Introduction

In the absence of arabinose, the dimeric regulator of the L-arabinose operon in Escherichia coli, AraC, prefers to bind to two half-sites that are separated from one another by several hundred base-pairs, thereby forming a DNA loop, (Wilcox & Meuris, 1976; Dunn et al., 1984; Hahn et al., 1984; Martin et al., 1986; Huo et al., 1988; Lee & Schleif, 1989; Seabold & Schleif, 1998). This looping, between half-sites I1 and O2 (Figure 1), prevents AraC from occupying the I2 half-site and helps prevent induction of the araBAD promoter, pBAD. Further, it is likely, but not proven, that looping in the absence of arabinose also represses the adjacent promoter pC, whereas it is largely the direct binding of AraC to the O1 pair of half-sites that represses pC in the presence of arabinose (Martin et al., 1986; Huo et al., 1988; Lobell & Schleif, 1990; X. Zhang et al., 1996). When arabinose is added, the preference of AraC to engage in looping interactions is reduced, and instead, the protein prefers to bind to two half-sites that are adjacent to one another along the DNA (Lobell & Schleif, 1990; Carra & Schleif, 1993; Seabold & Schleif, 1998). At pBAD this cis binding leads to occupancy of the I1 and I2 half-sites that, in conjunction with cyclic AMP receptor protein (Lee et al., 1974), stimulates binding of RNA polymerase to the promoter and accelerates open complex formation (Greenblatt & Schleif, 1971; Hendrickson & Schleif, 1984, 1985; Lee et al., 1987; Lobell & Schleif, 1990; Reeder & Schleif, 1993; X. Zhang et al., 1996; Zhang & Schleif, 1998).

The mechanism by which the binding of arabinose causes AraC to shift from preferring to loop to preferring to bind cis should be understandable in terms of the protein’s structure. AraC protein consists of two loosely connected domains. The N-terminal domain that both binds arabinose and dimerizes the protein is connected by a flexible linker to the DNA binding domain (Bustos & Schleif, 1993; Eustance et al., 1994). The dimerization domain possesses at least some of the determinants necessary for generating the arabinose response because a chimeric AraC-LexA protein, in which the DNA binding domain of LexA replaces the DNA binding domain of AraC, displays an arabinose response, albeit much reduced compared to that of wild-type AraC. Conversely, when the C-terminal DNA binding domain of AraC is fused to the leucine zipper dimerization region from C/EBP, the hybrid protein can bind to DNA sites
specific for AraC and activate transcription from p$_{BAD}$ (Bustos & Schleif, 1993). Thus, the determinants for DNA binding and transcription activation lie within the C-terminal domain.

The structures of the dimerization domain of AraC determined from crystals grown in the absence and presence of arabinose show two prominent differences that could be the origin of the arabinose response (Soisson et al., 1997). In the crystals grown in the absence of arabinose, each monomer of the protein interacts with two other monomers through two different interfaces, a face-to-face interaction between β-barrels as well as through a coiled-coil interface. This second interface is the only one found in the presence of arabinose. Conceivably then, the protein dimerizes by the face-to-face interaction in the absence of arabinose and by the coiled-coil interface in the presence of arabinose. Such a shift of dimerization interface would alter by 20 Å the distance between the points to which the DNA binding domains are attached. In turn, such a change in the separation of the DNA binding domains might be able to cause the protein to shift from preferring to loop to preferring to bind cis.

Alternatively, the arabinose-induced shift in AraC could result from movement of the N-terminal arm. This region of the protein dramatically changes conformation between the plus and minus arabinose states. In the absence of arabinose, the first 18 amino acids are disordered and are not visible in the electron density map, whereas, in the presence of arabinose, residues from the seventh on become visible as the arm folds over the bound arabinose and forms direct and indirect contacts with the sugar (Soisson et al., 1997). The fact that the N-terminal arm of AraC is not visible in the absence of arabinose leaves open several possibilities. In this state, the arm may be disordered and non-functional, it may make specific contacts with the DNA-binding domain of AraC or the DNA, which were not present in the crystallization studies, or it may function in a non-specific way and merely occupy the space into which the DNA-binding domains would have to move in order that the protein be able to bind adjacent half-sites.

