
Using Randomness to Improve Robustness of
Tree-Based Models Against Evasion Attacks

Fan Yang , Zhiyuan Chen, and Aryya Gangopadhyay

Abstract—Machine learning models have been widely used in security applications. However, it is well-known that adversaries can

adapt their attacks to evade detection. There has been some work on making machine learning models more robust to such attacks.

However, one simple but promising approach called randomization is under-explored. In addition, most existing works focus on models

with differentiable error functions while tree-based models do not have such error functions but are quite popular because they are easy

to interpret. This paper proposes a novel randomization-based approach to improve robustness of tree-based models against evasion

attacks. The proposed approach incorporates randomization into both model training time and model application time (meaning when

the model is used to detect attacks). We also apply this approach to random forest, an existing ML method which already has

incorporated randomness at training time but still often fails to generate robust models. We proposed a novel weighted-random-forest

method to generate more robust models and a clustering method to add randomness at model application time. We also proposed a

theoretical framework to provide a lower bound for adversaries’ effort. Experiments on intrusion detection and spam filtering data show

that our approach further improves robustness of random-forest method.

Index Terms—Evasion attacks, machine learning, adversarial learning, intrusion detection, spam filtering

Ç

1 INTRODUCTION

WITH the arrival of big data era, machine learning techni-
ques have been widely used to build models for cyber

security applications such as spam filtering [1], [2], malware
or virus detection [3], and intrusion detection [4], [5], [6], [7].
However, attackers may use a type of attacking strategy
called evasion attackwhichmodifies their data to avoid detec-
tion. For example, an email spammer may modify spam
emails to drop or add certain words or symbols and a hacker
canmodify the signature of amalware or virus.

There have been studies on vulnerability of AI/ML mod-
els [8], especially more recently on deep learning models
[9], [10], [11], [12], [13], [14]. There also has been work on
building more robust mining models against evasion
attacks [8], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26]. Most existing works focus on models with differ-
entiable error functions because attackers can use techni-
ques such as gradient descent to decide the modification to
original instance which will lead to maximal error. How-
ever tree-based models (e.g., decision trees, regression trees,
random forest) do not have such error functions but are
quite popular because they are easy to interpret.

In addition,most existing studies use deterministicmodels.
However for tree-basedmodels, a deterministic model should
be concise to avoid overfitting the training data according to
the Minimum Description Length (MDL) principle [27]. A

concisemodel often uses a small number of features or a small
number of features may have much larger impact on the out-
put than other features. Attackers canmodify such features to
evade detection. To understand the problem of deterministic
models, let us look at the following example.

Example 1. Let us consider an email spam filtering exam-
ple. Suppose the filtering software uses decision trees.
Fig. 1 shows several sample decision trees (in practice
decision trees will have more nodes but here we simplify
the trees to show the concept). Each node represents frac-
tion of a word or an email in content of an email except
for “total capital”, which represents the total number of
capitalized letters in the email. The numbers in parenthe-
sis are number of positive or negative training instances
in each node.

If only one decision tree, say f1 is used, it is very easy for
attackers to modify a spam email to evade detection. For
example, suppose attackers have an email with feature val-
ues shown in Table 1(a). Attackers may learn that the spam
filtering software looks at the “remove” and “$” features.
As a result attackers just need to modify one feature (the
percentage of $ sign in the email) to avoid detection.

Some researchers try to use an ensemble approach (i.e.,
build a number of models instead of one) [28], [29] to
improve robustness of models. However, although the
ensemble approach does add some uncertainty to the gener-
ated models, it has two shortcomings: 1) its goal is still to
detect original non-evasive attacks, so the models built by
ensemble approach may still frequently use a small subset
of features, making it vulnerable to evasion attacks; 2)
ensemble approach is still deterministic at model applica-
tion time, making it easier for attackers to adapt.

� The authors are with the Department of Information Systems, University
of Maryland Baltimore County, Baltimore, MD 21250 USA.
E-mail: {fyang1, zhchen, gangopad}@umbc.edu.

Manuscript received 3 June 2019; revised 26 Feb. 2020; accepted 6 Apr. 2020.
Date of publication 15 Apr. 2020; date of current version 11 Jan. 2022.
(Corresponding author: Fan Yang.)
Recommended for acceptance by J. Chen.
Digital Object Identifier no. 10.1109/TKDE.2020.2987299

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022 969

1041-4347 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4113-764X
https://orcid.org/0000-0002-4113-764X
https://orcid.org/0000-0002-4113-764X
https://orcid.org/0000-0002-4113-764X
https://orcid.org/0000-0002-4113-764X
mailto:fyang1@umbc.edu
mailto:zhchen@umbc.edu
mailto:gangopad@umbc.edu

Random forest is a tree-based ensemble method which
generates a pool of decision trees. Each tree is trained using a
random sample of training data (this is also called bagging)
and a random subset of features at each split (also called ran-
dom subspace or feature bagging). However we found random
forest often fails to generate robust models. For example, We
ran random forest on Spambase data set [30], which is an e-
mail spam data set with 57 features and built 100 decision
trees. Fig. 2 reports for each feature (attribute), the number of
trees using that feature. 9 out of 57 features appear in at least
80 percent of trees and 22 features appear in at least half of
trees. This means that attackers can modify these frequently
used features to change prediction outcome.

Our Contributions. This paper proposes a weighted ran-
dom forest approach to generate a more robust pool of deci-
sion trees at model training time as well as a clustering-
based method to add randomness at model application
time. Next we use an example to show how our approach
may help.

In Example 1, suppose our method builds a pool of three
decision trees shown in Fig. 1. Table 1(c) shows the number
of features an attacker needs to modify if all three trees are
used at model application time (i.e., at least two trees need
to return “not spam”). Attackers need to modify at least two
features now (using f1 alone just needs one modification).

Our method further boosts robustness at model applica-
tion time. For example, if all three trees are used in Fig. 1.
As shown in Table 1(c), attackers only need to modify two
features to avoid detection. However if we select f1 and f2
(or f2 and f3) at model application time and the spam filter-
ing software will only label the email “not spam” if both
trees return “not spam”, attackers have to modify at least
three features as shown in Table 1(d).

This paper makes the following contributions:

1) Methods to build a diverse pool of mining models
for tree-based methods. Tree-based methods don not
have differentiable error functions. Unlike methods
based on retraining using adversarial examples [31],
the proposed methods modified the random forest
algorithm to generate more robust trees.

2) A method to randomly select a subset of models at
model application time to further boost robustness.
To the best of our knowledge, this is the first paper
proposing this method.

3) A theoretical framework that provides a lower
bound to adversaries’ effort.

4) Experiments to compare our methods to existing
methods. We also showed how to set parameters in
our methods to optimize the defense against both
non-evasive attacks and evasion attacks.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 introduces some back-
ground information and gives an overview of our approach.
Section 4 describes how our approach can be applied to ran-
dom forest. Section 5 presents a theoretical framework to
bound adversaries’ cost. Section 6 presents experimental
results. Section 7 discusses howour approach can be extended
to otherminingmodels and Section 8 concludes the paper.

2 RELATED WORK

Next we briefly describe related work in the literature,
which can be roughly divided into five categories.

The first category of work studies attacks against conven-
tional mining models [32]. Barreno et al. described a taxon-
omy of attacks and briefly mentions a few possible defense
strategies [16]. Lowd and Meek [8] studied a reverse engi-
neering algorithm to learn the models of a given machining
learning algorithm. They assume that the adversary can
find out the outcome of a prediction model by sending
instances to the model. Attacks on intrusion detection are
discussed in [33]. Nelson et. al. [34] studied attacks against
classifiers with convex decision boundaries. Tramer et al.
studied attacks that steal machine learning models based on
output of such models [35].

The second category of work tries to find robust learning
algorithms in presence of attacks. A common approach is to
model the learning problem as an optimization problem
[36], [37], [38]. Globerson and Roweis [21] studied the prob-
lem of building a robust SVM classifier in presence of fea-
ture deletion attacks (attackers can delete up to a certain
number of features from the test data). Another adversarial

Fig. 1. Decision tree models created by our model in Example 1.

