changed by the
application of the compression operator.

A compression operator consists of three components to
specify the mapping:
a) The compressed columns. The columns the compression
method is applied on.
b) Compression granularity defines what set of input
blocks will be compressed to a single output block.

The observation is that different compression methods
should be applied on different granularities to achieve the
best performance. For instance, LZ77 should be applied on a
large granularity (i.e. a page) to be effective.

To guarantee that each input block will be compressed to
one and only one output block, we define the compression
granularity of a compression operator as an equivalence
relation on input blocks belonging to the compressed
columns. Each equivalence class of input blocks will be
mapped to a single output block. For instance, the
compression operator with the grouping method in Figure
3.1 maps “Customer IDs” with the same value to a single
output block. Hence, the granularity of the compression
operator is an equivalence relation on “Customer IDs” such
that two “Customer IDs” are equivalent if and only if they
have the same value. We represent the equivalence relation
as a first-order logic Boolean expressions E(x, y) where x
and y are input blocks belonging to compressed columns and
E may include physical or logical properties of x and y as
predicates. For instance, the equivalence relation on
“Customer Ids” can be represented as:

E(x, y) ≡ “Column_Name (x) = Column_Name(y) =
{‘Customer ID}’ and Value(x) = Value(y)”.
(Column_Name(x) returns the set of columns block x

belongs to and Value(x) returns the value of x).
According to this compression granularity, the “Customer
ID”s of the first two tuples in the uncompressed table in
figure 3.1 will be mapped to a single block (block 1) in the
output table.
c) The compression method and meta information used
in compression.

The compression method has a compression routine, a
decompression routine and the desired data types of input
blocks and output blocks. The meta information is the
information used in compression, such as the range of values
of an attribute.

Therefore, given an input table, we can type-check
whether a compression operator is applicable on it as
follows:
1) The data type of input blocks should agree with the
input data type of the compression method.
2) The compression granularity must view each input
block as a single unit because otherwise some input blocks
need to be decompressed before compression. For instance,

in figure 3.1, after a per page LZ77 compression method is
applied on the column of “Customer ID”, any compression
method compressing an individual “Customer ID” can not
be applied because individual “Customer ID”s become not
visible in the input table.

If a compression operator type-checks with an input
table, we call the operator a valid operator for the table.

Therefore, given an input compressed table and a valid
compression operator, the application of the compression
operator will generate the output compressed table as
follows:
(a) First, blocks in the output table are generated as
follows:
• Input blocks not belonging to the compressed columns
remain unchanged.
• Input blocks belonging to the compressed columns are
divided into equivalence classes by the equivalence relation
(compression granularity) and each such equivalence class
of blocks is mapped to one output block by the application
of the compression routine.
(b) The compression schema of the output compressed
table is deduced from the compression schema of the input
table and the operator as follows:
• The relational schema of the output table is the same as
that of the input table.
• The meta information about output blocks not belonging
to the compressed columns remain unchanged.
• The value of each newly generated output block is
compressed from all individual attributes compressed in the
equivalent class of input blocks mapped to that output block.
• The compression method applied on the new output
block is just the compression method of the compression
operator.

3.3. Compression plans

Definition 2: A compression plan is defined as:
· A compressed table, or
· A valid compression operator applied to a compressed
table (which may itself be the result of an operator).

We represent the compression plan containing N
compression operators (Operator 1 to Operator N) in a
nested form as

“Operator N (Operator N-1 (… (Operator 1 (
Input Table))….)”

For instance, the compressed table in figure 3.1 can be
expressed as the output of the following compression plan:

Offset-encoding operator on attribute “Order
Number” (Grouping operator on attribute “Customer ID” (
The uncompressed table in figure 3.1)).

3.4. Plan execution

We now provide an operational semantics for the
execution of a compression plan. Due to the space
constraints, we focus on the compression phase of a
compression plan. The decompression phase is the reverse
of the compression phase. We first present the serial
execution semantics, then present the equivalence of two
executions of a compression plan, and finally discuss
pipelining in executing a compression plan.

A serial execution executes operators one-by-one. Each
operator execution applies the operator to a compressed
input table and generates a compressed output table, which
acts as the input for the next operator.