The accompanying paper (Seabold & Schleif, 1998) describes experiments indicating that the positioning of the DNA binding domains of AraC is more restricted in the absence of arabinose than in the presence of arabinose, a result more at odds with the alternative dimerization interfaces mechanism than in support of it. We have therefore carried out genetic experiments to assess the roles of the N-terminal arm and the DNA binding domain in the function of AraC. First, we studied the effects of deletions and point mutations in the first 20 amino acids of AraC. Since the carbonyl of Pro8 contacts arabinose directly and residues 9, 10, 12, and 13 make indirect contacts with arabinose, we expected to see a loss in the ability of arabinose to induce transcription activation when these residues were deleted or altered. Instead, such deletions made the protein constitutive in its transcription activating behavior at p$_{BAD}$. A variety of point mutations in the N-terminal arm made the protein constitutive, but none left p$_{BAD}$ uninducible with a normal basal level. We also searched for mutations in the DNA binding domain of AraC protein that made the protein defective in transcription activation but not defective in DNA binding. Mutants were found with this apparent phenotype that were defective in their binding of arabinose.

Results

N-terminal arm deletions and point mutations

To determine whether the N-terminal arm of AraC is important to the regulatory properties of the protein, we mutated and deleted portions of the arm and measured induction of ara p$_{BAD}$ and repression of p$_C$. For convenient assay of p$_{BAD}$ activity, plasmids containing these mutant constructs were transformed into AraC$^-$ cells with a chromosomal copy of the promoter p$_{BAD}$ of the ara regulatory region fused to the lacZ gene. Figure 2(a) shows the β-galactosidase levels in cells containing either wild-type AraC or various deletion mutants of AraC, in the presence and absence of arabinose. We found that deletion through Asn6 had little effect on p$_{BAD}$ expression regulated by AraC, but that deletions through the seventh residue or beyond produced high constitutive transcription activation. Western blotting of cell extracts made from cultures grown in the absence of arabinose, (Figure 2(b)), shows that significant amounts of AraC are produced by the shorter deletions, indicating that the lack of constitutivity by the Δ6 mutant is not due to lack of AraC in the cells.

In view of the behavior of the deletion mutants, we sought to identify specific important locations within the first 20 amino acids of AraC. To do this we randomly mutagenized this region and screened for candidates that produced either con-
constitutive activation from pBAD or possessed nearly normal basal levels and were unresponsive to arabinose. We shall call the latter type uninducible. Figure 3 shows the activity of pBAD regulated by mutants found in the screen. While a number of point mutants produced constitutivity, no uninducible mutants were found. In a study of mutations conferring resistance to the anti-induction properties of D-fucose, Wallace (1982) found that most of his mutations (L9V, L9R, S14P, H18P, L19Q, V20G, G22C) were confined to the region now known to comprise the N-terminal arm, and most (all except L19Q) yielded constitutive acting AraC. The most commonly found and strongest acting mutations are those affecting leucine 9, which participates in only a single indirect contact with arabinose in the crystal structure of wild-type AraC.

Isolation of C-terminal domain mutations of AraC

We sought mutants specifically defective in induction of pBAD, but not defective in DNA binding as assayed by β-galactosidase levels generated from the pBAD-lacZ fusion in strain RE5. Because one common type would be mutants defective in arabinose binding to the N-terminal dimerization and arabinose binding domain, in hopes of finding other types of mutants, we specifically mutagenized the C-terminal region of AraC. This mutagenesis was done by PCR amplifying under mutagenic conditions the DNA coding for the C-terminal domain of AraC. The resulting DNA was ligated into an expression vector coding for the N terminus of AraC so as to regenerate a continuous AraC gene. The plasmid containing the regionally mutated AraC gene was then transformed into a strain that allowed convenient scoring of both the DNA binding ability of candidates by their ability to repress pC-lacZ, and the inducing ability of candidates by their transcriptional activation of pBAD-araBAD. 15,000 colonies were screened and 18 candidates were isolated of which seven carried multiple mutations. The remaining 11 candidates (Table 1) were characterized.

