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Network traces are considered a primary source of information to researchers, who use them to investigate research problems
such as identifying user behavior, analyzing network hierarchy, maintaining network security, classifying packet flows, and
much more. However, most organizations are reluctant to share their data with a third party or the public due to privacy con-
cerns. Therefore, data anonymization prior to sharing becomes a convenient solution to both organizations and researchers.
Although several anonymization algorithms are available, few of them allow sufficient privacy (organization need), accept-
able data utility (researcher need), and efficient data analysis at the same time. This article introduces a condensation-based
differential privacy anonymization approach that achieves an improved tradeoff between privacy and utility compared to
existing techniques and produces anonymized network trace data that can be shared publicly without lowering its utility
value. Our solution also does not incur extra computation overhead for the data analyzer. A prototype system has been
implemented, and experiments have shown that the proposed approach preserves privacy and allows data analysis without
revealing the original data even when injection attacks are launched against it. When anonymized datasets are given as input
to graph-based intrusion detection techniques, they yield almost identical intrusion detection rates as the original datasets
with only a negligible impact.
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1 INTRODUCTION

Network security is one of the most significant issues for any organization, and network trace data is a primary
asset that needs to be protected. It can be used in several tasks, such as network management, packet classi-
fication, traffic engineering, and tracking user behavior [18]. However, these tasks are routinely performed by
external organizations. Releasing network trace data to external entities is a very sensitive issue for any orga-
nization, and it is often prohibited because sharing such data exposes critical information of the organization,
such as host addresses, emails, personal webpages, and even authentication keys. To protect such sensitive in-
formation (e.g., IP addresses, user IDs, passwords) the traces must first be anonymized before they are released
to external entities or even to the public [28]. In addition, the anonymization process needs to be carried out in
a manner that maintains both the research value of the trace and the owner’s privacy. Several network traffic
data sources such as RIPE (European IP Networks) [23], Route Views [30], and the Center for Applied Inter-

net Data Analysis (CAIDA) [1] provide anonymized collected traffic traces to the research community. Most
of the attributes in network traffic logs are considered sensitive information and must be anonymized. An ex-
ample is mapping each IP into a random 32-bit address, a technique called one-to-one random mapping [18].
However, such anonymization approaches result in losing the prefix relationship between IP addresses. In sev-
eral data mining algorithms, such a relationship is significant; therefore, it is highly desirable to anonymize IPs
using prefix-preserving approaches, that is, the original and the corresponding anonymized IP addresses have
the same k bit prefixes. Another problem with existing techniques is not handling data injection attacks. This is
the act of an adversary injecting specific information to be logged as part of the dataset that will be anonymized
so it may be recognized after the anonymization process and reveal additional information about the source.
Burkhart et al. [9] refer to this attack as a privileged one, because the adversary has more insight than an exter-
nal observer. Injection attacks are executed by sending specific IP packets to appear in anonymized traffic [48].
This form of attack has been discussed by Gattani [21] and Coull et al. [11]. There are several existing techniques
for anonymization of traces, including the very well-known CryptoPAn approach, which has been shown to be
vulnerable to fingerprinting and injection attack [6, 8, 32, 47, 49]. In those attacks, adversaries who have some
knowledge about the original flows from relevant sources such as DNS and WHOIS may inject some fake flows
to the original traces and discover those flows in the resulting anonymized data using some matching algorithms.
The adversaries can then escalate their fingerprinting activities to discover other sensitive attributes such as the
shared prefixes of IP addresses in the network. Let us demonstrate such an attacking technique in the following
adversary model, which is adopted and modified from Reference [32].

Adversary Model: Tables 1 and 2 show examples on original and anonymized traces. IP addresses were
anonymized using CryptoPAn tool. Other features were anonymized using a random permutation function.
Anonymization applied using CryptoPAn preserved relationships between similar prefixes of IP addresses after
anonymization. Suppose that an adversary has injected the first three flows with specific timestamps and feature
values (Table 1), where each feature is denoted by f .

Using the Euclidian distance function d= (( f iO
2 − f iA

1 )2 + ( f jO
2 − f jA

1 )2)
1
2 |O : is the original feature, A is the

anonymized feature, the flows injected in Table 1 can be discovered in Table 2 by finding their anonymized
Nearest Neighbors(NNs) (i.e., the underlined flows in Table 2). The attacker objective is to recover most of
the injected flows; this happens when many of the recovered anonymized NNs are the flows injected by the
adversary. By discovering the injected flows in the anonymized traffic, it is easy to discover the shared prefixes
in the anonymized traces. For example, now the adversary can realize that the first and last flows share the same
prefix. As such, he can expand his knowledge to even discover many subnets of the attacked network. In this
work, the assumptions about attacker knowledge are similar to the works in References [6, 8, 47, 49], that is,
the anonymization function is publicly known, but the key is not known by the adversary. The objective of the
adversary becomes to recover all injected flows after anonymization to ultimately discover sensitive features
such as IP addresses.
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Table 1. Original Trace

Start time Src Dst P Pkts Src_IP
Port Port

11:51:45:52 902 600 UDP 6 10.1.1.0

11:51:45:55 901 2,000 UDP 8 150.10.10.1

11:51:45:57 900 63 UDP 10 128.10.10.1
11:51:45:59 800 1,900 TCP 2 10.1.1.0
11:51:45:61 750 2,330 TCP 1 150.10.1.0
11:51:45:66 220 591 TCP 1 150.10.20.0
11:51:45:68 22 2,600 TCP 1 10.1.1.0

Table 2. Output of CryptoPAn and a Random Permutation Function

Start time Src Dst P Pkts Src_IP
Port Port

10:53:42:54 930 608 UDP 7 117.14.242.125
10:53:42:57 916 2,010 UDP 10 159.61.5.252
10:53:42:59 917 65 UDP 10 135.243.4.124
10:53:42:63 806 1,910 TCP 3 117.14.242.125
10:53:42:64 739 2,339 TCP 2 159.61.13.126
10:53:42:67 230 599 TCP 5 159.61.20.124
10:53:42:69 29 2,614 TCP 2 117.14.242.125

Recenty Mohammady et al. [32] proposed a multi-view method to address the problem of injection attacks. The
proposed method divides data into multiple partitions and applies prefix-preserving encryption on IP addresses
in each partition different number of times. This prevents adversaries from using injection attacks to recover
the same IP across partitions. The data analyzer generates N views of the anonymized dataset and one of them
will match the original anonymized dataset (when prefix-preserving encryption is only applied once). The key
is that the data owner knows which view is correct, but the data analyzer does not. The data analyzer needs to
analyze all N different views and generate N reports. The data owner can use oblivious query to retrieve the
correct report. This approach provides protection against injection attacks and does not compromise utility. The
problem is that now the data analyzer needs to spend N times of computational effort to analyze the data. In
experiments presented in that paper, N ranges from 20 to 160. Given the large volume of network data, this is a
major burden on data analyzer, making this solution often impractical.

