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Abstract. This work considers a many-server queueing system in which im-

patient customers with i.i.d., generally distributed service times and i.i.d.,
generally distributed patience times enter service in the order of arrival and

abandon the queue if the time before possible entry into service exceeds the

patience time. The dynamics of the system is represented in terms of a pair
of measure-valued processes, one that keeps track of the waiting times of the

customers in queue and the other that keeps track of the amounts of time each

customer being served has been in service. Under mild assumptions, essen-
tially only requiring that the service and reneging distributions have densities,

as the number of servers goes to infinity, a law of large numbers (or fluid) limit

is established for this pair of processes. The limit is shown to be the unique
solution of a coupled pair of deterministic integral equations that admits an

explicit representation. In addition, a fluid limit for the virtual waiting time
process is also established. This paper extends previous work by Kaspi and

Ramanan, which analyzed the model in the absence of reneging. A strong

motivation for understanding performance in the presence of reneging arises
from models of call centers.
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1. Introduction

1.1. Background and Motivation. We consider a many-server queueing system
in which customers with independent, identically distributed (henceforth, i.i.d.)
service requirements chosen from a general distribution are processed in the order
of arrival. In addition, customers are assumed to abandon from the queue if the
time spent waiting in queue reaches the patience time, which is also assumed to
be i.i.d., drawn from another general distribution. When there are N servers and
the cumulative customer arrival process is assumed to be a renewal process, this
reduces to the so-called G/GI/N+GI model.

Over the last couple of decades, several applications have spurred the study of
many-server models with abandonment [2, 4, 9]. Specifically, in applications to tele-
phone contact centers and (more generally) customer contact centers, the effect of
customers’ impatience has been shown to have a substantial impact on the perfor-
mance of the system [9]. For example, customer abandonment can stabilize a system
that was formerly unstable. Under the assumption that the interarrival, service and
abandonment time distributions are (possibly time-varying) exponential, process-
level fluid and diffusion approximations were obtained by Mandelbaum, Massey and
Reiman [19] for the total number in system in networks of multiserver queues with
abandonments and retrials. On the other hand, for the case of Poisson arrivals,
exponential service times and general abandonment distributions (the M/M/N+GI
queue), explicit formulae for the steady state distributions of the queue length and
virtual waiting time were obtained by Baccelli and Hebuterne [2] (see Sections IV
and V.2 therein), while several other steady state performance measures and their
asymptotic approximations, in the limit as the arrival rates and servers go to in-
finity, were derived by Mandelbaum and Zeltyn [20]. In addition, approximations
for performance measures suggested by these limit theorems were used by Garnett
et al. [10] and Mandelbaum and Zeltyn [21] for the case of exponential and general
abandonment distributions, respectively, to provide insight into the design of large
call centers.

In all the previously mentioned works, the service times were assumed to be
exponential. However, statistical analysis of real call centers has shown that both
service times and abandon times are typically not exponentially distributed [5, 20],
thus providing strong motivation for considering many-server systems with general
service and abandonment distributions. One previous work that has taken a step
towards incorporating more realistic general service distributions is the insightful
paper [26], where a deterministic fluid approximation for a G/GI/N+GI queue with
general service and abandonment distributions was proposed. However, the con-
vergence of the discrete system starting empty to this fluid approximation was left
as a conjecture (see Conjecture 2.1 in [26]). In this work, we rigorously identify the
functional law of large numbers limit, in the limit as the number of servers goes to
infinity, for a many-server queueing system with general service and abandonment
distributions starting from general initial conditions.

With a view to providing a Markovian representation of the dynamics with a
state space that is independent of the number of servers, we introduce a pair of
measure-valued processes to describe the evolution of the system. One measure-
valued process keeps track of the waiting times of customers in queue and the other
keeps track of the amounts of time each customer present in the system has been
in service. Under rather general assumptions (specified in Sections 2.1 and 3.1), we
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establish an asymptotic limit theorem for the scaled (divided by N) pair of measure-
valued processes, as the number of servers N and the mean arrival rate into the
system simultaneously go to infinity. This work generalizes the framework of Kaspi
and Ramanan [17], in which the corresponding model without abandonments was
considered. The presence of two coupled measure-valued processes, rather than
just one as in [17], makes the analysis here significantly more involved. In addition,
an important step is the identification of an explicit expression for the cumulative
reneging process. As in [17], an advantage of the particular measure-valued repre-
sentation used here (in terms of ages in system and service, rather than residual
service and residual patience times) is that it facilitates the application of martin-
gale techniques, which streamlines the analysis and also allows for a more intuitive
representation of the dynamics of the limiting process. In addition, the measure-
valued approach also simultaneously allows for the characterization of asymptotic
limits of several other functionals of interest. In order to illustrate this point, we
also derive a limit theorem for the virtual waiting time of a customer, defined to
be the time before entry to service of a (virtual) customer with infinite patience.
This paper also forms the basis of subsequent work, in which we study the long-
time behavior of the fluid limit [15] and also establish functional central limit type
approximations for many-server queues with abandonment [16].

It is worthwhile to mention that the models discussed above are relevant when
the mean demand of customers is known (or can be accurately learnt from an initial
period of measurements), which is a realistic assumption in many applications. In
other scenarios, it may be more natural to model the demand as being doubly
stochastic. This approach was adopted by Harrison and Zeevi [11] (see also [3]), who
proposed optimal staffing and design of multi-class call centers with several agent
pools in the presence of abandonment under the assumption that the dominant
variability arises from the randomness in the mean demand, rather than fluctuations
around the mean demand.

1.2. Outline of the Paper. The outline of the paper is as follows. We provide a
more precise description of the model and the measure-valued representation of the
state, and state the dynamical equations governing the evolution of the system in
Section 2 (the explicit construction of the state process is relegated to Appendix A).
A key result here is Theorem 2.1, which provides a succinct characterization of the
state dynamics. An analog of this characterization for continuous state processes
leads to the fluid equations, which are introduced in Section 3.2 (see Definition
3.3). Next, the main results of the paper are summarized in Section 3.3. The first
(Theorem 3.5) is a uniqueness result that states that (under the assumption that
the service and abandonment distributions have densities and finite first moments)
there exists at most one solution to the fluid equations. The proof of this result,
which is considerably more involved than in the case without abandonment, is the
subject of Section 4. The second and main result of the paper (Theorem 3.6) states
that under mild additional assumptions (namely, Assumptions 3.1–3.3 introduced in
Section 3.1), the scaled sequence of state processes converges weakly to the (unique)
solution of the fluid equations, and provides a fairly explicit representation for the
solution. The proof of this result consists of two main steps. First, in Section 6,
the sequence of scaled state processes is shown to be tight and then, in Section 7,
it is shown that a (unique) solution to the fluid equations exists and is obtained as
the asymptotic limit of the sequence of scaled state processes. Both of these results
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make use of properties of a family of martingales that are established in Section 5.
Finally, the last result (Theorem 3.8) formulates the asymptotic limit theorem for
the virtual waiting time process, which is proved in Section 7.2. To start with, in
Section 1.3, we first collect some basic notation and terminology used throughout
the paper.

1.3. Notation and Terminology. The following notation will be used throughout
the paper. Z is the set of integers, N is the set of positive integers, R is set of real
numbers and R+ the set of non-negative real numbers. For a, b ∈ R, a ∨ b denotes
the maximum of a and b, a ∧ b the minimum of a and b and the short-hand a+ is
used for a ∨ 0. Given A ⊂ R and a ∈ R, A− a equals the set {x ∈ R : x+ a ∈ A}
and 11B denotes the indicator function of the set B (that is, 11B(x) = 1 if x ∈ B
and 11B(x) = 0 otherwise).

1.3.1. Function and Measure Spaces. Given any metric space E, Cb(E) and Cc(E)
are, respectively, the space of bounded, continuous functions and the space of con-
tinuous real-valued functions with compact support defined on E, while C1(E) is
the space of real-valued, once continuously differentiable functions on E, and C1

c (E)
is the subspace of functions in C1(E) that have compact support. The subspace of
functions in C1(E) that, together with their first derivatives, are bounded, will be
denoted by C1

b (E). For H ≤ ∞, let L1([0, H)) and L1
loc([0, H)) represent, respec-

tively, the spaces of integrable and locally integrable functions on [0, H), where for
M < ∞ a locally integrable function f on [0, H) satisfies

∫
[0,a]

f(x)dx < ∞ for all
a < H . The constant functions f ≡ 1 and f ≡ 0 will be represented by the symbols
1 and 0, respectively. Given any càdlàg, real-valued function ϕ defined on E, we
define ‖ϕ‖T

.= sups∈[0,T ] |ϕ(s)| for every T <∞, and let ‖ϕ‖∞
.= sups∈[0,∞) |ϕ(s)|,

which could possibly take the value ∞. In addition, the support of a function ϕ is
denoted by supp(ϕ). Given a nondecreasing function f on [0,∞), f−1 denotes the
inverse function of f in the sense that

(1.1) f−1(y) = inf{x ≥ 0 : f(x) ≥ y}
. The space of Radon measures on a metric space E, endowed with the Borel σ-
algebra, is denoted byM(E), whileMF (E),M1(E) andM≤1(E) are, respectively,
the subspaces of finite, probability and sub-probability measures in M(E). Also,
given B <∞,M≤B(E) ⊂MF (E) denotes the space of measures µ inMF (E) such
that |µ(E)| ≤ B. Recall that a Radon measure is one that assigns finite measure
to every relatively compact subset of R+. The space M(E) is equipped with the
vague topology, i.e., a sequence of measures {µn} inM(E) is said to converge to µ
in the vague topology (denoted µn

v→ µ) if and only if for every ϕ ∈ Cc(E),

(1.2)
∫
E

ϕ(x)µn(dx)→
∫
E

ϕ(x)µ(dx) as n→∞.