Any plan execution that produces the same result as a
serial execution is considered equivalent and therefore
correct. It is likely that several equivalent execution
strategies may exist. Observe that the orders between
compression operators in a plan may be exchangeable. For
instance, in Figure 3.1, the order of grouping and offset-
encoding operator can be exchanged and we still get the
same result. To specify what operators can not be
exchanged, we define a partial order between two
compression operators if they compress the same column.

To reduce the storage of each intermediate table, the
execution of many operators in the plan can be pipelined.
Each pipelined operator processes a chunk of input blocks at
a time. This chunk is called the pipelining unit. This is only
one of several forms of parallelism during plan execution
(we have not yet investigated other “bushy” parallel
execution strategies).

4. Experimental results

This section demonstrates that the combination of
compression methods using domain knowledge has superior
performance than the naïve WinZip compression method.
We first compare plans optimized for network transmission
(where minimizing the data size is critical). We also run
decompression code on a handheld device to explore
realistic decompression costs. All the compression plans are
manually constructed. We derive intuition from these plans
to guide our later choice of a heuristic optimization
algorithm in Section 5. The compression algorithms are
implemented on top of the Cornell Predator ORDBMS. The
server runs on a Pentium II 450 MHz processor with 256
MB RAM.

4.1. Compression plans optimized for network
transmission vs. WinZip

We need to choose a set of queries that are realistic and
have large result size (needing compression). We
accomplish this by adapting queries from the TPC-D
benchmark [TPC95]. We justify this choice because:

• Queries in the TPC-D benchmark are characteristic of
a wide range of decision support applications.

• The data in the TPC-D benchmark contains data with
various data types and various redundancies.

Most queries include grouping and aggregation, making
their result sizes small. As we mention in the introduction, in
the environment we consider, aggregations and analysis are
performed locally at the clients rather than within the
database server. Therefore, we adapt the queries by
removing the grouping and aggregation.

Our goal is to minimize the compressed size of the query
result. We compare the performance of four categories of
plans.
1) WinZip (W in abbreviation) applied on the results.
2) WinZip applied per column (PW).
3) Compression plans that allow attribute level
decompression (each attribute value can be decompressed
individually) and use the domain knowledge of the query
results. We call these plans small-granularity plans (S). They
have similar forms:
• First, they use the sorted-normalization or grouping
method if such methods can be applied.
• Then, appropriate per column compression methods
with small granularity are applied on each column. More
than one such operator may be applied on the same column.
4) The small-granularity compression plans plus per-
column WinZip (SPW).

The database size is 100 MB. The average result size is
2.5 MB. Each tuple has 52 bytes and 5 columns on average.

4.1.1. Compression ratio. Figure 4.1 shows the
compression ratios for the 17 adapted queries. Since the
compression ratios for query 15 and 16 are much higher than
other queries, they are shown separately. Table 4.1 shows
the average compression ratios.

W PW S SPW
3.43 4.41 3.10 6.51

Table 4.1 Average compression ratio of the four
categories of compression plans

Figure 4.1 shows that the SPW compression plans
always have the best compression ratio, on average 89%
better than that of W and 110% better than that of the S
plans. The reason is that S plans only exploit redundancies
indicated by the domain knowledge, which is in general
about the whole attribute values. However, WinZip can
exploit redundancies between bytes of attribute values.
Therefore, the combination of WinZip and small-granularity
plans exploits both types of redundancies and achieves better
compression.

PW is the second best and it achieves an average
compression ratio 29% better than WinZip because of the
use of the domain knowledge that there are more similarities
down the column than across the column.

The S plans have a comparable compression ratio with W
plans (14% worse on average).

To evaluate the grouping and sorted normalization
methods, we delete grouping and sorted normalization

operators from the S and SPW plans (called S’ and SPW’).
We compare their compression ratios with the compression
ratios of those plans using grouping and sorted-
normalization methods.
Figure 4.2 shows the results. Sorted normalization is
applicable in query 3, 10, and 15. Grouping is applicable in
other queries. Table 4.2 shows the average compression
ratios of these four categories of plans.