Figure 3. Activity of pBAD in the presence and absence of arabinose when stimulated by wild-type AraC or various mutations in the N-terminal arm as assayed by β-galactosidase levels generated from the pBAD-lacZ fusion in strain RE5. Mutant Δ11 is included for comparison. Light bars represent assays performed in the absence of arabinose, and dark bars represent assays performed in the presence of arabinose. Activity is graphed relative to that of fully activated wild-type AraC.

While it seems unlikely in light of in vitro DNA binding data to be presented below, it is conceivable that the mutant proteins fail to induce pBAD because they no longer bind Iα. If this were so, they would have to bind Oα to have passed the pC repression screen for DNA binding. This possibility was eliminated by showing that the mutants...
considerably better in the absence of arabinose than in that looping between I₁. Table 2. Test of repression by looping.

<table>
<thead>
<tr>
<th>AraC protein</th>
<th>lacZ units from O₁; pC-lacZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−-Arabinose (+Arabinose)</td>
</tr>
<tr>
<td>C⁻</td>
<td></td>
</tr>
<tr>
<td>Wild-type AraC</td>
<td>1652</td>
</tr>
<tr>
<td>C183R</td>
<td>30</td>
</tr>
<tr>
<td>Q184R</td>
<td>62</td>
</tr>
<tr>
<td>D188G</td>
<td>14</td>
</tr>
<tr>
<td>Q230R</td>
<td>56</td>
</tr>
<tr>
<td>Q234R</td>
<td>7</td>
</tr>
<tr>
<td>K236R</td>
<td>12</td>
</tr>
<tr>
<td>N252S</td>
<td>84</td>
</tr>
<tr>
<td>N252S</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Expression in units of β-galactosidase from O₁; pC-lacZ in SH321 cells containing both the plasmid carrying the wild-type or mutant araC gene and the plasmid with the pC-lacZ fusion. Cells were grown in the absence of arabinose and in the presence of 20 mM arabinose.

To test repression by looping, the mutant K236R did not repress pC in the presence of arabinose isomerase present in the absence of AraC. Repression at 0.7 mM arabinose is compared to the units per ml of arabinose. The strain without AraC contained 54 arabinose units in a construct in which O₂ has been inactivated so that looping between I₁ and O₂ is the only source of pC repression (Table 2). Table 2 also shows that wild-type AraC represses via I₁-O₂ looping considerably better in the absence of arabinose than in the presence, thus demonstrating that repression of pC in the absence of arabinose is via looping. In the looping assay, the mutant K236R did not repress pC well upon the addition of arabinose. As a considerably higher arabinose concentration was used in this repression experiment than was used in the selection and scoring of induction deficient mutants, K236R is likely to interact with arabinose more weakly than wild-type AraC and/or to be a positive control type of mutant.

Weak arabinose response of the mutants

The AraC mutant proteins Q230R and N252S were purified and tested for their abilities to stimulate repression in the presence or absence of arabinose in a construct in which O₁ has been inactivated so that looping between I₁ and O₂ is the only source of pC repression (Table 2). Table 2 also shows that wild-type AraC represses via I₁-O₂ looping considerably better in the absence of arabinose than in the presence, thus demonstrating that repression of pC in the absence of arabinose is via looping. In the looping assay, the mutant K236R did not repress pC well upon the addition of arabinose. As a considerably higher arabinose concentration was used in this repression experiment than was used in the selection and scoring of induction deficient mutants, K236R is likely to interact with arabinose more weakly than wild-type AraC and/or to be a positive control type of mutant.