TABLE 1
Some Possible Attacks for Example 1

970 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

learning method is proposed for SVM in [39], which consid-
ers two possible settings for attackers, in one of them the
attackers can corrupt data without any restriction and in the
other one the attackers have costs associated with attacks.

The third category of work applies game theory to the
adversarial learning problem. Typically the problem is
modeled as a two-player and multi-stage game between the
data miner and the adversary. At each stage, the adversary
tries to find the best possible attacks and the data miner
adjusts the mining models to such attacks. Kearns and Li
[40] proposed a theoretical upper bound on tolerable mali-
cious error rates. Dalvi et al. [41] proposed a game theory
framework which models the data miner and the adversary
as a two player game. They assume that both players have
perfect knowledge (i.e., data miner knows the adversary’s
attacking strategy and the adversary knows the mining
model). Several other works [19], [42], [43] model the adver-
sarial learning problem as a Stackelberg game.

The fourth category of work focuses on vulnerabilities of
deep neural nets [10], [11], [12], [13], [14]. A survey can be
found at [9]. Most of these studies focus on image classifica-
tion and they have shown that adversarial examples can
effectively fool a neural network to misclassify a slightly
modified image. There has been some effort to make deep
neural nets more robust [24], [25], [26], where most of them
retrain the neural nets with added adversarial examples.
However most of such work still focuses on images. Image-
based methods operate in a continuous feature space so they
may not be directly applicable to cyber security applications
which contain a lot of discrete attributes (e.g., words in
emails or network protocol for intrusion detection data). To
the best of our knowledge, the only exception is [12], where
Grosse et al. have studied how to generate adversarial exam-
ples for malware classification and use these examples to
retrain a deep neural net. In addition, neural nets have differ-
entiable error functions but tree-basedmethods do not.

The final category of work use ensemble methods in
adversarial settings [44], [45], [46], [47], [48]. For example,
Biggio et al. [29] used two methods: random subspace (a ran-
dom subset of features are used for training each model) and
bagging (a random sample of training data is used for train-
ing each model). Although these methods are similar to our
approach, they do not consider the problem of optimizing
defense against both evasion and non-evasive attacks

(original attacks), which is the focus of our approach. These
solutions also only consider the model building time, and
our approach will inject randomness into model application
time aswell.

Kantchelian et al. modeled the problem of finding opti-
mal evasion for tree ensemble classifiers (including random
forest) as a mixed integer linear programming problem [31]
and proposed to improve robustness by augmenting the
training set with evading instances. However, this approach
has several problems: 1) it still runs a conventional random
forest algorithm on augmented training set; our experi-
ments will show that there are still features vulnerable to
evasion attacks after retraining; 2) it is quite expensive to
solve the mixed integer linear programming problem.

Overall there has been very little work using randomiza-
tion at model application time. The only work we are aware
of that uses randomization at model application time is [49],
where the authors considered an optimal strategy when the
system can use several classifiers. They found the optimal
solution is either to choose a classifier uniformly at random
or choose the classifier with the smallest error depending
on the relative importance between accuracy versus robust-
ness. However, this work does not consider how to create
these classifiers and does not test their approach on real
data sets. We propose a method to build more diverse pool
of models and a clustering-based method to select these
models at model application time. We also test our solution
on real data sets.

To summarize, our work differs from existing work on
two aspects: 1) our approach adds randomness at model
application time; 2) our approach considers tree-based
methods, which do not have differentiable error function.

3 BACKGROUND AND OVERVIEW OF OUR

APPROACH

We first introduce some notations. Let L be a data mining
algorithm which given an instance xi returns a class label
(malicious or benign). Let T ¼ fðxi; yiÞgNi¼1 be a set of N train-
ing samples where xi ¼ ðxi1; . . . ; ximÞ is a training instance
with m independent variables (or features) A1; . . . ; Am and
xij is the value of Aj in xi, and yi is the value of dependent
variable Y for xi. Let M be the number of models in the
model pool. We will build a pool P ¼ ff1ðxÞ; . . . ; fMðxÞg of
prediction models where each fiðxÞ is a model to predict the
value of Y for record x. At model application time, we will
select a subset ofP for prediction.

Threat Model. This paper focuses on evasion attacks
where attackers can observe the prediction outcome of the
detection model and modify their attacking instances accor-
dingly to avoid detection, but cannot tamper with the model
and training data directly (also called exploratory integrity
attacks in [16]).

Following the literature, We will consider two cases for
attackers’ knowledge.

Definition 1. White-box attack: Attackers know the models
being built over training data and can modify their attacking
instances based on that.

Definition 2. Black-box attack: Attackers do not know the models
being built over training data, but can observe the predictions

Fig. 2. Number of trees using each feature by random forest on Spam-
base data set.

YANG ET AL.: USING RANDOMNESS TO IMPROVE ROBUSTNESS OF TREE-BASED MODELS AGAINST EVASION ATTACKS 971

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

made by the models and have a sample data set similar to those
used in training.

The black-box case is more common in practice. The
white-box case often occurs if attackers are insiders.

In the literature the robustness of a model is often mea-
sured by the amount of effort attackers need to pay to evade
a model. This is often achieved by solving the following
problem for attackers.

Definition 3. Optimal Evasion Problem: Given a malicious
instance xi that is initially labeled as malicious by the learning
algorithm L, attackers want to find an instance x0i such that 1)
L will classify it as benign; 2) the distance dðxi; x

0
iÞ between xi

and x0
i is minimized.

In the literature Lp distance is often used as distance
function. In this paper we use weighted Lp distance

dðxi; x
0
iÞ ¼

Xm
j¼1

cjjxij � x0
ijjp

 !1=p

: (1)

Here cj is a weight that represents the difficulty or cost of
modifying feature j. The modified instance x0

i that can evade
detection is also called adversarial examples/instances
according to the literature. A model is more robust to eva-
sion attacks if attackers need to put more effort to generate
adversarial examples (i.e., with larger Lp distances to origi-
nal instances).

The detectionmodel need to consider both evasion attacks
and original (unmodified) non-evasive attacks because in
practice both types of attacks may occur. There is usually a
tradeoff between defense against these two types attacks as a
model that is good at detecting one type of attack may have
poor detection rate against the other type of attack. E.g., ran-
dom forest is good at detecting non-evasive attacks but is
bad at evasion attacks. As another example, a model that
labels more instances as attacks may be robust to evasion
attacks but will have low precision for original attacks as
many normal instances may get labeled as attacks. So the
goal of this paper is to optimize this tradeoff.

Fig. 3 shows the architecture of our approach. Given a
training data set T and a data mining algorithm L, our
approach first generates a model pool using randomization.
When user provides an instance z to classify, a random selec-
tion process will be used to select a subset of models from
the model pool to return a prediction for z. Next we show
how our approach can be applied to random forest method.

4 OUR SOLUTION FOR RANDOM-FOREST

As illustrated in Section 1, random forest often fails to gen-
erate robust pool of models. We developed a Weighted Ran-
dom Forest algorithm (Section 4.1) to address this issue. The
key idea is to penalize features with high vulnerability (or
more frequent appearance) such that features are used
more uniformly in different trees. We also propose a cluster-
ing based method to add randomness at model application
time (Section 4.2).

4.1 Weighted Random Forest Method

Algorithm 1 shows the pseudo code of theWeightedRandom
Forest (WRF) algorithm. The algorithm is the same as random
forest except that when the algorithm selects a feature to split,
the splitting criteria of each feature Aj is multiplied by a
weight wj. This weight will be used to optimize the tradeoff
betweendefense against non-evasive attacks (goal of the orig-
inal random forest algorithm) and evasion attacks.

Algorithm 1.Weighted Random Forest Method

Input: Training data set T ¼ fðxi; yiÞgNi¼1, number of models
M , feature subset size F
Output: A set of candidate models f1; . . . ; fM

1 Compute weights w1; . . . ; wm for each feature
2 for i ¼ 1 toM do
3 Draw a uniform random sample with replacement of size

N from T , let the sample be Ti

4 Build a decision tree fi on Ti where at each node a random
subset of F features are used and the splitting criteria for
each feature Aj is multiplied by weight wj

5 end
6 return f1; . . . ; fM

We compute the weights based on the following two
observations. First, features that are more difficult to change
(i.e., with larger cj in Equation (1)) should receive higher
weights. Second, if modifying a feature is likely to change
the classification outcome of a positive (malicious) instance
to negative (benign), then this feature should have a lower
weight. We call such features vulnerable features and pro-
posed two metrics to quantity vulnerability. The first is
information gain and the the other is a newmetric called dif-
ferential ratio.