By identifying a Radon measure µ ∈M(E) with the mapping on Cc(E) defined by

ϕ 7→
∫
E

ϕ(x)µ(dx),

one can equivalently define a Radon measure on E as a linear mapping from Cc(E)
into R such that for every compact set K ⊂ E, there exists LK <∞ such that∣∣∣∣∫

E

ϕ(x)µ(dx)
∣∣∣∣ ≤ LK ‖ϕ‖∞ ∀ϕ ∈ Cc(E) with supp(ϕ) ⊂ K.
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OnMF (E), we will also consider the weak topology, i.e., a sequence {µn} inMF (E)
is said to converge weakly to µ (denoted µn

w→ µ) if and only if (1.2) holds for every
ϕ ∈ Cb(E). As is well-known, M(E) and MF (E), endowed with the vague and
weak topologies, respectively, are Polish spaces. The symbol δx will be used to
denote the measure with unit mass at the point x and, by some abuse of notation,
we will use 0 to denote the identically zero Radon measure on E. When E is an
interval, say [0, H), for notational conciseness, we will often write M[0, H) instead
of M([0, H)). For any finite measure µ on [0, H), we define

(1.3) Fµ(x) .= µ[0, x], x ∈ [0, H).

We will mostly be interested in the case when E = [0, H) and E = [0, H)×R+,
for some M ∈ (0,∞]. To distinguish these cases, we will usually use f to denote
generic functions on [0, H) and ϕ to denote generic functions on [0, H) × R+. By
some abuse of notation, given f on [0, H), we will sometimes also treat it as a
function on [0, H) × R+ that is constant in the second variable. For any Borel
measurable function f : [0, H)→ R that is integrable with respect to ξ ∈M[0, H),
we often use the short-hand notation

〈f, ξ〉 .=
∫

[0,H)

f(x) ξ(dx).

Also, for ease of notation, given ξ ∈ M[0, H) and an interval (a, b) ⊂ [0,M), we
will use ξ(a, b) and ξ(a) to denote ξ((a, b)) and ξ({a}), respectively.

1.3.2. Measure-valued Stochastic Processes. Given a Polish space H, we denote
by DH[0, T ] (respectively, DH[0,∞)) the space of H-valued, càdlàg functions on
[0, T ] (respectively, [0,∞)), and we endow this space with the usual Skorokhod J1-
topology [22]. Then DH[0, T ] and DH[0,∞) are also Polish spaces (see [22]). In this
work, we will be interested in H-valued stochastic processes, where H =MF [0, H)
for some H ≤ ∞ . These are random elements that are defined on a probability
space (Ω,F ,P) and take values in DH[0,∞), equipped with the Borel σ-algebra
(generated by open sets under the Skorokhod J1-topology). A sequence {Xn} of
càdlàg, H-valued processes, with Xn defined on the probability space (Ωn,Fn,Pn),
is said to converge in distribution to a càdlàg H-valued process X defined on
(Ω,F ,P) if, for every bounded, continuous functional F : DH[0,∞)→ R, we have

lim
n→∞

En [F (Xn)] = E [F (X)] ,

where En and E are the expectation operators with respect to the probability
measures Pn and P, respectively. Convergence in distribution of Xn to X will be
denoted by Xn ⇒ X. Let IR+ [0,∞) be the subset of non-decreasing functions
f ∈ DR+ [0,∞) with f(0) = 0

2. Description of Model and State Dynamics

In Section 2.1 we describe the basic model and the model primitives, In Section
2.2 we introduce the state descriptor and some auxiliary processes, and derive
some equations that describe the dynamics of the state. Finally, in Section 2.3 (see
Theorem 2.1), we provide a succinct characterization of the state dynamics. This
characterization motivates the form of the fluid equations, which are introduced in
Section 3.2.
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2.1. Model Description and Primitive Data. Consider a system withN servers,
in which arriving customers are served in a non-idling, First-Come-First-Serve
(FCFS) manner, i.e., a newly arriving customer immediately enters service if there
are any idle servers or, if all servers are busy, then the customer joins the back
of the queue, and the customer at the head of the queue (if one is present) enters
service as soon as a server becomes free. Our results are not sensitive to the exact
mechanism used to assign an arriving customer to an idle server, as long as the
non-idling condition, that there cannot simultaneously be a positive queue and an
idle server, is satisfied. It is assumed that customers are impatient, and renege from
the queue as soon as the amount of time spent in the queue reaches their patience
times. Customers do not renege once they have entered service. The patience times
of customers are given by an i.i.d. sequence, {ri, i ∈ Z}, with common cumulative
distribution function Gr on [0,∞], while the service requirements of customers are
given by another i.i.d. sequence, {vi, i ∈ Z}, with common cumulative distribution
function Gs on [0,∞). For i ∈ N, ri and vi represent, respectively, the patience
time and the service requirement of the ith customer to enter the system after time
zero, while {ri, i ∈ −N ∪ {0}} and {vi, i ∈ −N ∪ {0}} represent, respectively,
the patience times and the service requirements of customers that arrived prior to
time zero (if such customers exist), ordered according to their arrival times (prior
to time zero). We assume that Gs has density gs and Gr, restricted on [0,∞),
has density gr. This implies, in particular, that Gr(0+) = Gs(0+) = 0. Let
Hr .= sup{x ∈ [0,∞) : Gr(x) < 1} and Hs .= sup{x ∈ [0,∞) : Gs(x) < 1}.

Let E(N) denote the cumulative arrival process, with E(N)(t) representing the to-
tal number of customers that arrive into the system in the time interval [0, t]. Also,
consider the càdlàg, real-valued process α(N)

E defined by α(N)
E (s) = s if E(N)(s) = 0

and, if E(N)(s) > 0, then

(2.1) α
(N)
E (s) .= s− sup

{
u < s : E(N)(u) < E(N)(s)

}
,

which denotes the time elapsed since the last arrival. If E(N) is a renewal process,
then α(N)

E is simply the backward recurrence time process. Also, let E(N)
0 be an a.s.

Z+-valued random variable that represents the number of customers that entered
the system prior to time zero. This random variable does not play an important
role in the analysis, but is used for bookkeeping purposes, to keep track of the
indices of customers.

The following mild assumptions on E(N) will be imposed throughout, without
explicit mention:

• E(N) is a non-decreasing, pure jump process with E(N)(0) = 0 and a.s., for
t ∈ [0,∞), E(N)(t) <∞ and E(N)(t)− E(N)(t−) ∈ {0, 1};
• The process α(N)

E is Markovian with respect to its own natural filtration
(this holds, for example, when E(N) is a renewal process);
• The cumulative arrival process E(N), the sequence of service requirements
{vj , j ∈ Z}, and the sequence of patience times {rj , j ∈ Z} are independent;

These assumptions are very general, allowing for a large class of arrival processes.

2.2. State Descriptor and Dynamical Equations. As mentioned in Section
1.1, our representation of the state of the system involves a pair of measure-valued
processes, the “potential queue measure” process, η(N), which keeps track of the
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waiting times of customers in queue and the “age measure” process, ν(N), which
encodes the amounts of time that customers currently receiving service have been
in service. In fact, the potential queue measure process keeps track not only of
the waiting times of customers in queue, but also of the potential waiting times
(equivalently, times since entry into system) of those customers who may have
already entered service (and possibly departed the system), but for whom the time
since entry into the system has not yet exceeded the patience time. In order to
determine which subset of these customers is actually in queue, we also include the
process X(N), which represents the total number of customers in system (including
those in service and those in queue), into the state descriptor. Thus the state
of the system is represented by the vector of processes (α(N)

E , X(N), ν(N), η(N)),
where α

(N)
E determines the cumulative arrival process via (2.1). The reason for

introducing the process η(N) into the state (rather than working directly with a
restricted measure that only encodes the waiting times of customers in queue) is
that its dynamics is then decoupled from the service dynamics, making it governed
purely by the primitive data, E(N) and Gr and more easily analyzable (see Remark
2.2 for further elaboration of this point).

A precise mathematical description of η(N) and ν(N) is given in Sections 2.2.1
and 2.2.2, respectively. Some auxiliary processes that are useful for describing the
evolution of the state are introduced in Section 2.2.3. Finally, in Section 2.2.4, we
define a filtration {F (N)

t } in the Nth system, and show that the state processes and
auxiliary processes are all adapted to this filtration. It can, in fact, be shown that
the state process is Markovian with respect to this filtration, but, since we do not
use this fact, we do not provide a proof.