In this work, we address two shortcomings in existing work on anonymizing network trace data [27, 36–38,
40]: (1) lack of a formal and strong privacy protection model and (2) exposure to injection attacks [9, 25]. The
contributions of this work are the following:

1. We propose a condensation-based differential privacy anonymization model for network data, which pro-
vides a privacy guarantee when sharing such data, thus generating a dataset that can be used for security
analysis (i.e., retaining the utility of the original dataset)

2. We show that our anonymization technique is robust to data injection attacks
3. We prove that the anonymized data can be used to detect cyber-attacks not only using attack classification

models but also using other graph-based intrusion detection techniques.
4. Our method does not add any burden on data analyser. Data analysis can be done, as it is without any

additional steps.
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The remainder of this article is organized as follows: Section 2 presents a background on anonymization
and data injection attacks. Section 3 presents our proposed anonymization approach. Section 4 discusses the
experimental results. Section 5 presents our findings and discusses future work.

2 RELATED WORK

There have been surveys on anonymizing network trace data such as in Reference [43]. We conducted a com-
prehensive survey on this topic, including most recent developments in privacy protection techniques such as
differential privacy [15] and secure multi-party computation [44]. In the following, we discuss research relevant
to network trace anonymization.

Anonymization is a process of excluding sensitive identifiers from a dataset but keeping its statistical char-
acteristics so it can be still useful for analysis and scientific research by external entities [45]. A network trace
is the flow of packets between a sender and a receiver. It contains attributes such as source and destination ad-
dresses, source and destination port numbers, MAC address, timestamp, packet length, protocol, payload, and
so on. Adversaries may use some of these attributes to either identify end points (e.g., addresses), reveal user
behavior (e.g., payload), or inject certain information (e.g., timestamp) that can be easily tracked.

2.1 Anonymization Algorithms

Anonymization algorithms vary based on the level of anonymization performed on the data and the type of
features sanitized. For instance, enumeration can only be applied to numeric attributes in sequential order (e.g.,
IP address). Enumeration sorts the values of an attribute in ascending order and adds a value that is larger than
the original one. This technique can be applied to all attributes [18]. In Reference [39] Slagell et al. proposed a
scheme to anonymize network traces by shifting each value with a random offset to replace the original value.
A random permutation scheme can be used with timestamps. It is a one to one mapping process and is mostly
applied to IP and MAC addresses.

Permutation requires two tables, one for maintaining the mapping from non-anonymized to anonymized IP
addresses and another to store anonymized IP addresses. Prefix-preserving pseudonymization works in the same
manner. It concentrates on satisfying the following rule: If the original IP address has a k bit prefix, then the
anonymized version must share the same prefix. Xu et al. in Reference [48] released a trace dataset using a prefix-
preserving technique. Overall, prefix preservation has a greater utility than that of Black Marker anonymization
scheme, since the latter replaces IP values with constants in a way that significantly degrades the statistical
characteristics of a network trace [18, 34, 39]. It has the same effect as simply printing the log and blacking out
all IP addresses. This method loses all IP address information and is completely irreversible. While this method
is simple, it is quite undesirable, because it does not allow correlation of events perpetrated against a single host.
Sequential numbering could be used by adding sequence numbers to distinguish the attribute values according
to the order, but it requires large storage to maintain consistency of data.

Hashing addresses this limitation by using a cryptographic hashing function. In general, the generated hash
value is smaller than the original attribute value, so this may facilitate dictionary attacks, which can be avoided
by combining the hash function with a secret key using Hash Message Authentication Codes (HMAC) al-
gorithm. Kuenning and Miller [28] used the two previous methods for anonymizing URLs and filenames. The
sequence numbering works faster and results in shorter trace than keyed hashing, except that it can be executed
on a single system compared to keyed hashing, which is proven and used in distributed systems. Partitioning
creates equivalence relations and canonical examples for a set of values, and then assigns an anonymized value
whose range is within the corresponding partition. Truncation anonymizes the IP and the MAC addresses by
deleting the least and keeping the most significant bits. This technique can make an end-point non-identifiable
[7]. For string attributes, constant substitution can be used. The original data is replaced by a constant to add
confidentiality to sensitive attributes [34]. Applying it to the identity attributes results in an undistinguishable
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data. Shuffling re-arranges pieces of data (e.g., within an attribute). Generalization approaches replace a data
value by a more general data value [39]. In the k-anonymity model by Sweeny [42], the attributes are divided
into sensitive, non-sensitive and quasi-identifier attributes. Several equivalence classes are created by hiding the
values of quasi-identifiers, such that the quasi-identifier attributes of any record would be similar to at least k-1
quasi-identifier attributes. The k-anonymity model has some limitations regarding the diversity of sensitive at-
tributes. Therefore, the l-diversity model requires the equivalence classes to have at least l unique values for sen-
sitive attributes [29]. Both k-anonymity and l-diversity show good privacy protection on categorical attributes,
but they lead to information loss when numerical attributes are anonymized. Micro aggregation techniques are
comparable to k-anonymity techniques, as they work mainly on numerical attributes. The records are clustered
such that each cluster includes at least k records. However, the features are replaced with values that represent
information about the cluster itself [14]. Micro-aggregation techniques cluster the records in the dataset so the
similarity among data points inside a cluster is minimized, while the similarity among data points in different
clusters is maximized. The quasi-identifier values are masked in a way that is relevant to the cluster itself, e.g.,
they can be replaced with the cluster average. Data generalization approaches are applied to network traces
by “partitioning” information (also called “grouping” or “binning”), e.g., grouping TCP/UDP port numbers by
assigning a fixed value to each group [40].