Algorithm 2 shows the steps to compute weights. Line 1
runs standard random forest algorithm on the training data
to generate an initial set P0 of M trees. These trees will be
used to compute feature weights. For each feature Aj and
each tree fi that uses Aj, the algorithm computes differential
ratio or information gain at each node using Aj as splitting
node. Since the same feature may be used multiple times in
the same tree, the algorithm computes rij as the maximal
information gain or differential ratio over all such appearance

Fig. 3. Architecture of our approach.

972 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

in tree fi. Finally line 6 computes weight wj for feature Aj

using all rij.

Algorithm 2. Compute Feature Weights

Input: Training data set T ¼ fðxi; yiÞgNi¼1, number ofmodelsM
Output:Weights w1; . . . ; wm for each feature

1 Run standard random forest algorithm on T to create an ini-
tial model pool P0

2 for each feature Aj, 1 � j � m do
3 for each tree fi in P0 that uses Aj do
4 Compute rij as the maximal information gain or differen-

tial ratio for Aj in fi
5 end
6 wj ¼ e

�r

PM

i¼1
rij

Mcj

7 end

Next we describe how to use information gain or differ-
ential ratio to compute the weights.

Information Gain.One observation is that a vulnerable fea-
ture is often selected as splitting attribute because it appears
in many trees. Random forest selects splitting attribute
based on measures such as information gain so we can use
these measures to quantify vulnerability of a feature.

Let valsðAjÞ be set of possible values of feature Aj. Let Tn

be set of training instances under node n. Let Tv be the set of
training instances in Tn and have value v on feature Aj.
Information gain for a node n that splits on feature Aj is
defined in Equation (2)

IGðAj; nÞ ¼ HðTnÞ �
X

v2valsðAjÞ

jTvj
jTnjHðTvÞ: (2)

Here HðTnÞ and HðTvÞ are entropy of class distribution
for node n and child node nv, respectively.

Since a feature may appear multiple times in the same
tree, we take the maximal information gain in a tree so we
consider the most vulnerable case for a feature Aj (i.e., the
worst case). Let fi be a tree in the model pool P0 built by
random forest

rij ¼ max
n2fi;n splits on Aj

IGðAj; nÞ: (3)

We then sum up rij in all trees and divide the sum by M
(total number of trees). We then compute weight wj for fea-
ture Aj as

wðAjÞ ¼ e
�r

PM

i¼1
rij

Mcj : (4)

Here cj is the difficulty ofmodifyingAj in Equation (1). r is
a parameter to adjust the importance of robustness. If r ¼ 0,
wðAjÞ ¼ 1 for all features and our method is identical to ran-
dom forest. For a positive r value, the weight of a feature
increases with the difficulty of modifying that feature and
decreases with the information gain. So our method favors
features that are difficult tomodify or are less vulnerable.

The exponential function in Equation (4) is used for
smoothing. For example, suppose a feature A1 has an infor-
mation gain of 0.15 and a feature A2 has an information
gain of 0.01, and both features have cj of 1. Without the

exponential function the weight of A1 will be 15 times of
that of A2 (both are negative weights). This may penalize
feature A1 too much because features with high information
gain are features that can better distinguish positive instan-
ces from negative instances. With the exponential function
the weight for A1 is 0.55 and weight for A2 is 0.96 when
r ¼ 4. We will discuss how to choose appropriate value of r
in Section 6.

Differential Ratio. One problem of information gain is that
it is mainly used for classification accuracy, and it may not
precisely capture vulnerability of a feature at times. So we
proposed an alternative metric called differential ratio to
quantify vulnerability. We start by considering binary trees,
and then explain the difference between differential ratio
and information gain, and finally generalize our solution to
multi-branch trees.

Let pþðnlÞ be the fraction of positive training instances in
the subtree rooted at node n’s left child and pþðnrÞ be the
fraction of positive instances in the subtree rooted at its
right child. Let jnj be the total number of training instances
in the subtree rooted at node n and jT j be the total number
of training instances. Let An be the splitting feature used at
node n. We calculate a differential ratio for feature An at n as

dðAn; nÞ ¼ jpþðnlÞ � pþðnrÞj jnjjT j : (5)

Next we explain the intuition behind Equation (5). Let x
be a positive instance that falls under the subtree rooted at
n. Modifying the splitting feature of nmay change x0s classi-
fication outcome from positive to negative. Now we try to
estimate the probability of this change. We assume that test
cases will follow a similar distribution as the training cases
(this is the basis for all data mining algorithms). Thus we
can estimate the probability of a test case reaching node n
by jnj

jT j. Since the test case is positive, it is more likely belong-
ing to the child node with higher fraction of positive cases.
Without loss of generality we assume that the left child has
higher fraction of positive cases. Let An be the splitting fea-
ture at node n. Modifying An will move x from left child to
right child. We use pþðnlÞ to approximate the probability of
x classified as positive in the left child, and pþðnrÞ to
approximate the same probability in right child. So the
probability of x being classified as negative after modifying
An can be estimated by pþðnlÞð1� pþðnrÞÞ.

However this measure has two problems: 1) it is not sym-
metric; 2) it is greater than zero even if the right child has
higher fraction of positive instances (so moving x to right
child will not help the attackers). So instead we use
jpþðnlÞ � pþðnrÞjwhich is both symmetric and indicates that
x is more vulnerable when one of its child has much higher
fraction of positive instances than the other child (so mov-
ing x to the other child helps attackers).

Once we compute differential ratio for a feature Aj at a
single node, we can compute the differential ratio in the
whole model pool in a similar way as for information gain
in Equation (3). For each tree in the model pool, we take the
maximal ratio rij across all nodes splitting on Aj. We then
use Equation (4) to compute the weight of Aj.

Differences Between Differential Ratio and Information Gain.
There are two main differences between information gain

YANG ET AL.: USING RANDOMNESS TO IMPROVE ROBUSTNESS OF TREE-BASED MODELS AGAINST EVASION ATTACKS 973

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

and differential ratio: 1) information gain considers original
class distribution (HðTnÞ), differential ratio does not; 2)
information gain considers the size of each child node (the
entropy of each child node is weighted by size), differential
ratio does not.

Fig. 1 shows the difference between differential ratio and
information gain. Suppose the upper branches are the left
branches. The differential ratio for the “$” node in tree f1
equals j0:1� 0:9j 11002000 ¼ 0:88, and the differential ratio for the
“000” node in tree f2 is j0:1� 0:67j 11002000 ¼ 0:62. So the first one
has higher differential ratio. However, if we compute infor-
mation gain (IG), IG for “$” node is 0.19 and IG for “000”
node is 0.26. So the second node has higher IG. The reason is
that information gain considers entropy before the split as
well as each child node’s size, while differential ratio only
considers the difference of fraction of positive instances in
two child nodes. Here the “$” node has one childwithmostly
positive instances and the other with mostly negative instan-
ces, so modifying “$” feature is more likely to change a posi-
tive instance to a negative instance. On the other hand, the
higher IG for “000” is mostly due to the higher entropy
before the split, which is not directly related to vulnerability.

Generalization to Multi-Branch Trees. To generalize differ-
ential ratio to multiple-branch trees, we divide children of a
node n into two groups. The first group consists of child
nodes with majority as positive training instances, and the
second group consists of nodes with majority as negative
training instances (if one of the groups is empty then differ-
ential ratio of n is zero). Let pþðnþÞ be the fraction of posi-
tive instances in the first group and pþðn�Þ be the fraction of
positive instances in the second group. We define differen-
tial ratio for feature An at node n as

dðAn; nÞ ¼ jpþðnþÞ � pþðn�Þj jnjjT j : (6)

We then use this differential ratio in Equations (3) and (4).
Computational Complexity. The computational complexity

of random forest isOðmMNlogNÞwherem is number of fea-
tures, N is number of training instances andM is number of
models. WRF builds models twice (the first pass to generate
P0 without the weighting scheme and the second pass with
the weighting scheme). OnceP0 is generated, computing dif-
ferential ratio or information gain just needs to traverse each
tree in P0 and costs Oðmaxjf jMÞ where maxjf j is the maxi-
mal number of nodes in a tree. Normally N >> maxjfj, so
the complexity ofWRFD is stillOðmMNlogNÞ.