2.2.1. Description of Queue Dynamics. The potential waiting time process w(N)
j

of customer j is (for every realization) defined to be the piecewise linear function
on [0,∞) that is identically zero till the customer enters the system, then increases
linearly, representing the amount of time elapsed since entering the system, and
then remains constant (equal to the patience time) once the time elapsed exceeds
the patience time. More precisely, for j ∈ N, if ζ(N)

j = (E(N))−1(j) .= inf{t > 0 :
E(N)(t) = j}, j ∈ N, then

(2.2) w
(N)
j (t) =

{ [
t− ζ(N)

j

]
∨ 0 if t− ζ(N)

j < rj ,

rj otherwise.

For j ∈ −N∩{0}, w(N)
j represents the potential waiting time process of the (j+1)th

customer to enter the system before time zero (if such a customer exists). Observe
that the potential waiting time w(N)

j (t) of a customer at time t equals its actual
waiting time or, equivalently, time spent in queue if and only if the customer has
neither entered service nor reneged by time t. For t ∈ [0,∞), let η(N)

t be the non-
negative Borel measure on [0, Hr) that has a unit mass at the potential waiting
time of each customer that has entered the system by time t and whose potential
waiting time has not yet reached its patience time. Recall that δx represents the



8 WEINING KANG AND KAVITA RAMANAN

Dirac mass at x. Then the potential queue measure η(N)
t can be written in the form

(2.3) η
(N)
t =

E(N)(t)∑
j=−E(N)

0 +1

δ
w

(N)
j (t)

11{w(N)
j (t)<rj}

=
E(N)(t)∑

j=−E(N)
0 +1

δ
w

(N)
j (t)

11(
dw

(N)
j
dt (t+)>0

),
where the last equality holds because at any time t, the potential waiting time
process of any customer has a right derivative that is positive if and only if the
customer has entered the system and the customer’s potential waiting time has not
yet reached its patience time.

For t ∈ [0,∞), let Q(N)(t) be the number of customers waiting in queue at time
t. Due to the non-idling condition, the queue length process is then given by

(2.4) Q(N)(t) = [X(N)(t)−N ]+.

Moreover, since the head-of-the-line customer is the customer in queue with the
longest waiting time, the quantity

(2.5) χ(N)(t) .= inf
{
x > 0 : η

(N)
t [0, x] ≥ Q(N)(t)

}
=
(
F η

(N)
t

)−1

(Q(N)(t))

represents the waiting time of the head-of-the-line customer in the queue at time t.
(Here, recall from (1.3) that F η

(N)
t is the c.d.f. of the measure η(N)

t and the inverse
is as defined in (1.1).) Since this is an FCFS system, any mass in η

(N)
t that lies

to the right of χ(N)(t) represents a customer that has already entered service by
time t. Therefore, the queue length process Q(N) admits the following alternative
representation in terms of χ(N) and η(N):

Q(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

11{w(N)
j (t)≤χ(N)(t), w

(N)
j (t)<rj}

(2.6)

= η
(N)
t [0, χ(N)(t)].

2.2.2. Description of Service Dynamics. Analogous to the potential waiting process
w

(N)
j , the age process a(N)

j associated with customer j is (for every realization)
defined to be the piecewise linear function on [0,∞) that equals 0 till the customer
enters service, then increases linearly while the customer is in service (representing
the amount of time elapsed since entering service) and is then constant (equal to
the total service requirement) after the customer completes service and departs the
system. For j = −E(N)

0 + 1, · · · , 0, let a(N)
j (0) represent the age of the (j + 1)th

customer in service at time 0 and for j ∈ N, we set a(N)
j (0) = 0. Due to the First-

Come-First-Serve (FCFS) nature of the system, customers in service at time t are
those that did not renege, have been in the system longer than the head-of-the-line
customer at time t, but have not yet departed. the head-of-the-line customer at
time t. Therefore, a.s., for j = −E(N)

0 + 1, · · · , 0, · · · , E(N)(t), t ≥ 0,

(2.7)
d a

(N)
j (t+)
dt

=



0 if a(N)
j (t) = 0, w(N)

j (t) = rj ,

or a(N)
j (t) = 0, w(N)

j (t) ≤ χ(N)(t),
or a(N)

j (t) = vj ,

1 if a(N)
j (t) = 0, χ(N)(t) < w

(N)
j (t) < rj ,

or 0 < a
(N)
j (t) < vj .
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Note that the condition in the penultimate line above represents the scenario in
which a customer enters service precisely at time t, which causes χ(N) to have a
downward jump at time t since the condition that the arrival process increases only
in unit jumps ensures that there is at most one customer with a given potential
waiting time.

Now, for t ∈ [0,∞), let ν(N)
t be the discrete non-negative Borel measure on

[0, Hs) that has a unit mass at the age of each of the customers in service at time
t. Then, in a fashion analogous to (2.3), the age measure ν(N)

t can be explicitly
represented as

(2.8) ν
(N)
t =

E(N)(t)∑
j=−E(N)

0 +1

δ
a
(N)
j (t)

11(
da

(N)
j
dt (t+)>0

).
2.2.3. Auxiliary Processes. We now introduce certain auxiliary processes that will
be useful for the study of the evolution of the system.

• The cumulative reneging process R(N), where R(N)(t) is the cumulative
number of customers that have reneged from the system in the time interval
[0, t];
• the cumulative potential reneging process S(N), where S(N)(t) represents

the cumulative number of customers whose potential waiting times have
reached their patience times in the interval [0, t];
• the cumulative departure process D(N), where D(N)(t) is the cumulative

number of customers that have departed the system after completion of
service in the interval [0, t];
• the process K(N), where K(N)(t) represents the cumulative number of cus-

tomers that have entered service in the interval [0, t].
Now, a customer j completes service (and therefore departs the system) at time s if
and only if, at time s, the left derivative of a(N)

j is positive and the right derivative

of a(N)
j is zero. Therefore, we can write

(2.9) D(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

∑
s∈[0,t]

11(
da

(N)
j
dt (s−)>0,

da
(N)
j
dt (s+)=0

).
A similar logic shows that the cumulative potential reneging process S(N) admits
the representation

(2.10) S(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

∑
s∈[0,t]

11(
dw

(N)
j
dt (s−)>0,

dw
(N)
j
dt (s+)=0

),
and the cumulative reneging process R(N) admits the representation

(2.11) R(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

∑
s∈[0,t]

11(
w

(N)
j (s)≤χ(N)(s−),

dw
(N)
j
dt (s−)>0,

dw
(N)
j
dt (s+)=0

),

where the additional restriction w(N)
j (s) ≤ χ(N)(s−) is imposed so as to only count

the reneging of customers actually in queue, (and not the reneging of all customers
in the potential queue, which is captured by S(N)). Here, one considers the left
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limit χ(N)(s−) of χ(N) at time s to capture the situation in which χ(N) jumps down
at time s due to the head-of-the-line customer reneging from the queue or entering
service.

Now, 〈1, ν(N)
t 〉 = ν

(N)
t [0,∞) represents the total number of customers in service

at time t. Therefore, mass balances on the total number of customers in the system,
the number of customers waiting in the “potential queue”, and the number of
customers in service show that

(2.12) X(N)(0) + E(N) = X(N) +D(N) +R(N),

(2.13) 〈1, η(N)
0 〉+ E(N) .= 〈1, η(N)〉+ S(N),

and

(2.14) 〈1, ν(N)
0 〉+K(N) .= 〈1, ν(N)〉+D(N).

In addition, it is also clear that

(2.15) X(N) = 〈1, ν(N)〉+Q(N).

Combining (2.12), (2.14) and (2.15), we obtain the following mass balance for the
number of customers in queue:

(2.16) Q(N)(0) + E(N) = Q(N) +R(N) +K(N).

Furthermore, the non-idling condition takes the form

(2.17) N − 〈1, ν(N)〉 = [N −X(N)]+.

Indeed, note that this ensures that when X(N)(t) < N , the number in the system
is equal to the number in service, and so there is no queue, while if X(N)(t) > N ,
there is a positive queue and 〈1, ν(N)

t 〉 = N , indicating that there are no idle servers.
An advantage of the measure-valued state representation that we adopt is that

it allows us to simultaneously study several other functionals of interest. As an
example, we consider the so-called virtual waiting time process, which is important
for applications. For each t ≥ 0, the virtual waiting time W (N)(t) is defined to be
the amount of time a (virtual) customer with infinite patience would have to wait
before entering service if he were to arrive at time t. For a more precise definition
of W (N), let t ∈ [0,∞) and for each s ∈ [0,∞), define

T (N)
t (s) .=

∑
u∈[t,t+s]

E(N)(t)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u+)=0

)11{w(N)
j (u)≤χ(N)(u−)}.