S S’ SPW SPW’
3.10 1.69 6.51 6.33

Table 4.2
Table 4.2 shows that the grouping and sorted-

normalization methods are important for S plans because
other compression methods with small compression
granularities do not exploit the repetitions of values in
consecutive tuples. However, the effect of the sorted-
normalization and grouping methods becomes insignificant
when per-column WinZip is applied because per-column
WinZip also exploits the repetitions of values in consecutive
tuples.

4.1.2. Overall performance. Table 4. 3 shows the average
compression (decompression) throughput of the four
categories of compression plans listed in the beginning of
section 4.1.1. The S and SPW plans have lower throughput.

Avg. Compression
Throughput

Avg. Decompression
Throughput

W and PW 1.25 MB/s 4.60 MB/s
S 1.18 MB/s 3.39 MB/s

SPW 0.87 MB/s 2.37 MB/s
Table 4.3

We measure the overall performance by computing the end-
to-end time as the sum of the compression time, network
transmission time, and decompression time. We compare W,
PW, and SPW plans. S plans are not shown because they
have lower compression ratios and higher
compression/decompression cost than W plans. Figure 4.3
shows the average end-to-end time for these three sets of
plans normalized to the end-to-end time of no compression.
The x-axis is the network transfer rate, ranging from 20
KB/s to 100 KB/s in figure 4.3 (a), and from 100 KB/s to 0.9
MB/s in figure (b). The results when the network bandwidth
is over 0.9 MB/s are not shown because in that case the
compression cost and decompression cost become dominant
and compression has no benefits. Table 4.4 shows the
average normalized end-to-end time of these plans when
network speed is 56.6 kb/s.

W PW SPW
29.8% 23.3% 16.2%

Table 4.4. Average normalized end-to-end time of the
three sets of compression plans.

Figure 4.3 shows that compression does reduce the end-
to-end time for a slow network. Moreover, per-column
WinZip is always better than WinZip because they have the
same compression and decompression costs while the
former has better compression ratios. When the network
speed is slow, SPW plans are the best. Due to the higher
compression and decompression costs, the improvement on
end-to-end time is less than the improvement on the
compression ratio.

As the network transfer rate increases, the network
transfer time becomes less important and the compression
and decompression time becomes more critical. Per-column

0

5

10

15

20

25

30

35

q15 q16

Figure 4.1 Comparison of compression ratios

0
1
2
3
4
5
6
7
8
9

1 0

q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 q 9 q 1 0 q 1 1 q 1 2 q 1 3 q 1 4 q 1 7

Q u e r i e s

C
om

pr
es

si
on

 R
at

io

W P W S S P W

0

5

10

15

20

25

30

35

q15 q16
0

2

4

6

8

1 0

1 2

q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 q 9 q 1 0 q 1 1 q 1 2 q 1 3 q 1 4 q 1 7

Q u e r i e s

C
om

pr
es

si
on

 R
at

io

S S ’ S P W S P W ’

Figure 4.2 Effect of using grouping/sorted normalization methods

WinZip becomes more competitive when the network
transfer rate exceeds 200 KB/s because it has a lower
compression and decompression costs than SPW plans.
Per-column WinZip method has two extra advantages:
1) It is very simple and does not require collecting domain
knowledge and choosing appropriate compression methods.
2) DBA may use per attribute compression methods such
as offset-encoding to compress the data tables. Therefore,
the compression ratio on query results will be lower.
However, as table 4.1 shows, per-column WinZip can be
applied to improve the compression ratio.

4.2. Decompression on handheld devices

We now consider handheld client devices. We run an
experiment on a palm-size CASSIOPEIA E-10 device,
running Windows CE on a MIPS 4000 processor with 4 MB
RAM (2MB of persistent data storage and 2 MB of program
storage). The query is the same as example 2.1 and the result
size is 3.72 MB, making it too large to store without
compression. We also assume that the client needs random
access to tuples, and clearly it is not feasible to decompress
the entire results in an initial step. Instead, we store the
results in compressed form and only decompress the results
being accessed (decompression on demand).

Windows CE uses a default page-level compression for
all persistent storage. Therefore, the compression plans
should meet two (possibly conflicting) requirements: (a)
they should exploit redundancies that Windows CE’s
compression method does not exploit (b) they should allow
tuple-level access to reduce the decompression cost of
random access. Specifically, we compare the behavior of:
• The small-granularity compression plan A.
• Compression plan C is the same as plan A except that
plan C does not include the sorted-normalization operator.
Both plan A and C allow attribute-level decompression.
• Plan D: A plan using the default Windows CE
compression.
• Plan E: LZ77 applied on each page of tuples.