4.2 Clustering-Based Model Selection at Model
Application Stage

At model application stage we can dynamically select a sub-
set of models each time the models are asked to classify an
instance such that it is even harder for attackers to find out
what models are used.

We propose a clustering-based model selection method
(shown in Algorithm 3). This method is based on the obser-
vation that if two trees share very few common features
then they should be robust to evasion attacks because
attackers need to modify more features.

The algorithm first creates a similarity graph where each
node is a tree in P and two nodes are linked if they share

common features and the weight of the link is the sum of
differential ratio or information gain of shared features. It
then uses spectral clustering to divide the models into s
clusters such that there are few between cluster links. The
clustering step can be done offline. At model application
time, for each test case, the clustering method randomly
selects q models from each cluster. These qs models will be
used to classify this test case. Note that different models
will be used to classify different test cases. Since models in
different clusters share very few common features, the
selected models also share fewer common features than the
original model pool. We will discuss how to empirically
select q and s in Section 6.

Algorithm 3.Clustering-BasedModel Selection Algorithm

Input: Amodel pool P ¼ ff1; . . . ; fMg, parameters s, q, and a
test case t
Output: A subset of models to classify t

1 Creates a similarity graph G ¼ ðV;EÞ where node v 2 V is a
tree in P and two nodes are linked by an edge e if they
share common features and e’s weight is the sum of differ-
ential ratio or information gain of shared features

2 Use spectral clustering to create s clusters
3 At model application time, randomly select q models per

cluster and return them

Let M be the number of trees and m be the number of
features. It takes OðmM2Þ time to build the similarity graph.
The cost of spectral clustering is OðM3Þ. So the computa-
tional complexity of the clustering-based method is
OðM3 þmM2Þ. Note that this cost is not related to number
of instances.

The clustering-based algorithm can use models gener-
ated by our weighted (WRF) algorithm. We call the com-
bined algorithm Cluster-based Weighted Random Forest
(CWRF). It can also use models generated by a traditional
random forest algorithm without feature weighting. This
may make sense if users do not want to modify the imple-
mentation of random forest or do not want to pay the over-
head of WRF (WRF needs to build models twice).

5 THEORETICAL FRAMEWORK

We propose a theoretical framework to provide a lower
bound to attackers’ effort. We will consider L0 distance in
Equation (1). So the cost of modifying a set of features in a
set SA equals

P
Aj2SA cj. We start with a theoretical bound

for random forest. We first introduce some notations.

Definition 4. Let f be a decision tree to detect whether data
instance x is positive or negative as a cyber security threat
(e.g., a spam, an intrusion, or a fraud). A critical path of f is a
root-to-leaf path p with nodes n1; n2; . . . ; njpj where njpj is a leaf
node with positive label.

For example, in the first tree f1 in Fig. 1, there are two
critical paths: {“remove” > 0}, {“remove” � 0, “$” > 0.05}.
It is clear that any instance labeled positive must lie on one
of the critical paths (actually at the leaf node) and to turn
such an instance into negative, attackers need to modify
some features on the critical path.

974 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

Definition 5. Critical count CCðAjÞ for a feature Aj in a set of
models P ¼ ff1; . . . ; fMg equals the number of trees in P that
have Aj on at least one critical path.

For instance, in Example 1, the critical count for “$” is
two because it appears in critical paths in f1 and f3. The crit-
ical count for the remaining features is all one because each
only appears in one tree’s critical paths. Next we give the
bound.

Theorem 1. A pool P ¼ ff1ðxÞ; . . . ; fMðxÞg of decision trees
satisfies ðt1; t2; kÞ-robustness if and only if for any set SA of k
features,

P
Aj2SA CCðAjÞ � t1 and

P
Aj2SA cj � t2. So for any

positive data instance x with current positive vote (i.e., number
of trees labeling x as positive) greater or equal to dM=2e þ t1,
an attacker needs to modify more than k features or needs more
than t2 L0-distance to evade detection by P.
The proof is quite straightforward. Suppose x is classi-

fied as positive by a tree f . To modify x such that f will clas-
sify modified x as negative, an attacker must modify some
feature on critical paths of f . Since CCðAjÞ is the number of
trees with feature Aj on their critical paths, modifying Aj

can reduce the positive vote count by at most CCðAjÞ. Since
the sum of any k features’ critical count is at most t1, the
change in positive vote count by modifying k features is at
most t1. Since the current positive vote count is no less than
dM=2e þ t1, the new count is at least dM=2e after changing k
features. Thus x will be still classified as positive. Since we
need to modify more than k features to change the outcome,
the L0 distance between the adversarial instance and the
original instance is at least t2 because changing k features
already results in a L0 distance of t2.

For example, let P ¼ ff1; f2g in Fig. 1, the maximal critical
count for each feature is one, so P satisfies ð1; c�; 1Þ-robust-
ness where c� is the minimal cj among those features.
According to Theorem 1, for any instance with positive vote
2 (e.g., the original instance shown in Table 1(a)), the attacker
needs to change at least 2 features to avoid detection. This
bound is also tight because for a test case with feature
“Remove”¼ 0, “$”¼ 0:2, “!”¼ 0:2, and “0000”¼ 0:3, attack-
ers just need to change “$” to 0.05 and “000” to 0.25 to change
the prediction of both f1 and f2 from spam to not spam.

Theorem 1 provides a worst-case bound. However in
practice the performance is usually better because not every
modification of a feature on a critical path will lead to
change of classification outcome. For instance, for the first
test case in Table 1(a), attackers need to modify three fea-
tures instead of two for model set ff1; f2g as shown in
Table 1(d). The differential ratio proposed in Equation (3)
can be seen as a more realistic estimation of robustness but
it does not give worst case bound.

Worst-Case Bound After Clustering. The clustering-based
model selection method also provides a worst-case bound. If
each feature does not appear in more than l clusters, then the
critical count of each feature is no more than lq because we
only select qmodels per cluster. So the total critical count of k
features will not exceed klq. The selected models satisfy
ðklq; c�; kÞ-robustness where c� is the minimal sum of cj of k
features. For example, suppose in Fig. 1 the trees are divided
into two clusters, the first cluster with tree f1 and f3 and the
second with tree f2. Each feature only shows up in one

cluster, i.e., l ¼ 1. We also select one model per cluster so
q ¼ 1. So the selected models (say f1 and f2) satisfy
ð1; c�; 1Þ-robustness and by Theorem 1 attackers need to
modify at least 2 features for any instance with two positive
votes.

Impact of Using Weighted Random Forest. We have two
observations of the proposed weighted random forest
method. First, suppose two features are identical except
that one has higher cost than the other, WRF will favor the
feature with higher cost. This is obvious from Equation (4)
where higher the cost (cj), higher the weight. Second, sup-
pose two features Ai and Aj have similar information gain
or differential ratio except that Ai is used in more trees gen-
erated by the original random forest method than Aj, WRF
will favor Aj (the feature used in fewer trees). This is evi-
dent from Equation (3) where the feature appears in more
trees will have higher total information gain (or differential
ratio) and thus lower weight in Equation (4).

These observations mean that compared to original ran-
dom forest algorithm, WRF will tend to pick features with
higher cost or less frequently used in existing trees. Thus
the pool of trees generated by WRF tends to have lower crit-
ical count bound (t1) and higher L0-distance bound (t2) if
number of features k is fixed. Lower t1 means the pool is
more likely to satisfy the necessary condition that number
of positive votes need to be at least dM=2e þ t1. Thus the
worst case bound in Theorem 1 is more likely to hold.
Higher t2 means adversaries need to pay more effort in
terms of L0 distance. So WRF leads to more robust models
in general.

6 EXPERIMENTAL RESULTS

This section presents experimental evaluation of our pro-
posed methods. Section 6.1 describes setup of our experi-
ment. Section 6.2 discusses how we tune parameters of
proposed methods and Section 6.3 compares proposed
methods to existing ones.