Observe that T (N)
t (s) equals the cumulative number of customers who arrived be-

fore time t and reneged from the queue (before entering service) in the time interval
[t, t + s]. The virtual waiting time W (N)(t) of a customer at time t is clearly the
least amount of time s that elapses after time t such that the cumulative departure
from the system of customers that arrived prior to time t strictly exceeds the queue
length at time t. Observing that this cumulative departure in the interval [t, t+ s]
can be either due to departure from service or due to reneging of customers that
arrived prior to time t, we can express the virtual waiting time as

W (N)(t) .= inf{s ≥ 0 : D(N)(t+ s)−D(N)(t) + T (N)
t (s) > Q(N)(t)}.(2.18)
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2.2.4. Filtration. The total number of customers in service at time t is given by
〈1, ν(N)

t 〉 = ν
(N)
t [0, Hs) and is bounded above by N . In addition, from (2.13) it

follows that

〈1, η(N)
t 〉 = η

(N)
t [0, Hr) ≤ E(N)(t) + 〈1, η(N)

0 〉 ≤ E(N)(t) + E(N)
0

which is a.s. finite by assumption. Therefore, for every t ∈ [0,∞), a.s., ν(N)
t ∈

MF [0, Hs) and η(N)
t ∈MF [0, Hr). Hence, the state descriptor (α(N)

E , X(N), ν(N), η(N))
takes values in R2

+ ×MF [0, Hs) ×MF [0, Hr). In Appendix A, an explicit con-
struction of the state descriptor and auxiliary processes is provided, which shows in
particular that the state descriptor (α(N)

E , X(N), ν(N), η(N)) and auxiliary processes
are càdlàg. For purely technical purposes we will find it convenient to also introduce
the additional “station process” s(N) .= (s(N)

j , j ∈ Z), defined on the same proba-
bility space (Ω,F ,P). For each t ∈ [0,∞), if customer j has already entered service
by time t, then s

(N)
j (t) is equal to the index i ∈ {1, . . . , N} of the station at which

customer j receives/received service and s
(N)
j (t) .= 0 otherwise. For t ∈ [0,∞), let

F̃ (N)
t be the σ-algebra generated by{
E(N)

0 , X(N)(0), α(N)
E (s), w(N)

j (s), a(N)
j (s), s(N)

j , j ∈ {−E(N)
0 + 1, . . . , 0} ∪ N, s ∈ [0, t]

}
and let {F (N)

t } denote the associated right-continuous filtration, completed with re-
spect to P. In Lemma A.1, it is proved that the state process (α(N)

E , X(N), ν(N), η(N))
and the processes E(N), Q(N), S(N), R(N), D(N) and K(N) are all F (N)

t -adapted.

2.3. A Succinct Characterization of the Dynamics. The main result of this
section is Theorem 2.1, which provides equations that more succinctly describe the
dynamics of the state (α(N)

E , X(N), ν(N), η(N)) described in Section 2.2. First, we
introduce some notation that is required to state the result.

For any measurable function ϕ on [0, Hs)×R+, consider the sequence of processes
{D(N)

ϕ } taking values in R+, given by

(2.19) D(N)
ϕ (t) .=

∑
s∈[0,t]

E(N)(t)∑
j=−E(N)

0 +1

11(
da

(N)
j
dt (s−)>0,

da
(N)
j
dt (s+)=0

)ϕ(a(N)
j (s), s)

for t ∈ [0,∞). It follows immediately from (2.19) and the right continuity of the
filtration {F (N)

t } that D(N)
ϕ is {F (N)

t }-adapted. Also, comparing (2.19) with (2.9),
it follows that when ϕ is the constant function 1, D(N)

1 is exactly the cumulative
departure process D(N), i.e.,

(2.20) D
(N)
1 = D(N).

In an exactly analogous fashion, for any measurable function ψ on [0, Hr) × R+,
consider the sequence of processes {S(N)

ψ } taking values in R+, given by

(2.21) S
(N)
ψ (t) .=

∑
s∈[0,t]

E(N)(t)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (s−)>0,

dw
(N)
j
dt (s+)=0

)ψ(w(N)
j (s), s).
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It follows immediately from (2.21) and the right continuity of the filtration {F (N)
t }

that S(N)
ψ is {F (N)

t }-adapted. It is easy to see that S(N)
1 is the cumulative potential

reneging process S(N), i.e.,

(2.22) S
(N)
1 = S(N).

Moreover, it is easy to see that for any t ∈ [0,∞) and bounded, measurable ϕ,
(2.23)

E
[∣∣∣D(N)

ϕ (t)
∣∣∣] ≤ ‖ϕ‖∞ E

[
X(N)(0) +K(N)(t)

]
≤ ‖ϕ‖∞ E

[
X(N)(0) + E(N)(t)

]
.

and likewise, for each t ∈ [0,∞) and bounded measurable ψ,

(2.24) E
[∣∣∣S(N)

ψ (t)
∣∣∣] ≤ ‖ψ‖∞ E

[
〈1, η(N)

0 〉+ E(N)(t)
]
<∞.

Next, comparing (2.11) with (2.21), it is clear that the cumulative reneging
process R(N) satisfies

R(N)(t) = S
(N)

θ(N)(t) for each t ≥ 0,(2.25)

where θ(N) is given by

(2.26) θ(N)(x, s) = 11{x≤χ(N)(s−)}, x ∈ R, s ≥ 0.

We now state the main result of this section. For s, r ∈ [0,∞), recall that
〈ϕ(·+ r, s), ν(N)

s 〉 is used as a short form for
∫

[0,M)
ϕ(x+ r, s) ν(N)

s (dx), and likewise
for η(N).

Theorem 2.1. The processes (E(N), X(N), ν(N), η(N)) satisfy a.s. the following
coupled set of equations: for ϕ ∈ C1

c ([0, Hs)× R+) and t ∈ [0,∞),〈
ϕ(·, t), ν(N)

t

〉
=

〈
ϕ(·, 0), ν(N)

0

〉
+
∫ t

0

〈
ϕx(·, s) + ϕs(·, s), ν(N)

s

〉
ds(2.27)

−D(N)
ϕ (t) +

∫ t

0

ϕ(0, s)dK(N)(s),

for ψ ∈ C1
c ([0, Hr)× R+) and t ∈ [0,∞),〈
ψ(·, t), η(N)

t

〉
=

〈
ψ(·, 0), η(N)

0

〉
+
∫ t

0

〈
ψx(·, s) + ψs(·, s), η(N)

s

〉
ds(2.28)

−S(N)
ψ (t) +

∫ t

0

ψ(0, s)dE(N)(s),

X(N)(t) = X(N)(0) + E(N)(t)−D(N)
1 (t)−R(N)(t),(2.29)

N −
〈
1, ν(N)

t

〉
= [N −X(N)(t)]+,(2.30)

where K(N) satisfies (2.14), R(N) satisfies (2.25) and D
(N)
ϕ and S

(N)
ψ are the pro-

cesses defined in (2.19) and (2.21), respectively.

Remark 2.2. In the service dynamics, customer arrivals into service are governed
by the process K(N), the random duration in service is determined by the distri-
bution Gs and departures are represented by D(N). As captured by the equations
(2.27) and (2.28), the dynamics of the potential queue is exactly analogous, with the
customer arrivals now governed by the process E(N), the random duration of stay
in the potential queue determined by Gr, and potential departures due to reneging
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represented by S(N). Moreover, given K(N), the dynamics of ν(N) is exactly the
same as in the case without abandonment, which was well-studied in [17]. How-
ever, in the presence of reneging, there is a significantly more complicated coupling
between ν(N) and K(N), as captured by the equations (2.29) and (2.30). In par-
ticular, this involves the cumulative reneging process R(N), which has no analogy
with any quantity in the system without abandonments. However, as shown in the
sequel, specifically, in Lemma 5.4, (5.48) and Proposition 7.2, we will exploit the
representation (2.25) of R(N) in terms of the “known” quantity S

(N)
· in order to

characterize the limit of the scaled sequence of reneging processes.

Proof of Theorem 2.1. The proof of (2.27) can be carried out in exactly the same
way as the proof of (5.2) in Theorem 5.1 of [17], since the definition of ν(N) in [17]
is equivalent to the definition given in (2.8) here since da(N)

j (t+)/dt = 0 for all
j > K(N)(t) in [17]. For the reasons mentioned in Remark 2.2, the proof of (2.28)
is also analogous except that the condition that each ν(N)

t has total mass no greater
than N is replaced by the argument below, which shows that each η

(N)
t has finite

mass. We know that for k = 0, . . . , bntc,〈
1, η(N)

k+1
n

〉
≤ E(N)

(
k + 1
n

)
+
〈
1, η(N)

0

〉
≤ E(N)(t+ 1) + 〈1, η(N)

0 〉.

Thus, by taking the supremum over k = 0, . . . , bntc, we have a.s.,

(2.31) sup
k=0,...,bntc

〈
1, η(N)

k+1
n

〉
≤ E(N)(t+ 1) + E(N)

0 <∞.

Equation (2.29) follows from (2.12), (2.20) and (2.25), while equation (2.30) is the
same as (2.17). �

3. Main Results

In this section we summarize our main results. First, in Section 3.1, we introduce
the fluid-scaled quantities and state some additional assumptions. Then, in Section
3.2, we introduce the so-called fluid equations, which provide a continuous analog
of the characterization of the discrete model given in Theorem 2.1. In Section 3.3
we present our main theorems, which, in particular, show that the fluid equations
uniquely characterize the strong law of large numbers or “fluid” limit of the multi-
server system, as the number of servers goes to infinity.