Table 4.5 shows the storage usage (including both the
persistent and program memory), and the time to randomly
access 1000 tuples of the result. The average tuple size is 52
bytes.

A C D E
Storage 0.75 MB 0.95 MB 1.42 MB 1.43 MB

Accessing
Time

2.85
second

2.77
second

2.48
second

23.1
second

Table 4.5 Performance on handheld devices.
Plan E is not competitive because it has no improvement

in storage usage because the Windows CE’s method may be
the same as LZ77 and applying the same compression
method twice can not achieve additional compression. The
decompression time of plan E is also prohibitive because
whenever a tuple is accessed, a whole page has to be
decompressed.

Plan A uses 53% the space of Windows CE’s
compression method and Plan C uses about 67%. This
shows that the use of domain knowledge does improve the
compression ratio. Further, the accessing time of plan A plus
Windows CE’s method is just 15% more than that of
Windows CE’s method because plan A allows tuple-level
decompression. Plan A is also better than plan C because the
former only uses 79% the space of the latter and has just 3%
more accessing time.

This result shows that using plans exploiting knowledge
on query results and allowing decompression in small
granularities can improve the performance on handheld
devices.

The size of the program using plan A is slightly bigger
than the size of program using Windows CE’s default
method (less than one KB increase using Visual C++ 5.0
compiler) due to the implementation of multiple
decompression methods. This is insignificant compared with
the extra compression plan A achieves.

5. Optimization issues

Compression plan optimization is necessary because
there are many valid combinations of compression methods
and these combinations have different performance
according to the specific characteristics of the query results,
the network transfer rate, and the resource constraints of the
clients. After query optimization, a cost-based compression
plan optimization phase automatically generates a minimal

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

0 .1 0 .3 0 .5 0 .7 0 .9

ti
m

e

W P W S P W

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

0 .4

0 .0 2 0 .0 4 0 .0 6 0 .0 8 0 .1

tim
e

W P W S P W

 (a) For bandwidth <= 0.1 MB/s (b) For bandwidth >= 0.1 MB/s
Figure 4.3 End-to-end time of using compression.

cost or low cost compression plan based on the query plan,
the domain knowledge of the query results, the network
transfer rate, the client resource constraints, and the available
compression methods. We first discuss cost estimation. Then
we present an exhaustive but inefficient naïve algorithm.
Finally, we present a polynomial heuristic algorithm that is
based on the intuition derived from our experimental results.

5.1. Cost estimation

The cost of a plan equals the compression overhead
minus the compression benefit. The compression overhead
is:
w1 * compression cost + w2 * decompression dost.

The compression benefit is defined as:
 w3 * saving on network transfer + w4 * saving on client side
storage.

This formula can fit various goals of optimization such
as minimizing the network transition cost (set w1, w2, and
w4 = 0) and minimizing client side cost (set w1 and w3 = 0).

5.1.1. Compression and decompression cost. The
compression cost of each operator includes the CPU cost
and the I/O cost. The CPU cost depends on the CPU speed,
the compression method, and the input result size. The I/O
cost includes the cost for reading the input and writing the
output, which can be saved if the plan is pipelined in a unit
that can be held in memory. For a serially executed plan, the
compression cost equals the sum of the cost for each
operator.

The decompression cost depends on the compression
plan and the client’s access pattern of the result. If the client
decompresses the query result immediately, as in section 4.1,
the decompression cost is just the cost to decompress the
whole result. It can be computed by adding up the cost for
individual operators. If the client stores the result in
compressed form and needs N random accesses to certain
units (tuples, attributes, etc.), the decompression cost equals
the cost to decompress blocks containing each access unit
times N. If the client needs N sequential accesses instead, we
assume that the client caches the decompressed units and the
cost is reduced to the cost to decompress all blocks
containing the attributes values being accessed.

5.1.2. Compression benefit. The compression benefit
includes the saving on network transmission and client-side
storage.

The saving on transmission = Transmission cost of the
uncompressed result – that of the compressed result.