6.1 Setup

Algorithms.We compare the following algorithms:

1) WRFD: this is the proposed weighted random forest
algorithm using differential ratio in the weighting
scheme. Clustering is not used.

2) WRFI: this is WRF using information gain in the
weighting scheme.

3) CWRF: this is the proposed algorithm with both
weighting at model building time and cluster-based
model selection (in Algorithm 3) at model applica-
tion time. We also use WRFD to create the model
pool because WRFD has better results than WRFI in
most cases.

4) RF: this is the original random forest algorithm. RF
can be seen as a special case of WRFD or WRFI when
r ¼ 0 (i.e., weights are uniform).

5) Retraining-Tree: this method was used in [31]. It
takes all true positive training instances (i.e., those
positive instances also classified as positive by the
current model) and finds for each training instance
xi an adversarial instance x0

i to evade detection using

YANG ET AL.: USING RANDOMNESS TO IMPROVE ROBUSTNESS OF TREE-BASED MODELS AGAINST EVASION ATTACKS 975

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

a Greedy algorithm which will be described later in
this Section. Random forest models are then created
using the augmented training set which contains
both the original training instances and the adversar-
ial instances. This process is also repeated (to have
new models to classify training data and add adver-
sarial instances from true positives) until no more
adversarial instances can be generated.

6) Retraining-CNN: this method creates a convolution-
ary neural network (CNN) over the training data
and then uses the JSMA method [50] to generate
adversarial examples because JSMA minimizes L0

distance. The adversarial examples are added to the
original training data to retrain a more robust CNN.

Data Sets.We used the Spambase data set (an email spam
data set) from UCI Machine Learning Repository [30] and
network traffic data from Kyoto University’s Honeypot (an
intrusion detection data set) [51]. For the Kyoto University
data set, we randomly selected a sample of 45,390 instances
from data collected in December 2015. Since the original data
set is quite skewed (with mostly normal traffic), we under-
sampled normal traffic data and kept about half sample nor-
mal and half attacks. We also removed duplicates from the
data set. We call this sampled data set Kyoto-Sample. Details
of these data sets can be found in Table 2. Spambase only
contains numerical features. Kyoto University data has both
numerical and categorical features.

Features for Spambase data are mainly frequency of
words and symbols as well as length of sequence of capital
letters. All these features are relatively easy to modify so we
set cj (the cost of modifying feature j in Equation (1)) for all
features to one for Spambase data set.

For Kyoto University data set we only used features
extracted from raw traffic data such as duration of connec-
tion, number of bytes sent by source IP. We divide these fea-
tures into three groups as shown in Table 3 according to
attackers’ difficulty of modifying these features: for the fea-
ture like “Source Port”, it is easy for attackers to modify
by themselves, so we set cj for these features to 1; for the fea-
tures like “Destination Port”, attackers can barely change
the values in the real world, we set cj for these features to 5;
for the rest of features like “Count” or “Serror_Rate”, it may
need attackers to take some efforts to modify but not too
much, so we set cj of these features to 3.

For Spambase, we randomly selected 70 percent of
data for training and the remaining for testing. For Kyoto-
Sample, we randomly selected 10 days of data for training
and the remaining for testing. We also assume that attackers
do not have access to training data but do have access to
testing data. Attackers will try to evade detection for every
true positive instance in the testing data. Note that there is

no need to modify false negative instances as they already
evade detection.

Attacking Strategies. The error function for random forest
is not differentiable. So we cannot use methods such as gra-
dient descent. Instead we used a greedy attacking method
to find adversarial instances (a similar method is used in
[31]). This method tries to find adversarial instances closest
to xi based on L0 distance.

Given a true positive instance xi in the testing data, the
Greedy method iteratively selects a feature to modify such
that this will lead to maximal reduction of the count of posi-
tive votes divided by weight ci. Here count of positive votes
is the number of trees that classify the current modified
instance x0

i as positive. Clearly, if positive vote count is less
than half of total number of trees then x0

i will be classified as
negative and become an adversarial instance.

In the white-box case, the Greedy method first finds a
negative instance xn that has the lowest positive vote count.
So xn looks the most negative according to the detection
model. It then checks every unmodified feature and repla-
ces that feature with the value of the feature in xn (other fea-
tures remain unchanged) and computes the new positive
vote count. For Spambase data set, the cost of modifying
each feature (cj) is one, so the feature A�

j with the lowest
positive vote count will be selected. For Kyoto-Sample data
set, attackers will consider different difficulty of modifying
features when they select features using greedy method.
We assume attackers will divide vote change of each feature
by its predefined cost cj and select feature A�

j with the high-
est result. This process is repeated until majority of trees
classify the modified instance x0

i as negative.
In the black-box case, attackers do not know the tree

models built from training data. The attackers randomly
select a subset of testing instances they have and learn a set
of tree models based on this subset. Let’s call this model
pool P0. The greedy method is then applied just as the
white-box case using P0 to help it choose the feature to mod-
ify. At the end of each iteration when a feature A�

j is
selected, the Greedy method will probe the original models
to check whether the original model pool P will classify the
modified instance x0

i (with feature A�
j modified) as negative

and stops if this happens. In both data sets we used half of
the testing data for attackers to build their own model P0.

Metrics. One way to measure robustness is to run all
models on real evasion attack data. However it is quite diffi-
cult to find such data sets. So in the literature robustness is
often measured by Lp distance between adversarial instan-
ces and the original instances.

We also assume that attackers can modify as many fea-
tures as they want and as much per feature as they want.

TABLE 2
Characteristics of Data Sets

Data set Number of Number of Number

instances features of positive

instances

Spambase 4,601 57 1813
Kyoto-Sample 45,390 14 22,687

TABLE 3
Groups and Costs for Features in Kyoto-Sample

Groups Features Costs

Group 1 Duration, SourceBytes, Source_Port_Number 1

Group 2 Count, Same_srv_rate, Serror_rate, Srv_Serror_Rate,

Dst_Host_Count, Dst_Host_Srv_Count,

Dst_Host_Same_Src_Port_Rate, Dst_Host_Serror_Rate

3

Group 3 DestinationBytes, Destination_Port_Number 5

976 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

We used average L0 distance between adversarial instances
and their corresponding original instances. For Spambase
data set, we set all cj to one, so the average L0 distance per
instance is the average number of features modified by the
attackers to evade each attack instance. For Kyoto-Sample we
assigned non uniform weights listed in Table 3. In both cases,
the higher the average distance, themore robust themodel.

For Kyoto-Sample data set, since cost of modifying a fea-
ture is not uniform, it is a little difficult to interpret L0 dis-
tance. To address this issue, we also consider a case when
attackers can only launch attacks with the total cost not
exceeding a budget b. We measured success rate (fraction of
attacks that can evade detection) of such adversarial attacks
for such bounded attack case.

We also measure a model’s ability to detect original non-
evasive attacks using precision, recall, and F1 score over
original testing data which only contains original attacks
and normal data.

All experiments were run on a desktop computer with
Intel i7 quad core processor, 32 GB RAM, 2 TB hard disk,
and running Windows 10. All algorithms were imple-
mented in Java by extending source code for Weka 3.8. Since
there is some randomness in mining algorithms and attack-
ing strategies, we ran each experiment 20 times and took
the average of results.

6.2 Tuning of Parameters

We need to set three parameters for our proposed WRFD,
WRFI andCWRFmethods: 1) rwhich is used in Equation (4);
2) s as the number of clusters for CWRF; 3) q as the number of

models selected at model application time from each cluster
of models. All three parameters can be used to adjust the
tradeoff between defense against evasion attacks (robust-
ness) and defense against non-evasive (original) attacks.

Tuning of r. we found that results for white-box and
black-box cases have similar trends so we only report
results for white-box. As mentioned in Section 6.1, average
L0 distance is used to measure robustness to evasion
attacks. Figs. 4 and 5 report average L0 distance for each
data set under white-box attack. Figs. 6 and 7 report F1 score
for Spambase and Kyoto-Sample, respectively. We reported
results for WRFD, CWRF, and WRFI because all these meth-
ods use r. For CWRF we used s ¼ 10; q ¼ 3 for Spambase
and s ¼ 5; q ¼ 1 for Kyoto-Sample.