A recent work by Mohammady et al. [33] proposed a multi-view solution to address the problem of injection
attacks. Their solution is based on the following method: After an initial application of prefix-preserving encryp-
tion on IP addresses, the data owner divides data into partitions and generates a size d (d as number of partitions)
vector V of randomly generated integers in the range of 1 to N . A random number α is multiplied to V to get a
vectorV ′. The data owner then applies prefix-preserving encryption techniques –V ′ of times on each partition,
where a negative sign means prefix-preserving encryption is applied in reverse fashion. The data owner sends
this anonymized dataset along with boundary of partitions as well as vectorV to data analyzer. Since the random
number α is withheld, the data analyzer cannot recover original IP addresses. However, the data analyzer can
apply prefix-preserving encryption V , 2V . . . NV number of times on each partition. One of these views (when
αV ) is applied and recovers original anonymized data (before applying V ′ encryptions). The data analyzer then
analyzes all N versions of anonymized data and data owner can obliviously retrieve the correct version of results.
The basic method is then extended to provide more protection, however, still N views will be generated, and the
data analyzer must spend N times more effort to analyze data. Given that network trace data is often quite large,
and N is also quite large (from 20 to 160 in the paper), this method is often impractical.

In our previous work, we proposed a modified condensation based anonymization algorithm for network
trace data [4]. This algorithm optimizes the tradeoff between privacy protection and utility preservation, and it
achieves much better privacy protection and utility preservation than existing anonymization techniques. There
have been some research on anonymizing system logs [12, 22]. However, there are shortcomings in anonymizing
logs similar to traces: (1) they only remove identifying information such as IP addresses or user names but are
still vulnerable to injection attacks based on other attributes or add significant computational burden to data
analyzer; (2) they do not optimize the tradeoff between privacy protection and utility preservation.

2.2 Requirements for Anonymization and Existing Tools

Anonymization tools should satisfy a few requirements to maintain the value of traces. The first is pseudonym
consistency requirement, which means that it is necessary to maintain consistency among anonymization for
each distinct IP address or hardware addresses within a trace or between different traces that belong to the same
organization. The second requirement is to perform a systematic sanitization of the transport, network, and data
link layer header information in a trace while eliminating payload. Different tools provide different tradeoffs
between privacy and information loss. Few tools work only on network layer information, while others work
on cross layer packet anonymization [34]. Tcpdpriv removes private information from network traces using a
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prefix-preserving anonymization technique [31]. Xu et al. [48] improved tcpdpriv by using a cryptography-based
prefix-preserving anonymization technique. CryptoPAn can be used with parallel and distributed processing of
traces [16]. It also meets the pseudonym consistency requirement. Fan et al. [17] evaluated the tool and found
that attacks are still possible based on trace type. Slagell et al. in Reference [37] suggested an improved version
of CryptoPAn that performs prefix-preserving IP address pseudonymization. Slagell also proposed FLAIM [39],
a tool that is not tied to the specific log being anonymized and supports multi-level anonymization. Gamer et al.
introduced Pktanon [20], a tool that achieves flexibility, extensibility, and privacy; it allows arbitrary anonymiza-
tion for every protocol field and uses a defensive transformation technique to prevent privacy violations. Ipsum-
dump is a tool that translates tcpdump files into ASCII format to be easily readable by programs. It relies on
prefix-preserving pseudonymization techniques [26]. Koukis et al. developed an Anonymization Application

Programming Interface (AAPI) tool, so users can write their own anonymization function and choose the
appropriate policy for each attribute [27]. Foukarakis et al. [19] developed ANONTOOL based on AAPI, a com-
mand line tool that can generate synthetic data for both online and offline traces. However, all these tools are
still vulnerable to injection attacks on anonymized data, which will be described in next section.

2.3 Attacks on Anonymized Data

Several attacks are initiated on anonymized data to reveal or infer sensitive sanitized information, such as iden-
tifying network topology [10] or discovering user behavior [11, 27, 46].

In general, there are two types of attacks: inspection attacks and injection attacks. In inspection attacks the
attacker is not authorized and only has information from trace and observation, while in injection attack the
attacker is authorized and has knowledge about the injected pattern that no one else has [9]. In injection attacks,
the attacker injects specific data into traffic. When the dataset is anonymized and released to the public, the
attacker’s goal is to identify the injected pattern and therefore, easily discover the binding between the original
and anonymized data. For example, an attacker may inject a sequence of packets with certain patterns (e.g.,
specific source or destination port numbers, specific delay between packets, or specific packet sizes. The attacker
may recognize these patterns in the anonymized data and through reverse engineering may uncover original
data. Gattani in Reference [21] showed that injection attacks are only possible when sufficient knowledge is
available on when, how, and where the trace is collected. So, the best countermeasure against this attack is
to keep such information private [48]. However, Pang et al. [34] recommended eliminating the data generated
by scanners that probe active hosts prior to anonymization, a good approach to protect against active attacks.
Burkhart et al. [9] demonstrated that injection attacks are performed either by injecting complex patterns within
short time or injecting simple patterns over long time periods. They injected five different types of patterns with
different complexity and concluded that it is difficult to protect data from injection attacks using traditional
anonymization approaches. Brekne et al. [7] empirically demonstrated the effectiveness of this attack against
prefix-preserving anonymization and suggested remedies that might limit its damaging capability. However,
they concluded that it is quite difficult to stop such an attack without continuous human investigation. They also
found that anonymizing IP addresses by assigning unique and static values to IP address via pseudonymization
does not guarantee adequate privacy and immunity against packet injection attacks.

In structure recognition attacks, the objective is to exploit the structure among objects to infer their identities.
For example, traces of Internet traffic will often include sequential address scans made by attackers probing
for vulnerable hosts [35]. There are attacks that aim to recover IP addresses anonymized using prefix-preserving
anonymization techniques [35]. Those attacks exploit shared-text matching for cascading effects, with the shared
text being the prefix.

Next, we describe our novel approach that generates an anonymization model with strong privacy protection.
In particular, we adapt an improved version of the k-anonymity [42] that incorporates a differential privacy
approach in it.
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Fig. 1. Research approach and overall system architecture.

3 APPROACH

Most existing anonymization techniques only encrypt the IP addresses in the dataset, but they are vulnerable to
injection attacks as shown by Burkhart et al. in Reference [9], where a large fraction of injected packet patterns
can be recovered even after permutation of IP addresses, bucketization of ports, adding random noise to time, to
number of packets, and to packet size.

Figure 1 depicts our system architecture and flow of information. Network data is collected from network data
sources. Adversaries may have injected certain traffic patterns as well. Our anonymization algorithms will be
applied to anonymize the collected dataset and send the anonymized data to data recipients. We evaluate our
approach based on privacy, utility (measured as accuracy of attack detection), and whether injected patterns can
be recovered.