3.1. Fluid Scaling and Basic Assumptions. Consider the following scaled ver-
sions of the basic processes described in Section 2. For each N ∈ N, the scaled
version of the state descriptor (α(N)

E , X
(N)

, ν(N), η(N)) is given by

α
(N)
E (t) .= α

(N)
E (t), X

(N)
(t) .=

X(N)(t)
N

,(3.32)

ν
(N)
t (B) .=

ν
(N)
t (B)
N

, η
(N)
t (B) .=

η
(N)
t (B)
N

,(3.33)

for t ∈ [0,∞) and any Borel subset B of R+. Analogously, define

I
(N) .=

I(N)

N
for I = E,D,K,Q,R, S, Tt(3.34)
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Recall that IR+ [0,∞) is the subset of non-decreasing functions f ∈ DR+ [0,∞)
with f(0) = 0, Hs = sup{x ∈ [0,∞) : Gs(x) < 1} and Hr = sup{x ∈ [0,∞) :
Gr(x) < 1}. Define

(3.35) S0
.=
{

(e, x, ν, η) ∈ IR+ [0,∞)× R+ ×MF [0, Hs)×MF [0, Hr) :
1− 〈1, ν〉 = [1− x]+

}
.

S0 serves as the space of possible input data for the fluid equations. Our goal is to
identify the limit in distribution of the quantities (X

(N)
, ν(N), η(N)), as N →∞. To

this end, we impose some natural assumptions on the sequence of initial conditions
(E

(N)
, X

(N)
(0), ν(N)

0 , η
(N)
0 ).

Assumption 3.1. (Initial conditions) There exists an S0-valued random vari-
able (E,X(0), ν0, η0) such that, as N →∞, the following limits hold:

(1) E
(N) → E in DR+ [0,∞) P-a.s., and E

[
E

(N)
(t)
]
→ E

[
E(t)

]
< ∞ for

every t ∈ [0,∞);
(2) X

(N)
(0)→ X(0) in R+ P-a.s.;

(3) ν
(N)
0

w→ ν0 in MF [0, Hs);
(4) η

(N)
0

w→ η0 in MF [0, Hr), and E
[
〈1, η(N)

0 〉
]
→ E[〈1, η0〉] <∞.

Remark 3.1. If the limits in Assumption 3.1 hold only in distribution rather than
almost surely, then using the Skorokhod representation theorem in the standard
way, it can be shown that all the stochastic process convergence results in the
paper continue to hold. Also (1) and (4) of Assumption 3.1 and (3.44) imply that,
for every T ∈ [0,∞),

(3.36) sup
t∈[0,T ]

sup
N

E
[
X

(N)
(0) + E

(N)
(t)
]
≤ E

[
1 + 〈1, η(N)

0 〉+ E
(N)

(T )
]
<∞.

The next assumption imposes some regularity conditions on η0 and E.

Assumption 3.2. For each t ≥ 0, if η0({t}) > 0 then η0(t, t + ε) > 0 for every
ε > 0 and if E(t)− E(t−) > 0, then E(t−)− E(t− ε) > 0 for every ε > 0.

Remark 3.2. Assumption 3.2 is trivially satisfied if η0 and E are continuous.

In order to state our last assumption, define the hazard rate functions of Gr and
Gs in the usual manner:

hr(x) .=
gr(x)

1−Gr(x)
for x ∈ [0, Hr),(3.37)

hs(x) .=
gs(x)

1−Gs(x)
for x ∈ [0, Hs).(3.38)

It is easy to verify that hr and hs are locally integrable on [0, Hr) and [0, Hs),
respectively.

Assumption 3.3. There exists Ls < Hs such that hs is either bounded or lower-
semicontinuous on (Ls, Hs), and there exists Lr < Hr such that hr is either bounded
or lower-semicontinuous on (Lr, Hr).
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3.2. Fluid Equations. We now introduce the so-called fluid equations and provide
some intuition as to why the limit of any sequence (X

(N)
, ν(N), η(N)) should be

expected to be a solution to these equations. In Section 7, we provide a rigorous
proof of this fact.

Definition 3.3. (Fluid Equations) The càdlàg function (X, ν, η) defined on
[0,∞) and taking values in R+ × MF [0, Hs) × MF [0, Hr) is said to solve the
fluid equations associated with (E,X(0), ν0, η0) ∈ S0 and the hazard rate functions
hr and hs if and only if for every t ∈ [0,∞),

(3.39)
∫ t

0

〈hr, ηs〉 ds <∞,
∫ t

0

〈hs, νs〉 ds <∞

and the following relations are satisfied: for every ϕ ∈ C1
c ([0, Hs)× R+),

〈ϕ(·, t), νt〉 = 〈ϕ(·, 0), ν0〉+
∫ t

0

〈ϕs(·, s), νs〉 ds+
∫ t

0

〈ϕx(·, s), νs〉 ds(3.40)

−
∫ t

0

〈hs(·)ϕ(·, s), νs〉 ds+
∫ t

0

ϕ(0, s) dK(s),

where

(3.41) K(t) = 〈1, νt〉 − 〈1, ν0〉+
∫ t

0

〈hs, νs〉 ds;

for every ψ ∈ C1
c ([0, Hr)× R+)

〈ψ(·, t), ηt〉 = 〈ψ(·, 0), η0〉+
∫ t

0

〈ψs(·, s), ηs〉 ds+
∫ t

0

〈ψx(·, s), ηs〉 ds(3.42)

−
∫ t

0

〈hr(·)ψ(·, s), ηs〉 ds+
∫ t

0

ψ(0, s) dE(s);

Q(t) = X(t)− 〈1, νt〉;(3.43)

Q(t) ≤ 〈1, ηt〉;(3.44)

R(t) =
∫ t

0

(∫ Q(s)

0

hr((F ηs)−1(y))dy

)
ds,(3.45)

where we recall that F ηt(x) = ηt[0, x];

X(t) = X(0) + E(t)−
∫ t

0

〈hs, νs〉 ds−R(t);(3.46)

and

(3.47) 1− 〈1, νt〉 = [1−X(t)]+.

It immediately follows from (3.43) and (3.47) that for each t ∈ [0,∞),

(3.48) Q(t) = [X(t)− 1]+.

Also for future use, we observe that (3.41), (3.43) and (3.46), when combined, show
that for every t ∈ [0,∞)

(3.49) Q(0) + E(t) = Q(t) +K(t) +R(t).

We now provide an informal, intuitive explanation for the form of the fluid equa-
tions. Equations (3.41), (3.43) and (3.46) are simply mass conservation equations,
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that are fluid analogs of (2.14), (2.15) and (2.29), respectively, while (3.44) expresses
a bound, whose analog clearly holds in the pre-limit, as can be seen from (2.6). The
relation (3.47) is simply the fluid analog of the non-idling condition (2.30). Equa-
tions (3.40) and (3.42), which govern the evolution of the fluid age measure ν and
queue measure η, respectively, are natural analogs of the pre-limit equations (2.27)
and (2.28), respectively. It is worthwhile to remark on the fourth term on the
right-hand-side of both (3.40) and (3.42), which characterize the fluid departure
rate and potential reneging rate as integrals of the corresponding hazard rate with
respect to the age and queue measures. Since νs(dx) represents the amount of mass
(a limiting fraction of customers) whose age lies in the range [x, x + dx) at time
s, and hs(x) represents the fraction of mass with age x (i.e., with service time no
less than x) that would depart from the system while having age in [x, x + dx), it
is natural to expect 〈hs, νs〉 to represent the departure rate of mass from the fluid
system at time s. This was rigorously proved in the case without abandonment in
[17] (see proposition 5.17). By exploiting the exact analogy between (ν,K,D) and
(η,E, S) (see Remark 2.2), it is clear that the potential reneging rate at time s can
be similarly represented as 〈hr, ηs〉. Thus the fluid potential reneging process S,
defined by

(3.50) S(t) .=
∫ t

0

〈hr, ηs〉 ds for t ∈ [0,∞),

represents the cumulative amount of potential reneging from the fluid system in
the interval [0, t]. Due to the FCFS nature of the system, the fluid queue at time
s contains all the mass in η that is to the left of (F ηs)−1(Q(s)), where recall F ηs
is the c.d.f. of ηs. Moreover. roughly speaking, given any y ∈ [0, Q(s)], there is
a mass of dy customers in the queue with waiting time (F ηs)−1(y) and the mean
reneging rate of customers with this waiting time is hr((F ηs)−1(y)). Thus the total
actual reneging that has occurred in the interval [0, t], is given as the integral as
specified in (3.45).

To close the section, we state the following simple result. For this, we need the
following notation: for any t ∈ [0,∞),

E
[t] .= E(t+ ·)−E(t) K

[t] .= K(t+ ·)−K(t) X
[t] .= X(t+ ·) ν[t] .= νt+·

R
[t] .= R(t+ ·)−R(t) η[t] .= ηt+· Q

[t] .= Q(t+ ·).