The results showed that as r increases, the average L0

distance (robustness) increases and F1 score decreases. This
is expected because higher r values put more emphasis on
robustness. So there is a need to select r to balance defense
against evasion attacks and non evasive (original) attacks.

The increase in robustness also becomes flat for large r
values in some cases (e.g., for WRFI and CWRF on Spam-
base). In such cases, the weights for vulnerable features are
so low such that other features that are previously not vul-
nerable may have higher weights and become vulnerable
(i.e., likely to appear in many trees).

For Spambase, the F1 score of WRFD and WRFI only
drops slightly as r increases. The F1 score of CWRF is more
sensitive to r. We set r to 1.5 for Spambase as it achieves the
best tradeoff between defense against original attacks and
evasion attacks. For Kyoto-Sample, the F1 score of all meth-
ods are quite high and are not very sensitive to r. So we

Fig. 4. Average L0 distance when varying r on Spambase (white-box).

Fig. 5. AverageL0 distancewhen varying r on Kyoto-Sample (white-box).

Fig. 6. F1 score when varying r on Spambase.

Fig. 7. F1 score when varying r on Kyoto-Sample.

YANG ET AL.: USING RANDOMNESS TO IMPROVE ROBUSTNESS OF TREE-BASED MODELS AGAINST EVASION ATTACKS 977

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

select r ¼ 10 for Kyoto-Sample because that will maximize
robustness. In practice, users should start with small r val-
ues and gradually increase it until L0 distance or F1 score
for original attacks starts to drop significantly.

In subsequent experiments, r is set to 1.5 on Spambase
and 10 on Kyoto-Sample.

Tuning of s and q. we considered four combinations of s
and q: s ¼ 5 or 10 (i.e., models are divided into 5 or 10 clus-
ters) and q ¼ 1 or 3 (1 or 3 models are selected per cluster).
Again we found the optimal value for s and q is the same
for both black-box and white-box cases. Due to lack of space
we just summarize the results.

We found that as s and q increases, F1 score increases
because more models are used in prediction. However the
average L0 distance decreases in most cases as s and q
increase because using more models means less uncertainty
and less robustness. For Spambase, the decrease in F1 score
is quite significant as s and q decrease so the optimal setting
is using 10 clusters and selecting 3 models per cluster. For
Kyoto-Sample data set, F1 score is not very sensitive to s
and q. So we use 5 clusters and select 1 model from each
cluster (s ¼ 5; q ¼ 1) to achieve better robustness.

6.3 Comparison With Existing Methods

Oncewe set parameters for our algorithms (WRFD,WRFI and
CWRF), we compare them to other methods (RF and Retrain-
ing-tree). Figs. 8 and 9 report average L0 distance for

Spambase and Kyoto-Sample, respectively. Tables 4 and 5
report precision, recall, and F1 score for Spambase andKyoto-
Sample, respectively. The Retraining-CNNmethod is not run
onKyoto-Sample because this data set has 14 features selected
by domain experts, while the main benefit of deep learning is
feature engineeringwhich is not needed in this case.

All methods are more robust under black-box attacks
than under white-box attacks. This is expected as under
black-box attacks attackers have no knowledge of the origi-
nal models.

Results on Spambase. Since ci ¼ 1 for Spambase, average
L0 distance is equivalent to average number of features
attackers need to modify to evade detection.

On Spambase, WRFD and CWRF have the highest robust-
ness (measured by average L0 distance) under white-box
attacks. CWRF also beats WRFD under black-box attacks
due to increased uncertainty at model application time.
WRFI has lower L0 distance than WRFD under white-box
attacks, showing that information gain is not themost appro-
priatemeasure for vulnerability in this case.

Retraining-tree surprisingly has very low L0 distance
under white-box attacks. We checked the trees created by
this method. We found that four features still appear in
over 80 percent of trees. Retraining-tree method still use
random forest on the augmented training set and it still
uses a few features in most trees. These features are still vul-
nerable to evasion attacks. Under black-box case Retraining-
tree has better L0 distance possibly due to the increased dif-
ficulty for attackers to find vulnerable features, but it is still
less robust than CWRF, WRFD and WRFI.

The Retraing-CNN method has a L0 distance of 3.02
under white-box attacks. Its L0 distance is 4.74 under black-
box attacks. These numbers are better than the original CNN
model which has a L0 distance around 1.6, but are worse
than the results of our proposedmethods CWRF andWRFI.

The improvement of CWRF and WRFD over RF is also
quite significant. Under white-box attack the attackers need to
modify on average 4.76 features for WRFD and 4.5 features
for CWRF versus 3.19 features for RF. Under black-box attack

Fig. 8. Average L0 distance on Spambase.

Fig. 9. Average L0 distance on Kyoto-Sample.

TABLE 4
Precision, Recall, and F1 Score on Spambase

Algorithms Precision Recall F1 Score

Random Forest 0.932 0.912 0.922
WRFD 0.905 0.905 0.905
CWRF 0.81 0.849 0.829
Retraining-tree 0.871 0.963 0.914
WRFI 0.911 0.841 0.874
Retraining-CNN 0.870 0.960 0.913

TABLE 5
Precision, Recall, and F1 Score on Kyoto-Sample

Algorithms Precision Recall F1 Score

Random Forest 0.944 0.956 0.950
WRFD 0.941 0.954 0.947
CWRF 0.931 0.948 0.940
Retraining-tree 0.906 0.957 0.931
WRFI 0.941 0.956 0.948

978 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

the attackers need to modify 20 out of 57 features for WRFD
versus 9.9 features for RF.

In terms of detection of original attacks, the proposed
methods have slightly lower prevision, recall, and F1 score
than the original RF. WRFD has the best performance
among proposed methods, with just 1-2 percent degrade in
precision, recall and F1 score.

Retraining-tree and Retraining-CNN have similar preci-
sion, recall, and F1 score with those of RF. However as men-
tioned above both have limited improvement in terms of
robustness compared to RF.

Overall, WRFD is the most effective against both original
non-evasive attacks and evasion attacks on this data set as
its precision, recall, and F1 score for original attacks are
quite close to those of RF and its robustness is the highest
(under white-box attacks) or the second highest (under
black-box attacks).

Results on Kyoto-Sample. For Kyoto-Sample, all methods
have very high precision, recall, and F1 score (over 91 percent)
for original attacks. The difference between different methods
is quite small. Sowe focus on robustness.

CWRF has the highest L0 distance under both white-box
and black-box attacks. The gap between CWRF and the other
methods is quite significant. E.g., under black-box attacks
the average L0 distance is 14.05 for attackers to evade detec-
tion for CWRF models versus an average L0 distance of 5.86
for RFmodels. CWRF is the best method for this data set.

On this data set WRFD has the second highest average L0

distance, followed by WRFI. Retraining-tree still has the
lowest average L0 distance compared to WRFD, CWRF, and
WRFI. Since there are fewer features Retraining-tree method
still uses a few features in most trees, making them vulnera-
ble to evasion attacks.

Statistical Significance. We also ran t-test to chech whether
the differences of L0 distance between the proposed algo-
rithms (CWRF, WRFD, and WRFI) and existing ones (RF
and Retraining-tree) are statistical significance. All the p val-
ues are smaller than 0.001 so the results are statistically sig-
nificant. For instance, the p value of RF and WRFD for
black-box attack in Spambase data is 5.40068E-50, and the p
value of Retraining-tree method and CWRF for white-box
attack in Kyoto-Sample data is 7.1744E-145. The complete
results are not listed due to space limit.

Attacks on Kyoto-Sample With a Bounded Budget. Since L0

distance does not directly translate to number of features

for Kyoto data due to non uniform weights of different fea-
tures, we also reported success rate of both white-box and
black-box attacks when L0 distance is bounded by a value b.
We call b the budget of attacks and attackers can only gener-
ate attack instances with L0 distance less or equal to b.
Fig. 10 shows the white-box attacks’ success rate when
attackers’ budget b was varied from 4 to 9. Fig. 11 shows the
results for black-box attacks.

When attackers’ budget increases, success rate increases
for all methods. This is expected as attackers can modify
more features.

Our proposedmethods lead to significantly lower success
rate than existing methods (RF and Retraining-tree). For
example, when the budget is 4, success rate of white-box
attacks for proposed CWRF is 0.074 while the success rates
for RF and Retraining-tree are 0.4 and 0.57, respectively.