Next, we describe the sensitive attributes we need to anonymize in Section 3.1. Section 3.2 describes pre-
processing steps to collect labeled network flow data. Section 3.3 presents our anonymization method for IP
addresses. Section 3.4 reviews an existing anonymization method called condensation. Section 3.5 presents an
enhanced condensation method to anonymize non-IP features. This method supports k-anonymity. Section 3.6
proposes a condensation-based differential-privacy anonymization method. Section 3.7 describes how to test
injection attacks, and Section 3.8 discusses how to test our approach on graph-based intrusion detection methods.

3.1 Sensitive Attributes

Data features in network data sources, when shared, may reveal the network architecture, user identity, and user
information; therefore, it is essential to identify sensitive information. Based on our review, we identified several
sensitive attributes that need to be protected.

IP addresses: They are considered one of the most important attributes to be anonymized. An attacker relies
mainly on discovering the mapping of IP addresses to detect the host and network. For example, a source IP
address indicates a user’s IP, which may reveal the user identity. The destination IP address may be used by
attackers to launch attacks. In addition, IP addresses may be used in intrusion detection algorithms as well. For
example, if we know attacks often originate from specific IP addresses, then we can be suspicious of possible
attacks from these IP addresses. Similarly, if we know there have been attacks against a certain host (destination
IP), then we can pay more attention to packets having that host as a destination IP. Thus, we need to carefully
balance the need for privacy protection and intrusion detection when anonymizing IP addresses.
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Fig. 2. Packet aggregation to create flows.

Timestamps: They do not indicate any user information; however, they could be used in data injection attacks
through discovering the mapping of information that is already known prior to anonymization. In addition, a
timestamp may denote specific action with respect to response delay and inter-flow time that could be matched
with already known values.

Port Numbers: They partially characterize the applications that are used to create the trace and may be
used in fingerprinting attacks to reveal that a certain application with suspected vulnerabilities is running on a
network where the trace is collected from.

Trace Counters: They indicate the number of packets per flow. This attribute may be used for fingerprinting
and injection attacks.

3.2 Labeled Network Flow Data

In this article, we focus on anonymizing network flows with header information. Each flow contains aggregated
information from network packets that have common features, e.g., same source and destination IPs, same pro-
tocol, and so on. Figure 2 shows an example of packets that are aggregated into four flows based on common
features.

Packets that are close to each other in time and destined to same location are aggregated into a single flow.
Data about alerts raised by Intrusion Detection Systems (IDSs) are extracted and correlated with the corre-
sponding flows. For example, if a flow contains information about packets associated with alerts, then the flow is
automatically labeled as suspicious, otherwise it is labeled as normal (more details on this correlation approach
is discussed in our previous work in Reference [13]). The result of this process is a labeled dataset of network
flows.

3.3 Anonymization of IP Addresses

The following two stages describe anonymization of IP addresses: (1) First, encrypt/permute the leading digits
of the IP addresses (network number). Intrusion detection methods can still use the leading portion of the IP
addresses. Attackers may discover the subnet, but the next stage prevents identifying the host. (2) Then, for the
remaining digits of the IP (host number part), we cluster these addresses and randomize addresses in the same
cluster (exact IP address cannot be located).

Algorithm 1 summarizes the steps needed to anonymize the IP address. The datasetD is divided inton datasets,
such that Di contains flows with label Li where each label can be an attack or a benign activity. Then permute
the leading digits of the IP addresses (network number) using a prefix-preserving permutation function. The IP
addresses are then clustered into k clusters based on their least significant digits (host number). The average for
the least significant digits of IPs in the same cluster (host number) is calculated. Then the least-significant digits
of IPs (the last three digits) in each cluster are replaced using the computed average. Figure 3 shows an example
of IP anonymization into two clusters.

3.4 Data Anonymization Using Condensation

A heuristic condensation algorithm by Aggarwal and Yu uses the statistical characteristics of the original data
to generate synthetic data while preserving its statistical characteristics [2]. Other anonymization algorithms
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Fig. 3. Anonymization of IP addresses.

Fig. 4. Anonymization of non-IP features using an enhanced condensation approach.

are limited to noise addition to the data, which may lead to insufficient privacy level. The original condensation
algorithm clusters records in the dataset such that the similarity among data points inside the clusters is min-
imized and the similarity among data points in different clusters is maximized. Each cluster contains at least k
records, and the quasi-identifier values are masked in a way that is relevant to the cluster; for example, they can
be replaced with the cluster averages.

ALGORITHM 1: IP addresses Anonymization (D, k)

Divide dataset D into n datasets, such that Di contains records with label Li

For i=0 to n do
For j=1 to |IP | do
Permute the leading digits of the IP addresses (network number) using prefix-preserving permutation

function
End for

Cluster IP addresses into k clusters based on their least significant digits (host number)
Sort the clusters in ascending order of cluster size. Let them be C1, C2, Ck

For each cluster Cj that contains less than k records,
Findk- |Cj | records closest to the center of Cj that lies in clusters that contain more than k records
Move these records to Cj

For each cluster Cj do
Compute the mean for the least significant digits of IPs in the same cluster (host number)
Replace the least significant digits of IPs in each cluster using the computed statistics

End for

End for
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Fig. 5. Cluster-based differential privacy anonymization example.

3.5 Anonymizing non-IP Features Using Modified Condensation

We utilize a condensation-based approach to perform anonymization on non-IP features. We apply two modifi-
cations to the original condensation algorithm.

—First, we implement a per-class condensation mechanism on network traces. The original condensation
algorithm does not consider the differences between classes to perform the de-identification. In general,
there is a significant difference between the behavior of network attackers and other users and such
differences need to be captured in the anonymized data.

—Second, the original condensation algorithm picks cluster centers randomly, which may lead to inferior
clusters. Instead, we utilize k-means clustering algorithm, which is relatively efficient in terms of within-
class variance [28].

Figure 4 shows the steps to anonymize non-IP features. The clusters are sorted in ascending order of cluster
size. For each clusterCj that contains less than k records, k -Cj records are selected if they are the closest to the
center of Ci that lies in clusters that contain more than k records. The selected records are then moved to Cj .
For each clusterCj the data is shifted into a new space using PCA. In the new space Z1,Z2, Zp are independent

components. Then, a random data Z
′
i with similar statistical features of Zi is generated. Z

′
1,Z

′
2, Z

′
3 are combined

into one dataset. Finally, Z ′ is shifted back to the original data space using reverse PCA.