The transmission cost equals a function of the result size,
which also depends on network properties. The saving on
client-side storage depends on whether on-demand
decompression is required. If not, the saving is zero.
Otherwise, the saving is:

Uncompressed result size – compressed result size –
uncompressed size of blocks accessed each time – extra
program memory used for decompression.

The compressed result size is computed based on the
compression methods, the uncompressed result size, and
other information such as the average attribute size and the
number of attributes. The details are specific to each method
and are omitted for reasons of space.

5.2. A naïve algorithm

The naïve algorithm starts with an empty plan (the plan
has no compression operator). The algorithm repeatedly
enumerates new plans by adding new and valid operators
(operators that do not appear in the existing plan and also
type-check with the output of the existing plan) to existing
plans, and stops when no new plans are generated. The
algorithm evaluates the cost of each plan (as described in
section 5.1) and returns the minimal cost plan. Clearly, this
algorithm is exhaustive because it has considered all possible
combinations of compression operators. This algorithm also
halts if the number of possible methods, columns, and
compression granularities is limited for two reasons. First,
the total number of possible plans is finite because there are
a finite number of valid operators (defined by combinations
of possible methods, columns applied on and compression
granularities). Second, the same operator is never included
twice in any plan.

However, the naïve algorithm is not efficient because the
algorithm needs to check all sequences of compression
operators, which requires execution time exponential to the
number of columns in query results.

5.3. A heuristic algorithm

In order to reduce the search space, we derive the
following heuristics from the experiments in section 4:

1. First, apply small-granularity compression methods
using the domain knowledge because both the domain
knowledge is only valid for the uncompressed results and
compression methods with small granularities can not be
applied after compression methods with large granularities
(refer to the type-checking in section 3.2). After such
“semantic” compression, methods with large granularity and
not using domain knowledge (such as LZ77) may further
enhance the compression.

2. Use local per-column optimization because the
compression overhead or the benefit of the whole plan can
be seen as the sum of the overhead or benefit on individual
columns.

3. For compression methods not using domain
knowledge, per-column operators are preferred because
usually there are more similarities down the column than
across columns [RHS95].

4. If the client applies on-demand decompression and
needs random access in a certain unit, the compression plan
should allow decompression in that access unit to minimize
the decompression cost.

5. For methods not using the domain knowledge, larger
compression granularities are preferred because such
methods work better for large chunks of data. The
compression granularity should be also no larger than the
pipelining unit to ensure that input blocks can be accessed
within the pipelining unit.

The heuristic algorithm is as follows:
1. First consider methods with small granularity and

using domain knowledge as follows:
(a) For each column, apply the naïve algorithm to

enumerate all valid combinations of operators compressing
this column using the domain knowledge.

(b) Choose the minimal cost plan for each column and
combine these plans to a global plan, which contains all
operators in individual plans. The partial orders of the
combined plan include the union of partial orders of each
individual plan and the partial orders between operators in
different plans. This plan should also type check.

2. Consider other methods for each column as
follows:

(a) Choose an appropriate method based on available
information. For instance, if a column is not compressed and
we have the character distribution table, arithmetic or
Huffman encoding is the choice. Otherwise, methods like
LZ77 will be favored.

(b) Choose an appropriate compression granularity by
heuristics 4 and 5.

(c) Form a new plan by adding the new operator to the
global plan generated by step 1. Accept the operator only if
it can reduce the cost. If per-column LZ77 is applied,
grouping/normalization operators will be deleted. The
resulted plan is the final plan.

For instance, suppose we want to compress the table in
figure 3.1 for two clients: client 1 is a handheld device that
decompresses result on demand and needs random access to
tuples; client 2 downloads the result through a slow network
and only cares about the result size. The available
compression methods are offset encoding, sorted-
normalization, and LZ77. The plan is also required to be
pipelined per page.

Assume after step 1 a), grouping is the minimal plan for
“Customer ID” and Offset encoding is the minimal plan for
“Order Number”. Step 1 b) generates a global plan as:

 Plan 1: offset encoding on “Order Number”
(Grouping on “Customer ID” (The uncompressed table))

Then step 2 a) chooses LZ77 for each column. For client
1, the random access unit is per tuple, so LZ77 should have
small granularity. For client 2, the compression granularity
should be per page by heuristics 5.