Among all the methods, the proposed CWRF method
achieves the lowest success rate in most cases. Another pro-
posed method WRFD is second the best in most cases and
its results are close or better than results of CWRF when
budget reaches 9. This suggests clustering and random
selection of a subset of models work better when attackers
have limited budget probably because in such cases attack-
ers can only pick very few features to modify and random
selection of models will make it very difficult for attackers
to pick the right features. WRFI in general has worse results
than WRFD and CWRF because it uses information gain. RF
and Retraining-tree both have very high success rates, indi-
cating these methods are not robust to evasion attacks.

Scalability. We extracted 20, 40, 60, 80 percent as well as
the full set of Kyoto data set collected in December 2015
(with 7,565,246 million instances in total) to test the scalabil-
ity of CWRF. Fig. 12 reports the execution time of CWRF,
RF, and Retraining-Tree. The results show that CWRF scales
linearly with the number of rows. Its execution time is
slightly more than twice the execution time of RF, which is
expected as CWRF needs to build the model pool twice and
needs to compute weights of each feature. However, CWRF
is more efficient than Retraining-Tree because the retraining
method not only needs to train the model twice, but also
needs to generate adversarial examples. We also found that
the execution time of CWRF is dominated by model build-
ing time (clustering time is less than 10 seconds). As future
work we will investigate how to further improve efficiency
of our methods.

Fig. 10. Average success rate of white-box attacks when varying budget
on Kyoto-Sample.

Fig. 11. Average success rate of black-box attacks when varying budget
on Kyoto-Sample.

YANG ET AL.: USING RANDOMNESS TO IMPROVE ROBUSTNESS OF TREE-BASED MODELS AGAINST EVASION ATTACKS 979

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

7 DISCUSSION OF EXTENDING OUR APPROACH TO

OTHER MINING METHODS

Now we discuss how to extend our approach to other min-
ing methods. We can divide other mining methods into two
categories. The first category requires well defined features
and most mining methods other than deep neural nets
belong to this category. The second category (deep neural
nets) does not have well defined features and features are
generated and selected in the learning process. We will con-
sider how to extend our approach to the second category in
future. Here we discuss how to extend our approach to the
first category of mining methods.

The extendedmethod works in two steps. In the first step,
a pool of mining models are trained using bagging and ran-
dom subspace. More specifically, each time we draw a ran-
dom sample of training data and select a random subset of
features and build a model using the sample and selected
subset of features. Note that this step is similar to random
forest which also uses bagging and random subspace.

The training method also should take into account vul-
nerability of each feature such that more vulnerable features
receive lower weights. One possible way is to compute a
vulnerability score vj for feature Aj.

To compute vj, we can further divide mining methods
into two subcategories: those whose prediction function can
be represented as a simple function and those cannot. For
example, linear regression, logistic regression, and SVM
belong to the first subcategory, and decision trees, Naive
Bayesian, and Neural Network (not deep ones) belong to
the second subcategory. For the first subcategory, the pre-
diction of an instance z can be represented as a function
fðzÞ. So we can simply take the partial derivative of f over
zj (the jth feature of z). The partial derivative represents
how much the prediction will change given a change of zj.
We can set vj to this partial derivative because a feature
with the largest partial derivative has the most impact on
prediction. Note that a similar idea has been used in [24].

For the second subcategory, we can use some heuristics to
compute weights as what we did for random forest. For
example, we can use a similar idea as differential ratio for
Naive Bayesian. If a feature Aj’s value v is very common in
positive class, but very rare in negative class, thenmodifying
v is likely to avoid detection. So we can define differential

ratio dðvÞ as P ðvjcþÞ � P ðvjc�Þ where cþ is the positive class
and c� is negative class.Aj’s differential ratio is the maximal
ratio of all its values and the vulnerability measure vj ofAj in
a pool of models is the sum of its differential ratio in all
models.

Once vj is computed, it can be used in the model building
algorithm to putmore emphasize on less vulnerable features.
For most methods, this can be done by integrating the
weights in objective function. For example, for SVM, sup-
pose RBF kernel is used and the kernel function isKðxi; zÞ ¼
e
�g
Pm

j¼1
ðxij�zjÞ2 .We can replace this functionwith aweighted

kernel functionK0ðxi; zÞ ¼ e
�g
Pm

j¼1
wjðxij�zjÞ2 . Sincewj ¼ e�vj=cj ,

this new kernel function favors features with low vulnerabil-
ity (vj) and highmodification cost.

In the second step, a similar cluster-based method is used
to select a subset of models at model application time. The
generated models are divided into s clusters using spectral
clustering. Finally at model application time for each test
case z, the method randomly selects q models from each
cluster and uses the qs selected models to classify z.

8 CONCLUSION

This paper proposes an approach to use randomization to
improve robustness of tree based models in cyber security
applications. Our approach injects randomness into both
model training time and model application time and is
effective against both evasion attacks and original (non-
evasive) attacks. We applied our approach to random forest
and experiments on an email spam data set and a network
intrusion detection data set show our approach significantly
improves robustness of random forest models without
sacrificing much effectiveness for detecting original attacks.
The proposed methods also beat retraining method, indicat-
ing that making the learning algorithm aware of robustness
is more effective than just adding adversarial examples to
the training data.

We also proposed a theoretical framework to provide
worst case bound on attackers’ efforts and discussed possi-
ble ways to extend our approach to other mining methods.
As future work we will investigate how to implement these
extensions.

ACKNOWLEDGMENTS

This workwas partially supported by Office of Naval Research
grant N00014-18-1-2452.

REFERENCES

[1] E. Blanzieri and A. Bryl, “A survey of learning-based techniques
of Email spam filtering,” Artif. Intell. Rev., vol. 29, no. 1, pp. 63–92,
2008.

[2] G. V. Cormack, “Email spam filtering: A systematic review,”
Found. Trends Inf. Retrieval, vol. 1, no. 4, pp. 335–455, 2007.

[3] M. Siddiqui, M. C. Wang, and J. Lee, “A survey of data mining
techniques for malware detection using file features,” in Proc. 46th
Annu. Southeast Regional Conf. XX, 2008, pp. 509–510.

[4] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for
building intrusion detection models,” in Proc. IEEE Symp. Security
Privacy, 1999, pp. 120–132.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, 2009, Art. no. 15.

Fig. 12. Execution time of CWRF, Random Forest, and Retraining-tree
over fraction of Kyoto December 2015 data.

980 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

[6] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”
Chalmers University of Technology, Goteborg, Sweden, Tech. Rep.
99-15, 2000.

[7] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unla-
beled data using clustering,” in Proc. ACM CSS Workshop Data
Mining Appl. Secur., 2001, pp. 5–8.

[8] D. Lowd and C. Meek, “Adversarial learning,” in Proc. 11th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2005, pp. 641–647.

[9] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” IEEE Access, vol. 6,
pp. 14410–14430, 2018.

[10] I. Evtimov et al., “Robust physical-world attacks on machine
learning models,” CoRR, 2017. [Online]. Available: http://arxiv.
org/abs/1707.08945

[11] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEEEur. Symp. Security Privacy, 2016, pp. 372–387.

[12] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for mal-
ware classification,” 2016, arXiv:1606.04435.

[13] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recog-
nition,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2016,
pp. 1528–1540. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978392

[14] T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying vulner-
abilities in the machine learning model supply chain,” 2017, arXiv:
1708.06733.

[15] W. Liu and S. Chawla, “A game theoretical model for adversarial
learning,” in Proc. IEEE Int. Conf. Data Mining Workshops, 2009,
pp. 25–30.

[16] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?” in Proc. ACM Symp. Inf. Com-
put. Commun. Secur., 2006, pp. 16–25.

[17] M. Br€uckner, C. Kanzow, and T. Scheffer, “Static prediction games
for adversarial learning problems,” J. Mach. Learn. Res., vol. 13,
no. 1, pp. 2617–2654, 2012.

[18] M. Kantarcioglu, B. Xi, and C. Clifton, “A game theoretical frame-
work for adversarial learning,” in Proc. CERIAS 9th Annu. Inf.
Secur. Symp., 2008, p. 1, Art. No. 26.