Suppressive effects of N-terminal arm mutations

The properties of our mutations can be understood if the changes interfere with positioning the N-terminal arm of AraC over arabinose when the sugar binds to the protein. Thus, if the mutations either create a binding site for the N-terminal arm on the C-terminal domain or strengthen binding to a pre-existing site on the C-terminal domain, then higher arabinose concentrations would be required to reposition the arm and generate the induction response. Six of the nine different induction deficient mutants we found result in a net positive charge change of the DNA binding domain. Possibly then, negatively charged amino acids in the N-terminal arm of AraC interact with the DNA binding domain through an electrostatic interaction. This is plausible as the only charged amino acids in the arm are both negatively charged. Table 3 shows that changing Asp7 to Ala7, D7A, in the arm significantly reduces the dissociation rate of AraC from DNA. The dissociation in a fixed time interval was measured as a function of arabinose concentration using the DNA migration retardation assay. Figure 4(a) shows that in this assay wild-type protein needs between 0.05 and 0.5 mM arabinose to be stabilized in its DNA binding whereas AraC with a mutation in the arabinose binding pocket, Y82S, requires between 5 and 100 mM arabinose for its binding to be stabilized. Figure 4(b) shows the altered arabinose responses of mutants Q230R and N252S. Q230R AraC requires over 5 mM to be stabilized, while N252S requires over 1.5 mM. The arabinose response of each mutant was tested and each required from 1.5 mM to over 5 mM of arabinose to be stabilized.

The AraC mutant proteins Q230R and N252S were purified and tested for their abilities to stimulate repression in the presence or absence of arabinose in a construct in which O₁ has been inactivated so that looping between I₁ and O₂ is the only source of pC repression (Table 2). Table 2 also shows that wild-type AraC represses via I₁-O₂ looping considerably better in the absence of arabinose than in the presence, thus demonstrating that repression of pC in the absence of arabinose is via looping. In the looping assay, the mutant K236R did not repress pC well upon the addition of arabinose. As a considerably higher arabinose concentration was used in this repression experiment than was used in the selection and scoring of induction deficient mutants, K236R is likely to interact with arabinose more weakly than wild-type AraC and/or to be a positive control type of mutant.

Weak arabinose response of the mutants

The AraC mutant proteins Q230R and N252S were purified and tested for their abilities to stimulate repression in the presence or absence of arabinose in a construct in which O₁ has been inactivated so that looping between I₁ and O₂ is the only source of pC repression (Table 2). Table 2 also shows that wild-type AraC represses via I₁-O₂ looping considerably better in the absence of arabinose than in the presence, thus demonstrating that repression of pC in the absence of arabinose is via looping. In the looping assay, the mutant K236R did not repress pC well upon the addition of arabinose. As a considerably higher arabinose concentration was used in this repression experiment than was used in the selection and scoring of induction deficient mutants, K236R is likely to interact with arabinose more weakly than wild-type AraC and/or to be a positive control type of mutant.

Suppressive effects of N-terminal arm mutations

The properties of our mutations can be understood if the changes interfere with positioning the N-terminal arm of AraC over arabinose when the sugar binds to the protein. Thus, if the mutations either create a binding site for the N-terminal arm on the C-terminal domain or strengthen binding to a pre-existing site on the C-terminal domain, then higher arabinose concentrations would be required to reposition the arm and generate the induction response. Six of the nine different induction deficient mutants we found result in a net positive charge change of the DNA binding domain. Possibly then, negatively charged amino acids in the N-terminal arm of AraC interact with the DNA binding domain through an electrostatic interaction. This is plausible as the only charged amino acids in the arm are both negatively charged. Table 3 shows that changing Asp7 to Ala7, D7A, in the arm significantly reduces the dissociation rate of AraC from DNA. The dissociation in a fixed time interval was measured as a function of arabinose concentration using the DNA migration retardation assay. Figure 4(a) shows that in this assay wild-type protein needs between 0.05 and 0.5 mM arabinose to be stabilized in its DNA binding whereas AraC with a mutation in the arabinose binding pocket, Y82S, requires between 5 and 100 mM arabinose for its binding to be stabilized. Figure 4(b) shows the altered arabinose responses of mutants Q230R and N252S. Q230R AraC requires over 5 mM to be stabilized, while N252S requires over 1.5 mM. The arabinose response of each mutant was tested and each required from 1.5 mM to over 5 mM of arabinose to be stabilized.
The results are consistent with the idea that at least part of the interaction between the N-terminal arm of AraC and the DNA binding domain can be electrostatic. Not surprisingly, deletion of five N-terminal amino acids of AraC, Δ6, resulted in a partial recovery of induction activity at I1-I2-pBAD and deletion of ten, Δ11, resulted in a complete recovery of the transcription activation activity of mutant Q230R (Table 4).