3.6 Condensation-based Differential-privacy Anonymization Method

The differential privacy methods introduced by Dwork [15] provide stronger privacy protection than k-
anonymity. To protect the sensitive information, differential privacy methods systematically add a random num-
ber generated from a special distribution centered at zero to the results of all data queries. Differential privacy
mechanisms ensure that the addition or removal of single database record has no significant effect on the out-
come of any analysis performed on the database. The idea of preserving the privacy of network traffic using
a noisy version of the true answer is not new, however, the way of noise addition is different in the case of
differential privacy.

Our differential privacy approach works as follows: First, we implement a prefix-preserving technique to
anonymize IP addresses. We permute the n leading digits (network part). For the remaining digits, cluster these
addresses into K clusters (host part). Then, we randomize addresses within the same cluster. Second, we imple-
ment a per-class differential privacy mechanism. Third, we utilize the differential privacy in our condensation
method. Our method clusters records based on the features of network trace data. Now each cluster has pack-
ets or flows with similar features. We then compute the mean of these features and add Laplace noise to the
mean. The perturbed mean replaces the original values. Figure 5 illustrates our cluster-based differential privacy
anonymization method. At first, we partition data into three clusters that are displayed by different font type in
the table. Then, we compute the mean of each cluster and add Laplace noise to the mean. The final step is to
replace every original value with this perturbed mean.
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Table 3. Anonymization Policies Used for Testing Data Injection Attacks

IP Addr. Ports Time [S] Packets Octets
A1 Permutation - - - -
A2 Permutation - - O(5) O(50)
A3 Permutation B(8) O(30) - -
A4 Permutation B(2) O(60) - -
A5 Permutation B(8) O(30) O(5) O(50)
A6 Permutation B(2) O(120) O(10) O(200)

- B(x): bucketized in x buckets,
- O(x): Added a uniform random offset between −x and +x.

ALGORITHM 2: Differential Private-Condensation of network data (Dataset D, k)

Divide D into n datasets, such that Di contains records with label Li

Let ni be the size of Di

For i=0 to n do
Run k-means clustering on Di to generate �ni/k�
Sort the clusters in ascending order of cluster size. Let them be C1, C2, . . ., Ck

For each cluster Cj that contains less than k records,
Find k - |Cj | records closest to the center of Cj that lies in clusters that contain more than k records
Move these records to Cj

End For

For each cluster Cj

Synthetic Data generation: compute the mean of each features and corresponding Laplace noise.
Replace the data values with the perturbed mean.

End for

End for

The added noise follows Laplace distribution with mean zero and standard deviation = sensitivity/ɛ, where
sensitivity = (max value in cluster – min value in cluster)/cluster size. Epsilon is a small constant (usually around
0.01). According to the definition, we can see that the larger the cluster size, the smaller the noise, so this method
works better for large volumes of data. Algorithm 2 shows the steps to achieve differential privacy on all features
except IP addresses, which are anonymized based on an IP prefix-preserving method. First the dataset is divided
into subsets and each subset contains instances with an identical class label. Then, we utilize K-means clustering
method to generate clusters per subset, since we may end up with some clusters having fewer than k- points and
some may have more. Some points are moved from large clusters to small clusters. Then, we compute mean of
these features and adds Laplace noise to the mean. The perturbed mean will replace the original values.

3.7 Testing Injection Attacks on Data Anonymized by Our Algorithms

We want to investigate whether datasets that have been anonymized with differential privacy and other ap-
proaches are robust enough to withstand injection attacks. Table 3 shows some example patterns used to pre-
pare the injected data. We inject similar patterns to those proposed by Burkhart et al. in Reference [9] and
they are injected in the data before anonymization. The data is anonymized using several permutation-based
anonymization policies including our proposed differential privacy method. Table 3 shows the anonymization
approaches listed in Reference [9]. We then try to identify the injected patterns. We use K-NN Search to recover
the injected patterns from the anonymized data. Formally, knnsearch(pi ,Ai )∀pi finds the nearest neighbor in
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Fig. 6. A scenario on injection attack and its recovery.

the anonymized data Ai for each record that represents the pattern pi . The result of K-NN search is a column
vector where each record contains the index of nearest neighbor in the anonymized flows for the corresponding
record in the injected flows. If there is a match between the injected pattern and the nearest neighbor, then the
attack is considered successful. The number of recovered patterns using each anonymization policy is reported.
An example on an injection attack and how it is recovered is shown in Figure 6.

3.8 Graph-based Intrusion Detection Methods

An important question comes up with any anonymization method: How well do existing techniques work when
they are applied on anonymized data versus the original data? In this section, we provide an answer to this
question by using intrusion detection methods applied on anonymized and original data. Our previous work [27]
showed that simple classification-based intrusion detection methods generate accurate results on anonymized
datasets compared with original non-anonymized datasets. We now test our anonymization method on graph-
based intrusion detection methods such as those that rely on semantic networks [5]. Semantic networks are
graphs with nodes representing attacks or benign activities and edges representing the semantic links between
them, and they are called semantic linked networks (SLN).

The stronger the relationship between nodes, the higher the possibility they co-occur under a particular con-
text. Consequently, observing one suspicious node can help proactively avoid another. We generate two types of
SLNs: The first one was based on the original trace data, while the second one on the anonymized data. Logged
labeled flows are anonymized, then classification techniques are applied on the anonymized flows. Then, the
SLN generated from anonymized data is used to identify intrusions. We finally compare the SLN generated with
anonymized data, against the SLN built over original data. More details applying SLNs for intrusion detection
can be found in our previous work [5]. The objective of creating SLNs using the original data is not to evaluate
its results in the intrusion detection area, but to use it as a ground truth to compare with the SLNs created using
the anonymized traces.
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4 EXPERIMENTS AND EVALUATION

In this section, we present the results of the experiments that have been conducted to test the effectiveness of
our anonymization approach. Two sets of experiments are described:

—The first set of experiments evaluates our approach by measuring privacy and accuracy. Two different
datasets are anonymized, and privacy is measured on the resulting datasets. In addition, accuracy is mea-
sured on a testing data with non-anonymized flows using a training data before and after anonymiza-
tion. Furthermore, we measure the robustness of the approach when the anonymized data is used in
graph-based intrusion detection techniques, versus when the original non-anonymized data was used to
generate such techniques;

—The second set of experiments measures the immunity of the proposed techniques against data injec-
tion attacks. We measure the recovery rate of several patterns that are injected in the datasets before
anonymization.

Objectives of experiments: In the experimental evaluation, we prove that our model:

—works reliably and is accurate enough while preserving privacy, when compared with other approaches;
—is immune against Data Injection Attacks;
—works very well when applied on graph-based intrusion detection techniques.