[19] M. Kantarcıo�glu, B. Xi, and C. Clifton, “Classifier evaluation and
attribute selection against active adversaries,” Data Mining Knowl.
Discov., vol. 22, no. 1/2, pp. 291–335, 2011.

[20] M. Ramoni and P. Sebastiani, “Robust learning with missing
data,”Mach. Learn., vol. 45, no. 2, pp. 147–170, 2001.

[21] A. Globerson and S. Roweis, “Nightmare at test time: Robust
learning by feature deletion,” in Proc. 23rd Int. Conf. Mach. Learn.,
2006, pp. 353–360.

[22] X.-T. Yuan and B.-G. Hu, “Robust feature extraction via informa-
tion theoretic learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn.,
2009, pp. 1193–1200.

[23] A. Ko»cz and C. H. Teo, “Feature weighting for improved classi-
fier robustness,” in Proc. 6th Conf. Email Anti-Spam, 2009.

[24] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” in Proc. Int. Conf. Learn. Representations,
2015. [Online]. Available: http://arxiv.org/abs/1412.6572

[25] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations against
deep neural networks,” in Proc. IEEE Symp. Security Privacy, 2016,
pp. 582–597.

[26] H. Lee, S. Han, and J. Lee, “Generative adversarial trainer:
Defense to adversarial perturbations with GAN,” 2017, arXiv:
1705.03387.

[27] P. D. Gr€unwald, The Minimum Description Length Principle. Cam-
bridge, MA, USA: MIT Press, 2007.

[28] B. Biggio, G. Fumera, and F. Roli, “Adversarial pattern classifica-
tion using multiple classifiers and randomisation,” in Proc. Joint
IAPR Int. Workshops Structural Syntactic Statist. Pattern Recognit.,
2008, pp. 500–509.

[29] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for
robust classifier design in adversarial environments,” Int. J. Mach.
Learn. Cybern., vol. 1, no. 1/4, pp. 27–41, 2010.

[30] S. Hettich, C. Blake, and C. Merz, “UCI repository of machine
learning databases,” 1998. [Online]. Available: http://www.ics.
uci.edu/ mlearn/MLRepositoryhtml

[31] A. Kantchelian, J. Tygar, and A. Joseph, “Evasion and hardening
of tree ensemble classifiers,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2387–2396.

[32] B. Biggio et al., “Evasion attacks against machine learning at test
time,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Data-
bases, 2013, pp. 387–402.

[33] P. Fogla, M. I. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee,
“Polymorphic blending attacks,” in Proc. 15th Conf. USENIX Secur.
Symp., 2006, Art. no. 17.

[34] B. Nelson et al., “Query strategies for evading convex-inducing
classifiers,” J. Mach. Learn. Res., vol. 13, no. May, pp. 1293–1332,
2012.

[35] F. Tram�er, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction APIs,” in Proc.
25th USENIX Conf. Secur. Symp., 2016, pp. 601–618.

[36] O. Dekel, O. Shamir, and L. Xiao, “Learning to classifywithmissing
and corrupted features,” Mach. Learn., vol. 81, no. 2, pp. 149–178,
2010.

[37] G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan,
“A robust minimax approach to classification,” The J. Mach. Learn.
Res., vol. 3, pp. 555–582, 2003.

[38] C. H. Teo, A. Globerson, S. T. Roweis, and A. J. Smola, “Convex
learning with invariances,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2007, pp. 1489–1496.

[39] Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, “Adver-
sarial support vector machine learning,” in Proc. 18th ACM
SIGKDD Int. Conf. Knowl. Discov. DataMining, 2012, pp. 1059–1067.

[40] M. Kearns and M. Li, “Learning in the presence of malicious
errors,” SIAM J. Comput., vol. 22, pp. 807–837, 1993.

[41] N. Dalvi, P. Dominggos, S. S. Mausam, and D. Verma,
“Adversarial classification,” in Proc. 10th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2004, pp. 99–108.

[42] M. Br€uckner and T. Scheffer, “Stackelberg games for adversarial
prediction problems,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2011, pp. 547–555.

[43] W. Liu and S. Chawla, “Mining adversarial patterns via regular-
ized loss minimization,” Mach. Learn., vol. 81, no. 1, pp. 69–83,
2010.

[44] A. A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibio-
metrics, vol. 6. Berlin, Germany: Springer, 2006.

[45] S. Hershkop and S. J. Stolfo, “Combining Email models for false
positive reduction,” in Proc. 11th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2005, pp. 98–107.

[46] T. P. Tran, P. Tsai, and T. Jan, “An adjustable combination of lin-
ear regression and modified probabilistic neural network for anti-
spam filtering,” in Proc. 19th Int. Conf. Pattern Recognit., 2008,
pp. 1–4.

[47] R. Perdisci, G. Gu, and W. Lee, “Using an ensemble of one-class
SVM classifiers to harden payload-based anomaly detection sys-
tems,” in Proc. 6th Int. Conf. Data Mining, 2006, pp. 488–498.

[48] D. B. Skillicorn, “Adversarial knowledge discovery,” IEEE Intell.
Syst., vol. 24, no. 6, pp. 0054–61, Nov./Dec. 2009.

[49] Y. Vorobeychik and B. Li, “Optimal randomized classification in
adversarial settings,” in Proc. Int. Conf. Auton. Agents Multi-Agent
Syst., 2014, pp. 485–492.

[50] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A.
Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy, 2016, pp. 372–387.

[51] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao,
“Statistical analysis of honeypot data and building of kyoto 2006+
dataset for nids evaluation,” in Proc. 1st Workshop Building Anal.
Datasets Gathering Experience Returns Secur., 2011, pp. 29–36.

YANG ET AL.: USING RANDOMNESS TO IMPROVE ROBUSTNESS OF TREE-BASED MODELS AGAINST EVASION ATTACKS 981

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1707.08945
http://doi.acm.org/10.1145/2976749.2978392
http://doi.acm.org/10.1145/2976749.2978392
http://arxiv.org/abs/1412.6572
http://www.ics.uci.edu/ mlearn/MLRepositoryhtml
http://www.ics.uci.edu/ mlearn/MLRepositoryhtml

Fan Yang received the BS degree in software
engineering from Hebei University, China, and
the MS degree in computer science from the Uni-
versity of California, Santa Cruz, Santa Cruz, Cal-
ifornia. He is currently working toward the PhD
degree in Information Systems Department, Uni-
versity of Maryland Baltimore County, Baltimore,
Maryland. His research area is algorithm for pri-
vacy preserving data mining and adversarial
learning.

Zhiyuan Chen received the BS and MS degrees
from Fudan University, China, and the PhD deg-
ree in computer science from Cornell University,
Ithaca, New York. He is currently an associate
professor with the Department of Information Sys-
tems, University of Maryland Baltimore County,
Baltimore, Maryland. His research covers the
areas of data science, big data, privacy preserving
data mining and data management, data explora-
tion and navigation, semantic-based search and
data integration using semantic networks, and

adversarial learning and its applications in cyber security. He has pub-
lished extensively in these areas and has received funding from NSF,
IBM,Office of Naval Research,MITRE, and theDepartment of Education.
He is managing editor of one journal and serves on editorial board of three
other journals and was guest editor of a special issue.

Aryya Gangopadhyay received the PhD degree
in computer information systems from Rutgers
University, Camden, New Jersey. He is a profes-
sor of the Department of Information Systems,
University of Maryland Baltimore County (UMBC),
Baltimore, Maryland. He has been a faculty mem-
ber at UMBC since 1997. He has mentored and
graduated 16 PhD students who are working
either as faculty members in various universities
or holding leading IT positions in the private indus-
tries and government sectors. He has published

five books and more than 125 peer-reviewed research articles. His
research interests are in the area of data science and machine learning.
His current research includes machine learning-based solutions in areas
such as cybersecurity, multi-modal data fusion for emergency response,
and healthcare applications such as computational drug repurposing.
His research has been funded by grants fromNSF, NIST, USDepartment
of Education, IBM, Maryland Department of Transportation, and other
agencies. For more information,please visit https://sites.google.com/site/
homearyya/.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

982 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 17:51:35 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/site/homearyya/
https://sites.google.com/site/homearyya/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