Lemma 3.4. Suppose the càdlàg function (X, ν, η) defined on [0,∞) and taking
values in R+ ×MF [0, Hs) ×MF [0, Hr) solves the fluid equations associated with
(E,X(0), ν0, η0) ∈ S0, then (X

[t]
, ν[t], η[t]) solves the fluid equations associated with

(E
[t]
, X(t), νt, ηt) ∈ S0, where K

[t]
, R

[t]
, Q

[t]
are the corresponding processes that

satisfy (3.41), (3.45). (3.43) with ν[t], η[t] and X
[t]

in place of ν, η and X.

The proof of the lemma just involves a rewriting of the fluid equations, and is
thus omitted.

3.3. Summary of Main Results. Our first result establishes uniqueness of solu-
tions to the fluid equations.

Theorem 3.5. Given any (E,X(0), ν0, η0) ∈ S0, there exists at most one solution
(X, ν, η) to the associated fluid equations (3.39)–(3.47). Moreover, if ν and η satisfy
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(3.39), then (X, ν, η) is a solution to the fluid equations if and only if, for every
f ∈ Cb(R+),∫

[0,Hr)

f(x) ηt(dx) =
∫

[0,Hr)

f(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx)(3.51)

+
∫ t

0

f(t− s)(1−Gr(t− s)) dE(s),∫
[0,Hs)

f(x) νt(dx) =
∫

[0,Hs)

f(x+ t)
1−Gs(x+ t)

1−Gs(x)
ν0(dx)(3.52)

+
∫ t

0

f(t− s)(1−Gs(t− s)) dK(s),

where
(3.53)

K(t) = [X(0)−1]+− [X(t)−1]+ +E(t)−
∫ t

0

(∫ [X(s)−1]+

0

hr
((
F ηs

)−1
(y)
)
dy

)
ds

and for all t ∈ [0,∞), X satisfies [X(t) − 1]+ ≤ 〈1, ηt〉, the non-idling condition
(3.47) and
(3.54)

X(t) = X(0) + E(t)−
∫ t

0

〈hs, νs〉 ds−
∫ t

0

(∫ [X(s)−1]+

0

hr
((
F ηs

)−1
(y)
)
dy

)
ds.

Moreover, K also satisfies

K(t) =
∫ t

0

(〈1, νt−s〉 − 〈1, ν0〉)dUs(s)(3.55)

+
∫ t

0

(∫
[0,Hs)

Gs(x+ t− s)−Gs(x)
1−Gs(x)

ν0(dx)

)
dUs(s),

where dUs is the renewal measure associated with the distribution Gs.

Our next result shows that, under fairly general conditions, a solution to the
fluid equations exists and is the functional law of large numbers limit, as N →∞,
of the N -server system with abandonment. We now state the main result of the
paper.

Theorem 3.6. Suppose that Assumptions 3.1–3.3 hold, and let (E,X(0), ν0, η0) ∈
S0 be the limiting initial condition. Then there exists a unique solution (X, ν, η) to
the associated fluid equations, and the sequence (X

(N)
, ν(N), η(N)) converges weakly,

as N →∞, to (X, ν, η).

Theorem 3.6 follows from Theorem 6.1, which establishes tightness of the se-
quence {X(N)

, ν(N), η(N)}, Theorem 7.1, which shows that any subsequential limit
of the sequence {X(N)

, ν(N), η(N)} satisfies the fluid equations, and the uniqueness
of solutions to the fluid equations stated in Theorem 3.5.

Corollary 3.7. Given any (E,X(0), ν0, η0) ∈ S0, let (X, ν, η) be the unique so-
lution to the associated fluid equations (3.39)–(3.47) specified in Theorem 3.5. If
E, ν0 and η0 are absolutely continuous, then νt, ηt and X are also absolutely
continuous for every t ∈ [0,∞).
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Proof. Since E is absolutely continuous, (3.54) allows us to deduce that X is ab-
solutely continuous. Therefore, (3.53) shows that K is also absolutely continuous.
Then the argument used in proving Lemma 5.18 of [17] can be adapted, together
with (3.51) and (3.52), to show that νt, ηt are absolutely continuous for every
t ∈ [0,∞). This proves the corollary. �

We now state the fluid limit result for the virtual waiting time process W (N).
This result is of particular interest in the context of call centers. Note that in the
fluid system, for any u > t the total mass of customers in queue at time u that
arrived before time t equalsQ(u)−ηu[0, u−t], and the ages of these (fluid) customers
lie in the interval (u− t, χ(u−)], where χ(u−) = (F ηu)−1(Q(u)). Therefore, by the
same logic used to justify the expression (3.45) for R in Definition 3.3, it is natural
to conjecture that, for each t ∈ [0,∞), the fluid limit T (N)

t equals T t, where for
s ∈ [0,∞),

T t(s)
.=
∫ t+s

t

(∫ Q(u)

ηu[0,u−t]
hr((F ηu)−1(y))dy

)
du

=
∫ s

0

(∫ Q(t+u)

ηt+u[0,u]

hr((F ηt+u)−1(y))dy

)
du.(3.56)

Also, define

(3.57) W (t) .= inf
{
s ≥ 0 :

∫ t+s

t

〈hs, νu〉 du+ T t(s) ≥ Q(t)
}
.

We will say a function f ∈ D[0,∞) is uniformly strictly increasing if it is ab-
solutely continuous and there exists a > 0 such that ḟ(t) ≥ a for a.e. t ∈ [0,∞).
Note that for any such function, f−1(f(t)) = t and f−1 is continuous and strictly
increasing on [0,∞). We now characterize the fluid limit of the (scaled) virtual
waiting time in the system.

Theorem 3.8. Suppose that the conditions of Theorem 3.6 hold and that the func-
tion

∫ ·
0
〈hs, νu〉 du is uniformly strictly increasing. For each t ≥ 0, if Q is continuous

at t, then T (N)

t ⇒ T t and W (N)(t)⇒W (t) as N →∞.

4. Uniqueness of Solutions to the Fluid Equations

In Section 4.1, we show that if (X, ν, η) solve the fluid equations associated
with a given initial condition (E,X(0), ν0, η0) ∈ S0, then ν (respectively, η) can
be written explicitly in terms of the auxiliary fluid process K (respectively, E). In
Section 4.2, these representations are used, along with the non-idling condition and
the remaining fluid equations, to show that there is at most one solution to the
fluid equations for a given initial condition.

4.1. Integral Equations for (ν,K) and (η,E). We begin by recalling Theorem
4.1 and Remark 4.3 of [17], which we state here as Proposition 4.1. This proposition
identifies an implicit relation that must be satisfied by the processes (ν,K) and
(η,E) that solve (3.40) and (3.42), respectively.



FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING 19

Proposition 4.1 ([17]). Let G be the cumulative distribution function of a prob-
ability distribution with density g and hazard rate function h = g/(1 − G), let
H

.= sup{x ∈ [0,∞) : G(x) < 1}. Suppose π ∈ DMF [0,H)[0,∞) has the property
that for every m ∈ [0, H) and T ∈ [0,∞), there exists C(m,T ) <∞ such that

(4.1)
∫ ∞

0

〈ϕ(·, s)h(·), πs〉 ds < C(m,T )||ϕ||∞

for every ϕ ∈ Cc((−∞, H) × R) with supp(ϕ) ⊂ [0,m] × [0, T ]. Then given any
π0 ∈MF [0, H) and Z ∈ IR+ [0,∞), π satisfies the integral equation

(4.2)
〈ϕ(·, t), πt〉 = 〈ϕ(·, 0), π0〉+

∫ t

0

〈ϕs(·, s), πs〉 ds+
∫ t

0

〈ϕx(·, s), πs〉 ds

−
∫ t

0

〈ϕ(·, s)h(·), πs〉 ds+
∫ t

0

ϕ(0, s) dZ(s)

for every ϕ ∈ Cc((−∞, H)× R) and t ∈ [0,∞), if and only if π satisfies
(4.3)∫

[0,M)

f(x)πt(dx) =
∫

[0,M)

f(x+t)
1−G(x+ t)

1−G(x)
π0(dx)+

∫ t

0

f(t−s)(1−G(t−s)) dZ(s),

for every f ∈ Cb(R+) and t ∈ (0,∞). Moreover, for every f ∈ Cb(R+) and t ∈
(0,∞),

(4.4)

∫ t

0

f(t− s)(1−G(t− s)) dZ(s)

= f(0)Z(t) +
∫ t

0

f ′(t− s)(1−G(t− s))Z(s) ds

−
∫ t

0

f(t− s)g(t− s)Z(s) ds.

The fluid equations (3.39)–(3.42) show that (4.1) and (4.2) are satisfied with
(h, π, Z) replaced by (hs, ν,K) and (hr, η, E), respectively. Therefore, the next
result follows from Proposition 4.1 and Corollary 4.4 of [17] by using a standard
approximation argument.

Corollary 4.2. For every bounded Borel measurable function f and t ∈ [0,∞),
(ν,K) and (η,E) satisfy
(4.5)∫

[0,Hs)

f(x) νt(dx) =
∫

[0,Hs)

f(x+t)
1−Gs(x+ t)

1−Gs(x)
ν0(dx)+

∫ t

0

f(t−s)(1−Gs(t−s)) dK(s),

and
(4.6)∫

[0,Hr)

f(x) ηt(dx) =
∫

[0,Hr)

f(x+t)
1−Gr(x+ t)

1−Gr(x)
η0(dx)+

∫ t

0

f(t−s)(1−Gr(t−s)) dE(s).