4.1 Datasets

PREDICT Repository: PREDICT (A Protected REpository for Defense of Infrastructure against Cyber Threats) has
shared real-world datasets for cyber security research to advance the state-of-the-art network security research
and development [24]. In our experiments, we used packet captures from the 2013 National Collegiate Cyber
Defense Competition (nccdc.org). We created a software application to generate flows from packet captures and
correlate the created flows with alerts generated by the Snort Intrusion Detection System [13]. We generated a
total of 400,893 benign and suspicious flows to use in our experiments. University of Twente Dataset: The second
dataset provided by Sperotto et al. was created at the University of Twente by monitoring a honeypot for HTTP,
SSH, and FTP traffic [41]. We selected 401,732 suspicious flows from this dataset with the corresponding alerts.
Since the PREDICT dataset contains mostly normal flows and the Twente dataset mostly attack flows, we draw
a random sample from each dataset and combine them to create two new mixed datasets. The combined datasets
are:

—Dataset 1: 70% PREDICT dataset + 30% Twente dataset
—Dataset 2: 50% PREDICT dataset + 50% Twente dataset

These two datasets are further partitioned into training (70%) and evaluation (30%) parts. The evaluation part
was not anonymized

4.2 Evaluation Measures

Accuracy: We employ several accuracy measures to validate the effectiveness of our anonymization algo-
rithms such as TP Rate, FP Rate, Precision, Recall, F-Measure, and ROC (Receiver Operating Characteristic)

area.
Privacy: We use conditional privacy to measure the privacy of anonymized traffic data [3]. This measure

depends on mutual information between the raw and anonymized records at a certain confidence level; while
information loss is related to the amount of mismatch among the records before and after, conditional privacy

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 30. Publication date: October 2021.



30:14 • A. Aleroud et al.

Fig. 7. Privacy results of condensation-based anonymization techniques using Dataset 1.

Fig. 8. Privacy results of condensation-based anonymization techniques using Dataset 2.

is based on differential entropy of a random variable. The differential entropy of A given B = b is

h(A|B) =

∫

ΩA,B

fA,B (a,b)loд2 fA |B=b (a)da db (1)

where A is a random variable that describes the data, and B is a variable that gives information on A. ΩA,B

identifies the domain of A and B. Therefore, the average conditional privacy of A given B is∏
(A|B) = 2h (A |B ) (2)

if Di is the attribute value of the original data and D
′
i is the value after anonymization. The conditional privacy

for anonymizing that attribute is 2h (Di |D
′
i
), where h(DiD

′
i ) is the conditional entropy of the original data given

the anonymized data. Conditional privacy is calculated and averaged over all attributes.

4.3 Results

4.3.1 Privacy Results. Figures 7 and 8 show the conditional privacy results for the anonymized datasets gen-
erated by the original condensation technique (described in Section 3.5) and our modified one (Algorithm 2). This
experiment measures the effect of increasing the cluster size (k) on the values of conditional privacy when using
generalization approaches such as condensation. We utilized the pure condensation but without preserving the
Prefix of IP. Then, we utilized condensation, and we preserved the prefix of IP addresses.

Two main conclusions can be drawn from those figures. First, the values of conditional privacy get
higher when we increase k. Pure condensation attains higher privacy values than condensation with prefix-
preservation. Source and destination IP address have a significant contribution to the higher privacy values in
the case of pure condensation. However, the prefixes of IP addresses are not preserved using pure condensation,
which leads to more information loss and higher values of conditional privacy. The second set of privacy
experiments compares different anonymization techniques, including our differential privacy approach. Figure 9
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Fig. 9. Privacy results of different anonymization methods with Dataset 1.

Fig. 10. Privacy results of different anonymization methods with Dataset 2.

shows the privacy measures for the Dataset 1 using different techniques. Based on this measure, our technique
(Algorithm 2) performed better than most of existing techniques. We utilized three types of condensation
approaches: First, we performed typical condensation but without preserving the prefix of IP. Then, we
performed typical condensation, but we performed prefix-preserving anonymization on IP addresses. Finally,
we performed our per-class condensation method with IP prefix-preserving and differential private per-class
condensation with IP prefix preservation. It is observed that pure condensation attains higher privacy values
than prefix-preserving condensation. The per-class condensation method with differential privacy approach
outperformed all other methods. The experiment results using Dataset 2, shown in Figure 10, are similar, but
our approach reveals much higher levels of privacy compared to the other approaches.

4.3.2 Accuracy Results. We ran several experiments to measure and compare accuracy on anonymized vs.
original data. We utilize K-Nearest Neighbors (KNN) classifier to run our experiments. Tables 4 and 5 show
the KNN classification results on Dataset 1 and Dataset 2, respectively. In terms of accuracy, our approach
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Table 4. Dataset 1 Experiment-KNN Classification on Anonymized and Original data

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

Original

0.98 0.013 0.981 0.98 0.98 0.984 Attack

0.987 0.02 0.987 0.987 0.987 0.984 Normal

0.984 0.017 0.984 0.984 0.984 0.984 Avg

Condensation-per

-Class_Prefix-Preserving_IP

0.941 0.059 0.961 0.941 0.951 0.941 Attack

0.941 0.059 0.913 0.941 0.927 0.941 Normal

0.941 0.059 0.942 0.941 0.941 0.941 Avg

Condensation-All
Classes_Prefix-Preserving_IP

0.628 0.582 0.62 0.628 0.624 0.523 Attack

0.418 0.372 0.426 0.418 0.422 0.523 Normal

0.545 0.498 0.543 0.545 0.544 0.523 Avg

Differential

Privacy-per-Class_Prefix-Preserving_IP

0.941 0.059 0.96 0.941 0.95 0.94 Attack

0.941 0.059 0.913 0.941 0.927 0.94 Normal

0.941 0.059 0.941 0.941 0.941 0.94 Avg

Pure Condensation

0.691 0.612 0.631 0.691 0.66 0.54 Attack

0.388 0.309 0.454 0.388 0.418 0.54 Normal

0.571 0.491 0.56 0.571 0.564 0.54 Avg

Prefix-Preserving (IP)+ Generalization

(Other_Features )