Discussion

In the first part of this work we found that deletions of the N-terminal arm of AraC removing residues two through seven or beyond, as well as alterations in the first 20 amino acids, some of which do and some of which do not contact arabinose, produce constitutive transcription activation behavior at pBAD. We did not find any mutations in the N-terminal arm region that left pBAD at a low level and would not activate pBAD in the presence of arabinose. These unexpected findings indicate that the role of the N-terminal arm of AraC is more than simply helping arabinose bind to the dimerization domain. In the absence of arabinose, the arm apparently plays an active role in preventing the system from inducing pBAD. Such a function is consistent with fact that the arm undergoes a major structural change upon the addition of arabinose (Soisson et al., 1997). The N-terminal arm is unstructured in the absence of arabinose, but in the presence of arabinose residues seven and beyond fold over the sugar and become structured.

It seems plausible that random flailing about of the N-terminal arms, a so-called entropic brush mechanism, when not tied down by the presence of arabinose, excludes the DNA-binding domains from the vicinities of the arms and prevents the DNA binding domains from occupying positions necessary for binding to adjacent half-sites. While the brush mechanism could explain the intrinsic preference of AraC to loop (Seabold & Schleif, 1998), and the fact that deletions of the N-terminal arm make AraC constitutive, this mechanism leads to the prediction that the transition to constitutive activation will occur gradually as the arm is shortened, and not abruptly as was seen. Furthermore, the entropic brush mechanism does not explain the fact that AraC does not loop if the orientation of O2 is reversed (Seabold & Schleif, 1998). Hence, we think it more likely that at least one critical amino

<p>| Table 3. Suppression of Q230R by the D7A mutation |</p>
<table>
<thead>
<tr>
<th>AraC protein</th>
<th>Isomerase units from I1-I2-pBAD-araBAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain only</td>
<td>75</td>
</tr>
<tr>
<td>Wild-type AraC</td>
<td>5000</td>
</tr>
<tr>
<td>Q230R</td>
<td>56</td>
</tr>
<tr>
<td>D7A, Q230R</td>
<td>3700</td>
</tr>
</tbody>
</table>

Suppression of the defect in Q230R by D7A. Activation from I1-I2-pBAD-araBAD in strain SH288 is given in units of arabinose isomerase per cell.

<p>| Table 4. Suppression of Q230R by N-terminal truncations |</p>
<table>
<thead>
<tr>
<th>AraC protein</th>
<th>lacZ units from I1-I2-pBAD-lacZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain only</td>
<td>12</td>
</tr>
<tr>
<td>Wild-type AraC</td>
<td>500</td>
</tr>
<tr>
<td>Q230R</td>
<td>17</td>
</tr>
<tr>
<td>Δ6, Q230R</td>
<td>140</td>
</tr>
<tr>
<td>Δ11, Q230R</td>
<td>660</td>
</tr>
</tbody>
</table>

Suppression of the defect in Q230R by N-terminal truncations. Activation from I1-I2-pBAD-lacZ in strain BS1 is given in units of β-galactosidase.
acid in the arm makes important interactions elsewhere in the absence of arabinose and holds the protein in its non-inducing state, a result also more in accord with the variety of point mutations in the N-terminal arm that lead to constitutive behavior at p_{BAD}.

We can infer from the facts described above that the N-terminal arm likely interacts with the DNA binding domain to make AraC prefer to loop. The data presented in the second part of this paper independently suggest the same. DNA coding for the C-terminal domain of AraC was mutagenized, transformed into AraC$^{-}$ cells, and candidates were chosen that were deficient in the induction of p_{BAD} but normal in their repression of p_{C}. The candidates resulting from this screen proved to bind arabinose weaker than wild-type AraC. Since arabinose does not bind to the C-terminal domain of AraC, the effects of alterations there can most easily be understood as resulting from making it harder for the N-terminal arm of AraC to fold over arabinose when the sugar binds to the N-terminal domain. This could result from the creation or strengthening of sites in the DNA binding domain that bind the N-terminal arm in the absence of arabinose. Most of the mutations in the C-terminal domain increased its positive charge, and altering Asp7, one of the two charged amino acids in the N-terminal arm, to Ala suppressed the phenotype of the mutation. This is most easily understood to mean that in the mutants, at least part of the arm-domain interaction is electrostatic.