Moreover, K satisfies the renewal equation:
(4.7)

K(t) = 〈1, νt〉 − 〈1, ν0〉+
∫

[0,Hs)

Gs(x+ t)−Gs(x)
1−Gs(x)

ν0(dx) +
∫ t

0

gs(t− s)K(s) ds.

Remark 4.3. Strictly speaking, in [17] the cumulative distribution was assumed to
be absolutely continuous supported on [0,∞). However, the proofs given there only
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use the local integrability of the hazard rate function h on [0, H) and so continue
to hold for Gr here, which may possibly have a mass at ∞. In fact, in the case
Gr has a positive mass at ∞ the hazard rate function hr is globally integrable on
[0, Hr).

4.2. Uniqueness of Solutions. Let (X, ν, η) be a solution to the fluid equations
associated with (E,X(0), ν0, η0). Recall the definitions of Q and R that are given
in (3.43) and (3.45). As an immediate consequence of (3.45), we have the following
elementary property.

Lemma 4.4. For any 0 ≤ a ≤ b < ∞, if Q(t) = 0 for all t ∈ [a, b], then R(b) −
R(a) = 0.

Next, we establish the intuitive result that the process K that represents the
cumulative entry of “fluid” into service is non-decreasing.

Lemma 4.5. The function K is non-decreasing.

Proof. Fix t ∈ [0,∞) and 0 ≤ s < t. If X(t) ≥ 1, then 〈1, νt〉 = 1 by (3.47), and,
by (3.41),

(4.8) K(t)−K(s) = 〈1, νt〉 − 〈1, νs〉+
∫ t

s

〈hs, νl〉 dl ≥ 0.

If X(t) < 1, we consider two cases.
Case 1: X(v) < 1 for all v ∈ (s, t]. In this case, by (3.43) and (3.47), Q(v) = 0 for
all v ∈ (s, t]. Hence, by Lemma 4.4 and the right continuity of R, R(t)−R(s) = 0.
By (3.49), it then follows that

K(t)−K(s) = K(t)−K(s) +R(t)−R(s) +Q(t)−Q(s)

= E(t)− E(s)
≥ 0.

Case 2: There exists v ∈ (s, t] such that X(v) ≥ 1. Define l
.= sup{v ≤ t :

X(v) ≥ 1}. Then, clearly l ∈ (s, t] and X(l−) ≥ 1. Now, (3.45) implies that
R is continuous and hence, by (3.46), X(v) − X(v−) ≥ 0 for every v ∈ (0,∞).
Therefore, X(l) ≥ 1 = 〈1, νl〉 and due to the assumption X(t) < 1, we must have
l < t. Then (4.8), with t replaced by l, shows that K(l)−K(s) ≥ 0. On the other
hand, since X(v) < 1 for all v ∈ (l, t], the argument in Case 1 above shows that
K(t)−K(l) ≥ 0. Thus, in this case too, we have K(t)−K(s) ≥ 0. �

We now state the main result of this section.

Theorem 4.6. For i = 1, 2, let (X
i
, νi, ηi) be a solution to the fluid equations

associated with (E,X(0), ν0, η0) ∈ S0. Then X
1

= X
2
, ν1 = ν2 and η1 = η2.

Proof. For each i = 1, 2, let Q
i
,K

i
, D

i
, R

i
be the processes associated with the

solution (X
i
, νi, ηi) to the fluid equations for (E,X(0), ν0, η0) ∈ S0. It follows

directly from (3.51) that η1 = η2. Let 4A denote A2 −A1 for A = Q,K,D,R and
ν. Choose δ > 0 and define

τ = τδ
.= inf{t ≥ 0 : 4K(t) ∨4K(t−) ≥ δ}.

We shall argue by contradiction to show that τ =∞. Suppose that τ <∞.
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We first claim that for each t ∈ [0, τ ],

(4.9) 4K(t) < δ if 〈1, ν1
t 〉 = 1.

To see why this is true, for t ∈ [0, τ ], suppose 〈1, ν1
t 〉 = 1. Since 〈1, ν2

t 〉 ≤ 1, we have
〈1,4νt〉 ≤ 0. When combined with (4.7) and the identity 4ν0 = 0, this shows that

4K(t) = 〈1,4νt〉+
∫ t

0

gs(t− s)4K(s) ds ≤
∫ t

0

gs(t− s)4K(s) ds.(4.10)

Using the fact that 4K(s) < δ for all s ∈ [0, t), it is easy to see (for example, as in
the proof of Case 2 in Theorem 4.6 of [17]) that this implies 4K(t) < δGs(t) ≤ δ,
and the claim follows. On the other hand, the right-continuity of K

1
and K

2
imply

that 4K(τ) ≥ δ. When combined with (4.9), (3.43) and (3.47), this shows that

(4.11) 〈1, ν1
τ 〉 = X

1
(τ) < 1 and Q

1
(τ) = 0.

Now, define

r
.= sup

{
t < τ : Q

2
(t) < Q

1
(t)
}
∨ 0.

Then for every t ∈ [r, τ ], Q
2
(t) ≥ Q

1
(t). If r = 0, then 4K(r) = 4K(0) = 0 < δ.

On the other hand, if r > 0, there exists a sequence of {tn}∞n=1 such that tn < r

and tn → r as n→∞ and 0 ≤ Q
2
(tn) < Q

1
(tn) for each n ∈ N. Since Q

1
and Q

2

are càdlàg, this implies that

(4.12) Q
2
(r−) ≤ Q1

(r−)

and, due to (3.43) and (3.47), it also follows that X
1
(tn) > 〈1, ν1

tn〉 = 1 for every
n ∈ N. When combined with (4.10), this shows that for n ∈ N,

4K(tn) ≤
∫ tn

0

gs(tn − s)4K(s) ds =
∫ tn

0

gs(s)4K(tn − s) ds.

Since K
1

and K
2

are càdlàg, this implies that

4K(r−) ≤
∫ r

0

gs(s)4K((r − s)−) ds.

Using the fact that 4K((r−s)−) < δ for all s ∈ (0, r), it is easy to see (once again,
as in the proof of Case 2 in Theorem 4.6 of [17]) that this implies

(4.13) 4K(r−) < δ.

On the other hand, since (3.49) is satisfied with (K,R,Q) replaced by (K
i
, R

i
, Q

i
)

for i = 1, 2, it follows that

4K(τ) +4R(τ) +4Q(τ) = 4K(r−) +4R(r−) +4Q(r−) = 0.

Hence,

4K(τ)−4K(r−) = −(4R(τ)−4R(r−))−4Q(τ) +4Q(r−).

Since 4Q(r−) ≤ 0 by (4.12), and −4Q(τ) = Q
1
(τ)−Q2

(τ) = −Q2
(τ) ≤ 0 due to

(4.11), we obtain

(4.14) 4K(τ)−4K(r−) ≤ −(4R(τ)−4R(r−)).
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For each t ≥ 0, by (3.45), we see that

4R(t) = R
2
(t)−R1

(t)

=
∫ t

0

(∫ Q
2
(s)

0

hr((F
η2
s)−1(y))dy

)
ds−

∫ t

0

(∫ Q
1
(s)

0

hr((F
η1
s)−1(y))dy

)
ds.

Since η1 = η2, then F
η1
· = F

η2
· . Together with the continuity of R

1
and R

2
, this

yields the equation:

4R(τ)−4R(r−)(4.15)

= 4R(τ)−4R(r)

=
∫ τ

r

(∫ Q
2
(s)

0

hr((F
η1
s)−1(y))dy

)
ds−

∫ τ

r

(∫ Q
1
(s)

0

hr((F
η1
s)−1(y))dy

)
ds.

However, by the definition of τ , for each t ∈ [r, τ ], Q
2
(t) ≥ Q1

(t), and so 4R(τ)−
4R(r−) ≥ 0. Together with (4.14) and (4.13), this implies

4K(τ) ≤ 4K(r−) < δ.

A similar argument can be used to also show that 4K(τ−) ≤ 4K(r−) < δ. Hence
4K(τ)∨4K(τ−) < δ, which contradicts the definition of τ . Thus we have proved
that τ = ∞ and K

2
(t) −K1

(t) ≤ δ for each δ > 0 and t ≥ 0. By letting δ → 0,
we have K

2
(t) ≤ K

1
(t) for all t ≥ 0. An exactly analogous argument yields the

reverse inequality K
1
(t) ≤ K2

(t) for each t ≥ 0, and so it must be that K
2

= K
1
.

By (4.5) of Corollary 4.2, it follows that ν1 = ν2. Also, by (3.49), we obtain

(4.16) R
1

+Q
1

= R
2

+Q
2
.

We now show that, in fact Q
1

= Q
2

and R
1

= R
2
. If there exists t ∈ (0,∞) such

that Q
1
(t) > Q

2
(t), let

s
.= sup{v < t : Q

1
(v) ≤ Q2

(v)} ∨ 0.