For client 1, LZ77 operators are rejected because as
shown in [RHS95], the granularity is so small that LZ77

does not work well. Therefore, the final plan is plan 1. For
client 2, per-column LZ77 operators are accepted since per
page LZ77 can improve the compression for a large chunk
of data. The grouping operator is also deleted. The final plan
is:

Per column LZ77 with per page compression granularity
(Offset encoding on “Order Number”(

The uncompressed table))
Assume the number of columns is M, and for each

column, there are X valid combinations of operators using
information on query results, the cost for step 1 is O(M*X
). The cost for step 2 is O (M). Therefore, this algorithm
has the cost O (M*X).

6. Conclusion and future work

This paper addresses the issue of compressing query
results and makes the following contributions:
• We present a framework to model the combination of
compression methods. The framework models a
compression plan as a sequence of compression operators.
• We describe the use of domain knowledge about the
query to improve the effect of compression on query results.
• We present experiments on queries adapted from the
TPC-D benchmark. The experiments show that on average,
our handcrafted compression plans achieve an 89%
improvement in compression ratio over a standard
compression algorithm (WinZip).
• We also present an experiment with a handheld device
acting as the client. This demonstrates the importance of
using domain knowledge and allowing decompression in
small granularities in such resource-constrained
environments.
• We present a naïve and a heuristic optimization
algorithm that choose low-cost compression plans for a
variety of different requirements.

We are currently exploring the joint optimization
problem of query plans and compression plans. Currently,
the compression optimization is based on the query plan
returned by the query optimization. However, the overall
cost of a combination of a query plan and a compression
plan is different from the cost of the query plan. For
instance, a more expensive query plan may sort the result in
an order so that the sorted-normalization method can be
applied , which may lead to a plan with lower overall cost.

Another interesting topic for future work is to apply the
overall methodology in this paper to compress databases as
they are stored. The algebraic framework of result
compression and the idea of “algebraic optimization” are
also applicable.

Acknowledgements
We thank Philippe Bonnet and Flip Korn for their detailed feedback
on this paper and Ryan Patrick Kennedy for his implementation of a
GUI for the application running on Windows CE devices.

References
[ALM96] G. Antoshenkovc, D. Lomet, and J. Murray. Order
preserving compression. In Proc. IEEE Conf. on Data Engineering,
pages 655-663, New Orleans, LA, USA, 1996.
[BAS85] M. A. Bassiouni. Data Compression in Scientific and
Statistical Databases. IEEE Trans. on Software Eng.: 1047-1058
October 1985.
[BBC99] Philippe Bonnet, Kyle Buza, Zhiyuan Chen, etc. The
Cornell Jaguar System: Adding Mobility to PREDATOR. In demo
sessions of the Proceedings of ACM SIGMOD International
Conference on Management of Data, page 580-581, Philadelphia,
June, 1999.
[COM79] D. Comer. The ubiquitous B-tree. ACM Computing
Surveys, 11(2):121-137, 1979.
[COR85] G. Cormack. Data Compression in a database system.
Commnications of the ACM: 1336-1342, Dec. 1985.
[CSL98] Boris Y. L. Chan, Antonio Si, Hong Va Leong: Cache
Management for Mobile Databases: Design and Evaluation. ICDE
1998: 54-63.
[DFJ96] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh
Srivastava, Michael Tan: Semantic Data Caching and Replacement.
VLDB 1996: 330-341.
[DK98] Margaret H. Dunham, Vijay Kumar: Location Dependent
Data and its Management in Mobile Databases. Ninth International
Workshop on Database and Expert Systems Applications: 414-419,
1998.
[DL98] Ravi A. Dirckze, Le Gruenwald: A Toggle Transaction
Management Technique for Mobile Multidatabases. Proceedings of
the 1998 ACM CIKM International Conference on Information and
Knowledge Management, 371-377, Bethesda, Maryland, USA,
November 3-7, 1998.
[EOS81] S. J. Eggers, F. Olken and A. Shoshani. A Comporession
Technique for Large Statistical Data Bases. In VLDB, pages 424-
434, 1981.
[GOY83] P. Goyal, Coding methods for text string search on
compressed databases, Information System, 8,3: 231-233, (1983).
[GRA93] G. Graefe. Options in Physical Databases. SIGMOD
Record 22(3): 76-83, September 1993.
[GRS98] J. Goldstein, R. Ramakrishnan, and U. Shaft.
Compression relations and indexes. In Proc. IEEE Conf. on Data
Engineering: 370-379, Orlando, FL, USA, 1998.
[GS91] G. Graefe and L. Shapiro. Data compression and database
performance. In Proc. ACM/IEEE-CS Symp. On Applied
Computing: 22-27, Kansas City, MO, April 1991.
[Huf52] D. Huffman. A method for the construction of minimum-
redundanc codes. Proc. IRE, 40(9): 1098-1101, Septementer 1952.
[HS92] Peter J. Haas, Arun N. Swami: Sequential Sampling
Procedures for Query Size Estimation. SIGMOD Conference 1992:
341-350
[HSW94] Yixiu Huang, A. Prasad Sistla, Ouri Wolfson: Data
Replication for Mobile Computers. SIGMOD Conference 1994:
13-24.
[IW94] B. Iyer and D. Wilhite. Data compression support in
databases. In Proc. of the Conf. on Very Large Databases, pages
695-704, Santiago, Chile, Sept. 1994.
[JKM98] H. V. Jagadish, Nick Koudas, S. Muthukrishnan,
Viswanath Poosala, Kenneth C. Sevcik, Torsten Suel: Optimal
Histograms with Quality Guarantees. VLDB 1998: 275-286.
[LB81] L. Lynch and E. Borwinrigg. Application of Data
Compression to a Large Bibliography Data Base. VLDB 1981, 435.