Overall then, our data suggest that in the absence of arabinose, the N-terminal arms of AraC interact with the C-terminal domains of the protein to hold them in an orientation that favors DNA looping. When arabinose is present, the N-terminal arms are pulled off the C-terminal domains and fold over the sugar that is bound to the N-terminal domain (Figure 5). None of the existing footprinting data, DNase I, dimethyl sulfate protection, premethylation interference, and hydrazine interference experiments (Carra & Schleif, 1993), revealed any differences in the details of AraC protein’s contacting DNA in the presence and absence of arabinose. Thus, it seems unlikely, but certainly not excluded, that the N-terminal arm also contacts DNA in the absence of arabinose.

Although eight different mutations were found in the C-terminal domain affecting induction, several of them multiple times, all appear to reduce the affinity of arabinose for the protein, and none looks like a positive control type of mutation. Similar mutant screens performed on CAP protein and other transcription activators have yielded DNA binding plus activation-defection mutations (Bell et al., 1990; Eschenlauer & Reznikoff, 1991; Zhou et al., 1993; Pratt & Silhavy, 1994; Gosink et al., 1996; Whipple et al., 1997). We suspect that our failure to find true positive control mutations in AraC results from the presence of redundant activation regions on the protein. Although, in principle, mutants with altered DNA sequence preferences would also have passed our screen, in view of their rarity in other proteins, we are not surprised at their absence here. In fact, the DNA binding abilities of the mutants in the presence and absence of arabinose were surprisingly similar to wild-type AraC as shown in the dissociation assays used to measure arabinose affinity. By virtue of the coupled equilibria governing the binding of arabinose and DNA to AraC, these results then permit us to conclude that the affinity of the mutant AraC proteins for arabinose is altered, not only in the presence of DNA, as was measured, but also in the absence of DNA. This follows since the ratio of affinities for arabinose in the presence and absence of DNA must equal the ratio of the affinities of AraC for DNA in the presence and absence of arabinose.

It is not possible to infer much from the locations of the mutations in the C terminus. Even though they are scattered across seven different sites, it is possible that they are located close to one another within the tertiary structure of the protein. This cannot be known however, because the tertiary structure of neither the DNA binding domain of AraC nor that of any of the other members of the large family of proteins whose primary sequence is similar to that of the DNA binding domain of AraC (Gallegos et al., 1997), has been determined. At present then, the only landmarks within the DNA binding domain are two regions with similarity to helix-turn-helix motifs found in some DNA binding proteins. The first of the potential helix-turn-helix regions, residues 197 to 216, within AraC could well adopt this structure as residues two and six of the potential recognition helix have been shown to make direct contacts with DNA.
Arm-Domain Interactions in AraC

545

(Brunelle & Schleif, 1989). The second homology region, residues 246 to 265, may not contact DNA, as similar missing contact experiments failed to generate data supporting DNA contact for residues 1, 2, or 6 of the presumptive recognition helix (Brunelle & Schleif, 1989). Only one of the mutants, Asn252, lies in either of the two potential helix-turn-helix regions in AraC.

Three lines of evidence indicate that the constitutive behavior we observed in the N-terminal deletions and point mutants almost surely results from reduced or eliminated DNA looping by the mutant AraC. First, since looping has been shown to block access to RNA polymerase to pBAD (Englesberg et al., 1969, in light of what was later learned about looping; Hahn et al., 1984) the high activity of pBAD in the presence of our deletions or mutations in the N-terminal arm shows that looping by the constitutive mutants is absent or significantly reduced. Second, in a variant pBAD promoter in which the positions of I₁ and I₂ have been interchanged and then moved so that I₁ overlaps the −35 region by two rather than four base-pairs, AraC activates only in the absence of arabinose (K. Zhang et al., 1996). Hence it follows that looping between the I₁ half-site of this construct and O₂ does not induce pBAD and thus it requires unusual suppositions to argue that the constitutive deletion mutants somehow can still be looping and also activate pBAD. Third, in a plasmid in which O₁ has been inactivated, but pC retains its activity, pC is repressed by wild-type AraC looping between I₁ and O₂ in the absence of arabinose, but not in its presence. This shows that looping normally represses pC in the absence of arabinose. The constitutive mutant Δ11 does not repress pC in this construct (Sebold & Schleif, 1997).