1 1 0.602 1 0.752 0.5 Attack

0 0 0 0 0 0.5 Normal

0.602 0.602 0.362 0.602 0.452 0.5 Avg

Permutation

0.999 1 0.602 0.999 0.751 0.5 Attack

0 0.001 0.048 0 0 0.5 Normal

0.602 0.602 0.381 0.602 0.452 0.5 Avg

Black Marker

1 1 0.602 1 0.752 0.5 Attack

0 0 0 0 0 0.5 Normal

0.602 0.602 0.362 0.602 0.452 0.5 Avg

Truncation

0.578 0.506 0.633 0.578 0.604 0.577 Attack

0.494 0.422 0.436 0.494 0.463 0.577 Normal

0.544 0.473 0.555 0.544 0.548 0.577 Avg

Reverse Truncation

0.082 0.163 0.432 0.082 0.137 0.46 Attack

0.837 0.918 0.376 0.837 0.519 0.46 Normal

0.382 0.463 0.41 0.382 0.289 0.46 Avg

when applied with prefix-preserving approach to anonymize data (Condensation-per-Class, differential private-
Condensation-per-Class) achieves the highest accuracy compared to other techniques. It is evident that while
some techniques such as Black Marker achieve acceptable privacy levels, they lead to high information loss, as
demonstrated by our privacy results. Therefore, the results when such approaches are used are low compared
to other techniques. It is also noticed that there is a significant difference between approaches that belong to
the same category. For instance, truncation attains higher accuracy compared to reverse-truncation. Reverse
truncation sets the most significant bits to zero, therefore, the predictability of features is significantly affected
after anonymization.

The results clearly indicate the importance of prefix-preserving approach to decrease the amount of informa-
tion loss. Consequently, all approaches that apply our prefix-preserving algorithm attain higher accuracy values.
In addition, the prefix-preserving differential privacy algorithm achieves the best results in terms of accuracy.
Contrary to approaches such as Black Marker and Truncation, the results of the differential privacy algorithm
are consistent across both datasets when comparing the results shown in Tables 4 and 5.
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Table 5. Dataset 2 Experiment-KNN Classification on Anonymized and Original Data

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

Original

0.991 0.013 0.991 0.991 0.991 0.989 Attack

0.987 0.009 0.987 0.987 0.987 0.989 Normal

0.984 0.011 0.989 0.989 0.989 0.989 Avg

Condensation-per-Class_Prefix-

Preserving_IP

0.954 0.118 0.917 0.954 0.935 0.918 Attack

0.882 0.046 0.934 0.882 0.907 0.918 Normal

0.924 0.088 0.924 0.924 0.923 0.918 Avg

Condensation-All
Classes_Prefix-Preserving_IP

0.553 0.562 0.575 0.553 0.564 0.495 Attack

0.438 0.447 0.416 0.438 0.427 0.495 Normal

0.504 0.514 0.508 0.504 0.506 0.495 Avg

Differential

Privacy-per-Class_Prefix-Preserving_IP

0.975 0.125 0.915 0.975 0.944 0.945 Attack

0.875 0.025 0.962 0.875 0.916 0.945 Normal

0.933 0.083 0.935 0.933 0.932 0.945 Avg

Pure condensation

0.662 0.597 0.603 0.662 0.631 0.532 Attack

0.403 0.338 0.464 0.403 0.431 0.532 Normal

0.553 0.488 0.545 0.553 0.547 0.532 Avg

Prefix-Preserving (IP)+ Generalization

(Other_Features )

1 1 0.579 1 0.733 0.67 Attack

0 0 0 0 0 0.67 Normal

0.579 0.579 0.335 0.579 0.424 0.67 Avg

Permutation

0.083 0.31 0.27 0.083 0.127 0.387 Attack

0.69 0.917 0.354 0.69 0.468 0.387 Normal

0.339 0.566 0.305 0.339 0.271 0.387 Avg

Black Marker

0 0 0 0 0 0.5 Attack

1 1 0.421 1 0.593 0.5 Normal

0.421 0.421 0.178 0.421 0.25 0.5 Avg

Truncation

0.499 0.396 0.634 0.499 0.559 0.595 Attack

0.604 0.501 0.468 0.604 0.527 0.595 Normal

0.544 0.44 0.564 0.544 0.546 0.595 Avg

Reverse Truncation

0.906 0.9 0.58 0.906 0.708 0.503 Attack

0.1 0.094 0.437 0.1 0.163 0.503 Normal

0.567 0.56 0.52 0.567 0.478 0.503 Avg

We ran another statistical analysis on the original and de-identified datasets and compared the correlation
coefficients resulted by analysis run on the original datasets to the coefficients resulted by analysis run on the
anonymized datasets. For this measure, coefficients that changed direction before CFTP anonymization com-
pared to after anonymization affects utility. The smaller number of coefficients that changed direction means
better utility preservation. Preserving correlation between features is important to decide if applying diverse
anonymization techniques to different features affects associations between features. We used Pearson Cor-
relation in this experiment. It measures the linear association between two nodes fi and fj and is defined as
cov (σ fi , σ fj

)/ σ fi
× σ fj

, where cov is the covariance and σ is the standard deviation. The direction of coeffi-
cients is preserved between most features after anonymization, as shown in Table 7 (after data anonymization),
compared to Table 6 (before data anonymization). There are very few features that lost correlations with other
features such as time features. Results are reported for the first dataset, but there are no significant differences
when correlation analysis is applied to the second dataset.
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Table 6. Dataset 1. Correlation Coefficients before Anonymization