[LZ76] A . Lempel and J. Ziv. On the complexity of finite
sequences. IEEE Transactions on Information Theory, 22(1):75-81,
1976.
[LZ77] A . Lempel and J. Ziv. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory,
31(3):337-343, 1977.
[MP99] Tobias Mayr and Praveen Seshadri. Client-site Query
Extensions. In the Proceedings of ACM SIMGOD International
Conference on Management of Data: 347-358, 1999.
[NR95] W. K. Ng, C.V. Ravishankar. Relational Database
Compression Using Augmented Vector Quantization. ICDE 1995:
540-549.
 [PIHS96] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas,
Eugene J. Shekita: Improved Histograms for Selectivity Estimation
of Range Predicates. SIGMOD Conf. 1996: 294-305
[RH93] M. Roth and S. Van Horn. Database compression. ACM
SIGMOD Record, 22(3): 31-39, Sept., 1993.
[RHS95] Gautam Ray, Jayant R. Harista, S, Seshadri. Database
Compression: A Performance Enhancement Tool. Advances in
Data Management '95, Proceedings of the 7th International
Conference on Management of Data (COMAD), 1995, Pune, India.
[SAL98] David Salomon. Data compression, the complete
reference. Springer-Verlag New York, Inc, 1998.
[SEV83] D. Severance. A practitioner’s guide to database
compression. Information Systems 8(1): 51-62, 1983.
[SYB98] Sybase IQ white Paper.
http://www.sybase.com/products/dataware/iqwpaper.html.
[TPC95] Transaction Processing Performance Council TPC. TPC
benchmark D (decision support). Standard Specification 1.0,
Transaction Processing Performance Council (TPC), May 1995.
http://www.tpc.org.
[WAG73] R. Wagner. Indexing designing considerations. IBM
Systems Journal, 12(4):351-367, 1973.
[WEL84] T.A. Welch. A Techinique for High Performance Data
Compression. IEEE Computer 17(6): 8-19, 1984.
[WNC87] I. Witten, R. Neal and J. Cleary. Arithmetic coding for
data compression. Communications of the ACM, 30(6):520-540,
June 1987.

Appendix
Compression plan A in example 2.1.

Method Columns
Sorted-normalization S_SUPPKEY, N_NAME,

S_PHONE

Offset encoding S_SUPPKEY

Non adaptive dictionary N_NAME
Encoding each digit with four bits. S_PHONE

Using one byte to encode
difference with O_SHIPDATE

L_SHIPDATE

Encode float numbers with ASCII
format.

REVENUE