The fact that the N-terminal arm of AraC apparently plays a critical role in controlling the protein’s behavior is not unprecedented. N and C-terminal arms on proteins is not limited, however, to contacting DNA. The role of C-terminal arms on regulatory proteins or DNA binding proteins can play important roles in the activity of a protein in response to the presence of a ligand. Part of the arm can possess an activating or inhibiting activity when it binds elsewhere on the protein until the presence of the ligand pulls it away. Possibly nature already widely uses such a scheme but it has not been frequently seen because crystallographers often remove unstructured parts of proteins with proteases to obtain crystals.

Materials and Methods

General methods

Arabinose isomerase was assayed as described, (Schleif & Wensink, 1981). β-Galactosidase assays were performed by the method of Miller (1972) as described by Maniatis et al. (1982). All assay results are the averages of at least duplicate measurements. For the N-terminal deletions and point mutations, strain RE5 (Δara-leu1022 Δlac74 galK strr thi1 [ara-1, pBAD-lacZ]; Eustance & Schleif, 1996) or strain SH321 (Δara-leu1022 Δlac74 galK strr thi1; Hahn et al., 1984) was used, and for assay of pC repression and pBAD transcription activation of the C-terminal domain mutations, strain SH288 (FarA araBAD Δara-leu498 pC-lacZ strr Δlac74 thi1; Hahn & Schleif, 1983) was used. Cell cultures were grown in M10 medium (Schleif & Wensink, 1981), 0.4% (w/v) Casamino acids, 10 µg/ml B1, 0.4% glycerol plus or minus 2% (w/v) at 37°C with shaking to an A₅₅₀ between 0.3 and 0.9. Western blotting was performed as described (Eustance et al., 1994) on cells grown for β-galactosidase measurements as above. All plasmid constructs were made by standard molecular biological techniques (as described by Maniatis et al., 1982). All mutants were sequenced using double-stranded DNA sequencing (Kraft et al., 1988).

Isolation and characterization of AraC N-terminal domain deletion and point mutants

Deletions to AraC were made in AraC expression plasmid pBB1, which is the same as plasmid pGB020 (Bustos & Schleif, 1993) except that the stop codon at the 3’ end of AraC is followed immediately by the SacI restriction site sequence of the plasmid. Deletions 6, 11, and 16 were made using a single 3’ and various 5’ pri-
mers to extract the necessary AraC sequence from BB1 by polymerase chain reaction (PCR). The 3' oligo had the sequence CAGCCAAAGCTTAGGTCAGGCG, and the 5' oligos had the sequences: for Δ6, CATGCCATG-GATCCCCCGCTGCGCCGCAATA; for Δ11, CATGC- CATTGGATACGGTCTTGTTAAGCCCAT; and for Δ16, CATGCCATGCGCCATCTGCTGGCAGGGTTA. The primer on the vector and PCR product inserts were then digested with Ncol and SacI, the appropriate fragments were purified by gel electrophoresis, and ligated together. Point mutations were similarly made, except that the 5' primer was synthesized such that each position underlined in the following sequence was doped with a mix of all nucleotides at one fiftieth the concentration of normal phosphoramidites. The sequence of the unaltered primer was CACACCATGCGGGG AAACAGACCATGGTG. Other deletions were made by synthesizing DNA using Pfu DNA polymerase on one of the above templates, digesting away the parental plasmid DNA using DpnI, then transforming into ultracompetent cells (Stratagene Quickchange[®] method). For Δ7, template was Δ6 and primer sequence was CACACCATGCGGGGAAACAGACCATGGTG. For Δ8, template was Δ6 and primer sequence was CACAGGAACAGACCATGGCGGCCCGGATAC; for Δ13, template was Δ11 and primer sequence was CACAGGAACAGACCATGGCGGCCCGGATAC; and for Δ15, template was Δ11 and primer sequence was CACAGGAACAGACCATGGCGGCCCGGATAC. Other deletions were made by synthesizing DNA using Pfu DNA polymerase on one of the above templates, digesting away the parental plasmid DNA using DpnI, then transforming into ultracompetent cells (Stratagene Quickchange[®] method). For Δ7, template was Δ6 and primer sequence was CACACCATGCGGGGAAACAGACCATGGTG. For Δ8, template was Δ6 and primer sequence was CACAGGAACAGACCATGGCGGCCCGGATAC; for Δ13, template was Δ11 and primer sequence was CACAGGAACAGACCATGGCGGCCCGGATAC; and for Δ15, template was Δ11 and primer sequence was CACAGGAACAGACCATGGCGGCCCGGATAC.