SRC IP DST IP PACKETS OCTETS START TIME END TIME SRC PORT DST PORT TCP FLAGS DURATION

SRC_IP 1 −0.04 0 0 0.41 0.41 0.28 −0.12 −0.25 0.05

DST_IP −0.04 1 0.01 0 0.33 0.33 −0.1 0.22 −0.22 0.04

PACKETS 0 0.01 1 0 −0.02 −0.02 −0.01 −0.02 −0.01 0

OCTETS 0 0 0 1 0.01 0.01 0 0 0 0

START_TIME 0.41 0.33 −0.02 0.01 1 0.4 0.33 0.1 −0.61 0.15

END_TIME 0.41 0.33 −0.02 0.01 0.4 1 0.33 0.1 −0.61 0.15

SRC_PORT 0.28 −0.1 −0.01 0 0.33 0.33 1 −0.47 −0.61 −0.01

DST_PORT −0.12 0.22 −0.02 0 0.1 0.1 −0.47 1 0.14 −0.03

TCP_FLAGS −0.25 −0.22 −0.01 0 −0.61 −0.61 −0.61 0.14 1 −0.15

DURATION 0.05 0.04 0 0 0.15 0.15 −0.01 −0.03 −0.15 1

Table 7. Dataset 1. Correlation Coefficients after Anonymization

SRC IP DST IP PACKETS OCTETS START TIME END TIME SRC PORT DST PORT TCP FLAGS DURATION

SRC_IP 1 −0.01 0.06 0.04 0.14 0.17 0.24 −0.08 −0.17 0.1

DST_IP −0.01 1 0.03 0 0.15 0.05 −0.04 0.16 −0.19 −0.08

PACKETS 0.06 0.03 1 0 0.05 −0.05 −0.03 −0.03 −0.02 0.2

OCTETS 0.04 0 0 1 −0.05 0.01 0.01 0.01 0 0.02

START_TIME 0.14 0.15 0.05 −0.05 1 −0.2 0.36 −0.11 −0.9 0.03

END_TIME 0.17 0.05 −0.05 0.01 −0.2 1 0.33 −0.19 −0.09 −0.04

SRC_PORT 0.24 −0.04 −0.03 −0.01 0.36 0.33 1 −0.53 −0.53 −0.02

DST_PORT −0.08 0.16 −0.03 0.01 −0.11 −0.19 −0.53 1 0.18 −0.03

TCP_FLAGS −0.17 −0.19 −0.02 0 −0.09 −0.09 −0.53 0.18 1 −0.13

DURATION 0.1 0.08 0.2 0.02 0.03 −0.04 −0.02 −0.03 −0.13 1

4.3.3 Results on Graph-based Intrusion Detection Techniques. In this set of experiments, we evaluate the two
types of SLNs created using the original and the anonymized datasets. Different Intrusion detection evaluation
metrics are used to measure the success rate of identifying attacks using SLNs when applied on top of K-NN
classification techniques. The two types of initial SLNs created before and after anonymization are shown in
Figures 11 and 12. The two SLNs have the exact same structure. In addition, the strengths of relationships be-
tween attacks (values on the graph edges) are very close on the SLNs before and after anonymization. When
SLNs are used for attack detection purposes, typically they increase recall values. We experimented with SLNs
using different values of a threshold t , which specifies the minimum cutoff value to include relevant nodes to
the starting one initially predicted by the K-NN classifier. We compare the accuracy of identifying attacks using
SLNs on anonymized and original datasets in terms of Precision, Recall, F-measure, and Receiver Operating

Characteristic (ROC). The ROC is a popular measure that has been used to compare intrusion detection tech-
niques and plot TP and FP rates associated with various operating points when different intrusion detection
techniques are used. The values of TP and FP rates (TPR and FPR) are calculated as:

TPR =
TP

TP + FN
(3)

FPR =
FP

FP +TN
(4)
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Fig. 11. SLN before anonymization.

Fig. 12. SLN after anonymization.

The results of this experiment are shown in Figures 13(a)–13(e). The results of the experiments on Dataset 1
show that there are no significant differences of Precision, Recall, and F-measure values before and after
anonymization. The ROC curves for each dataset are shown in Figure 13(e) and are clearly close, and the differ-
ences between original and anonymized datasets are very small in terms of TPR and FPR. Results on the second
dataset are very similar to the first dataset, so they are omitted.
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Fig. 13. (a) Precision values for SLNs—original vs. anonymized Dataset 1. (b). Recall values for SLNs—original vs. anonymized

Dataset 1. (c). Accuracy values for SLNs—original vs. anonymized Dataset 1. (d). F-measure for SLNs—original vs. anonymized

Dataset 1. (e). ROC curve for SLNs—original vs. anonymized Dataset 1.

4.3.4 Results on Injection Attacks. We simulate injection attacks by adding records with specific patterns to
the original datasets. Then, we run the anonymization algorithms on the two datasets and try to identify the
injected records. We then compare the Injected Pattern Recovery Rate (IPRR) on various anonymization
policies using the following formula:

IPRR =
Recovered injected pattern

Total number o f injected patterns
(5)

We applied five anonymization policies (A1 − A5) in addition to our differential privacy approach on both
datasets. Those policies are described in Section 3.7. In addition, the five patterns described in Table 8 are injected
in both datasets.
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Fig. 14. (a) Testing data injection attacks using various anonymization policies on Dataset 1. (b). Testing data injection

attacks using various anonymization policies on Dataset 2.

Table 8. Patterns Injected in the Trace Data

Packets Source port Destination port Duration Octets
P1 1 Fixed 80 − 160
P2 5 R(65k) R(65k) 200 256
P3 110 Fixed 80 200 480[+32]
P4 10 R(65k) R(65k) 200 832[+32]
P5 50 R(65k) R(65k) 150+R(300) 1,208[+R(8)]

- Values in square brackets denote the attribute evolution between flows.
- R(x): random number between 1 and x.
- Total number of injected flows is 650 (130) flows from each pattern.

Patterns 1, 2, and 3 are simpler than patterns 4 and 5. Each pattern consists of 130 records, with a to-
tal of 650 injection attempts. Those patterns work as a fingerprint in the original data to be discovered later
after anonymization. The objective of this process is to discover the immunity of the anonymization algo-
rithms against injection attacks [9]. The results of this experiment on both datasets are shown in Figures 14(a)
and 14(b). Permutation-based anonymization policies lead to the highest recovery ratio compared to other ap-
proaches; KNN search discovers most records for patterns 1 and 3. As the complexity of the permutation function
used in the anonymization policy increases, IPRR values decreases. However, KNN search still discovers a sig-
nificant percentage of the injected patterns. Compared to these anonymization policies, when our differential
privacy-based anonymization policy is used, zero records are recovered, testifying to the robustness of our ap-
proach against injection attacks.

5 CONCLUSIONS AND FUTURE WORK

This article proposes a method that utilizes differential privacy to anonymize network traces, and it has the
following characteristics: It has a very strong privacy guarantee; it is robust when used in generating attack
prediction models even when sophisticated intrusion detection techniques such as graph-based approaches are
used; it does not add any burden to data analyzer. Data analyzer can analyze data as it is. Our experiments show
that using differential privacy for anonymization produces superior results compared to existing techniques in
terms of privacy-utility tradeoff. Our work so far only focuses on network-trace data. A plethora of sensitive
information is often contained in a variety of formats, and security experts often need to analyze multiple types
of security data. For example, to detect an APT (Advanced Persistent Threat), experts often need to analyze
network traces, system logs, and web logs. Like network trace data, other types of cyber security data often
contain sensitive information, such as username, IP address, and node name, which can be found in event/system
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call logs, authorization/connection logs, web logs, malware execution traces, and so on. It is important to extend
our technique to anonymize such additional security data in the near future and expand the spectrum of our
approach.
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