Isolation and characterization of C-terminal domain mutations

The AraC protein was cloned into the Ncol and XhoI sites of pSE380 (Invitrogen, San Diego) for overexpression of the protein in vivo (Bustos & Schleif, 1993). AraC mutants defective in the ability to activate transcription of the genes coding for the catabolic enzymes for arabinose were detected on tetrazolium arabinose plates. Reduced transcription from pBAD^{lacZ} will result in reduced catabolism of arabinose, yielding red colonies, whereas cells with wild-type transcription at pBAD^{lacZ} will appear white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white. Repression was monitored from the promoter p_{lacZ} fused to the lacZ gene as AraC binding to p_{lacZ} represses lacZ synthesis. Cells containing wild-type AraC plated on minimal salts, 0.4% glycerol, 0.4% (w/v) Casamino acids, 10 μg/ml B1 and 0.002% (x/v) X-gal, yield white.

DNA migration retardation assay

The DNA migration retardation assay was performed with wild-type and mutant AraC proteins as described (Hendrickson & Schleif, 1984). Radiolabeled p_{BAD}, DNA fragments were generated with PCR 100 ng of 32P-P₃₂-end-labeled primer 5'-ATAATCACGGCAGAAAAGTC-3' and template plasmid pES51 containing the I₁-I₂-p_{BAD} promoter (Huo et al., 1988). PCR cycle parameters were 95°C one minute, 55°C one minute, 72°C one minute for 28 cycles. Crude cell lysates were prepared from cells over expressing the wild-type or mutant AraC proteins. Cells were grown to an A₆₅₀ of 0.7 in YT broth (Schleif & Wensink, 1983), 3 ml of culture was centrifuged and resuspended in 0.1 ml 100 mM KPO₄ (pH 7.4), 50 mM KCl, 10% glycerol, 1 mM DTE, 0.1 mM ZnCl₂, 1 mM EDTA (pH 8). The resuspended cells were lysed by sonication and centrifuged at 8500 g for ten minutes. The supernatant was removed and 170 μl of 100% glycerol was added to 500 μl of supernatant. The lysates were then stored at –70°C for up to two weeks. Binding reactions were carried out in 10 mM Tris-OAC (pH 7.4), 1 mM EDTA, 50 mM KCl, 1.5% glycerol, 50 ng calf thymus DNA/μl. Protein from the lysates was added so that just 100% of 1 ng of I₁-I₂ 32P-end-labeled DNA was bound. Binding reactions were equilibrated for 20 minutes and half the sample was loaded onto a non-denaturing 6% acrylamide, 0.1% MBA gel. A 100x molar excess of non-radioactive specific competitor DNA was added to each sample, and after ten minutes, the remainder was loaded on the non-denaturing gel.

Acknowledgments

We are grateful to the members of this laboratory for critical discussions and to Ula Gryczynska for technical
assistance. This material is based upon work supported by the National Institutes of Health grant GM18277 to R.F.S.

References

Edited by M. Yaniv

(Received 22 September 1997; received in revised form 21 January 1998; accepted 5 February 1998)