It follows that Q
1
(s−) ≤ Q2

(s−) and Q
1
(v) > Q

2
(v) for each v ∈ (s, t]. Due to the

fact that η1 = η2, we have

R
1
(t)−R1

(s) =
∫ t

s

(∫ Q
1
(v)

0

hr((F
η1
v )−1(y))dy

)
dv

≥
∫ t

s

(∫ Q
2
(v)

0

hr((F
η2
v )−1(y))dy

)
dv

= R
2
(t)−R2

(s).

It then follows from (4.16) and the continuity of R
i
, i = 1, 2, that Q

1
(t)−Q1

(s−) ≤
Q

2
(t)−Q2

(s−). Combining this with the inequality Q
1
(s−) ≤ Q2

(s−), we obtain
Q

1
(t) ≤ Q

2
(t), which is a contradiction. Hence Q

1
(v) ≤ Q

2
(v) for all v ∈ (0,∞).

Similarly we can also argue that Q
1
(v) ≥ Q

2
(v) for all v ∈ (0,∞). This shows

Q
1

= Q
2

and R
1

= R
2
. In the end, by (3.43), we have X

1
= X

2
. �
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Proof of Theorem 3.5. The first statement in Theorem 3.5 follows from Theorem
4.6. The second statement follows directly from Corollary 4.2 and the fluid equa-
tions (3.43), (3.45) and (3.46), while the alternative representation for K is a direct
consequence of the renewal equation (4.7) and Corollary 4.4 of [17]. �

5. A Family of Martingales

In Section 5.1, we identify the compensators (with respect to the filtration F (N)
t )

of the cumulative departure, potential reneging and (actual) reneging processes.
Then, in Section 5.2, we establish a more convenient representation for the com-
pensator of the reneging process.

5.1. Compensators. For the model without abandonment, it was shown in [17]
that the process A(N)

ϕ,ν defined below is the compensator for the associated “ϕ-
weighted” cumulative departure process. Since the service dynamics is similar in
the model with or without abandonment, properties of the departure process anal-
ogous to those established in Section 5.2 of [17] continue to hold in the presence
of abandonment. These properties are summarized in Proposition 5.1. Next, we
exploit the fact that the relation between the potential reneging process S(N) and
the queue measure η(N) is exactly analogous to the relation between the departure
process D(N) and the age measure ν(N), in order to identify the compensator of
the “ψ-weighted” potential reneging process S(N)

ψ for a suitable ψ (see Lemma 5.2).

Using Lemma 5.2 and the representation R(N) = S
(N)

θ(N) for the reneging process
established in (2.25), we then deduce the form of the compensator for R(N) (see
Lemma 5.4). Since θ(N) does not belong to the class of ψ specified in Lemma 5.2,
this requires some additional justification which is provided in Lemma 5.3. Finally,
by essentially the same arguments used to prove properties of D(N) in Proposi-
tion 5.1 (2) and (3), we obtain the corresponding properties for R(N). These are
summarized in Proposition 5.5.

Proposition 5.1. Let D(N)
ϕ be the process defined in (2.19). Then the following

properties hold.

(1) For every bounded measurable function ϕ on [0, Hs)×R+ such that ϕ(a(N)
j (·), ·)

is left continuous for each j, the process A(N)
ϕ,ν is the F (N)

t -compensator of
the process D(N)

ϕ . In particular, the process M (N)
ϕ,ν defined by

(5.17) M (N)
ϕ,ν

.= D(N)
ϕ −A(N)

ϕ,ν

is a local F (N)
t -martingale. Moreover, for every N ∈ N, t ∈ [0,∞) and

m ∈ [0, Hs),

(5.18) |A(N)
ϕ,ν (t)| ≤ ‖ϕ‖∞

(
X(N)(0) + E(N)(t)

)(∫ m

0

hs(x) dx
)
<∞

for every ϕ ∈ Cc([0, Hs)×R+) with supp(ϕ) ⊂ [0,m]×R+. In addition, the
quadratic variation process 〈M (N)

ϕ,ν 〉 of the scaled process M
(N)

ϕ,ν
.= M

(N)
ϕ,ν /N

satisfies

(5.19) lim
N→∞

E
[
〈M (N)

ϕ,ν 〉(t)
]

= 0.
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Consequently, as N →∞,

(5.20) M
(N)

ϕ,ν ⇒ 0.

(2) For every T <∞ and ϕ ∈ Cb([0, Hs)× R+),

(5.21) lim sup
N

E
[∣∣∣D(N)

(T )
∣∣∣] <∞ and lim sup

N
E
[∣∣∣A(N)

ϕ,ν (T )
∣∣∣] <∞.

Also, for t ∈ [0,∞) and N ∈ N,

(5.22) lim
δ→0

E
[
D

(N)
(t+ δ)−D(N)

(t)
]

= 0.

Moreover, for every δ > 0 and interval Z = [L+δ,Hs) with L ∈ (0, Hs−δ),

(5.23) E
[
D

(N)

11Z (t+ δ)−D(N)

11Z (t)|F (N)
t

]
≤ Us(δ)ν(N)

t [L,Hs),

where Us(·) is the renewal function associated with the service distribution
Gs.

(3) Suppose that the limit

(5.24) lim
L→Hs

sup
N∈N

E
[
ν

(N)
0 (L,Hs)

]
= 0

holds and, if Hs <∞, then

(5.25) lim
L→Hs

sup
N∈N

E

[∫
[0,L)

1−Gs(L)
1−Gs(x)

ν
(N)
0 (dx)

]
= 0

is also satisfied. Then the following three properties hold.
(a) For t ∈ [0,∞),

lim
L→Hs

sup
N

E

[∫ t

0

(∫
[L,Hs)

hs(x) ν(N)
s (dx)

)
ds

]
= 0.

(b) For every ϕ ∈ Cb([0, Hs)× R+) and T ∈ [0,∞),

lim
δ→0

lim sup
N

E

[
sup
t∈[0,T ]

(
A

(N)

ϕ,ν (t+ δ)−A(N)

ϕ,ν (t)
)]

= 0

and for each t ∈ [0,∞),

lim
δ→0

lim sup
N

E
[
D

(N)

ϕ (t+ δ)−D(N)

ϕ (t)
]

= 0.

(c) Given L < Hs and any sequence of measurable subsets BR ⊂ [0, L]
such that the Lebesgue measure of BR goes to zero as R → ∞, we
have for every T ∈ [0,∞),

(5.26) lim
R→∞

lim sup
N

E

[
sup
t∈[0,T ]

A
(N)

11BR ,ν
(t)

]
= 0.

Proof. The fact that A
(N)
ϕ,ν is the F (N)

t -compensator of D(N)
ϕ essentially follows

from Lemma 5.4 and Corollary 5.5 in [17]. The only difference is that the fil-
tration {F (N)

t } here is larger than that in [17] since here, F (N)
t also includes

the σ-algebra generated by the potential waiting times {η(N)
j (s), s ≤ t, j =

−E(N)
0 + 1, · · · , E(N)(t)}. However, due to the assumed independence of the pa-

tience times and the service times, the proof of Lemma 5.4 of [17] continues to be
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valid in the setting of this paper. In fact, the only argument in Lemma 5.4 of [17]
that needs to be checked in the setting of this paper is the following:

(5.27)
E
[
11{θkn≤ j

2m<T,ζkn>
j

2m }
11{ζkn≤ j+1

2m }
|F j

2m

]
= 11{θkn≤ j

2m<T,ζkn>
j

2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du,

where θkn (respectively, ζkn) is the time at which the n-th customer to be served at
station k starts (respectively, completes) service. Then ζkn − θkn is the service time
of the n-th customer to be served at station k, which has distribution Gs. Let G j

2m

be the σ-algebra generated by the events {(θkn ≤ x) ∩ (θkn ≤
j

2m , ζ
k
n >

j
2m ), x ≥ 0}.

In order to show the equality in (5.27), it suffices to show that for every bounded
F j

2m
-adapted random variable H,

(5.28)
E
[
H11{θkn≤ j

2m<T,ζkn>
j

2m }
11{ζkn≤ j+1

2m }

]
= E

[
H11{θkn≤ j

2m<T,ζkn>
j

2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du

]
.

Recall that the patience times and the service times of customers are assumed
to be independent. Therefore, given G j

2m
, ζkn − θkn and F j

2m
are conditionally

independent. Hence, it follows from the left-hand-side of (5.28) and the fact that
H is G j

2m
-adapted that

E
[
H11{θkn≤ j

2m<T,ζkn>
j

2m }
11{ζkn≤ j+1

2m }

]
= E

[
E
[
H11{θkn≤ j

2m<T,ζkn>
j

2m }
11{ζkn−θkn≤ j+1

2m −θkn}
|G j

2m

]]
= E

[
E
[
H|G j

2m

]
E
[
11{θkn≤ j

2m<T,ζkn>
j

2m }
11{ζkn−θkn≤ j+1

2m −θkn}
|G j

2m

]]
= E

[
HE

[
11{θkn≤ j

2m<T,ζkn>
j

2m }
11{ζkn−θkn≤ j+1

2m −θkn}
|G j

2m

]]
,

and
E
[
11{θkn≤ j

2m<T,ζkn>
j

2m }
11{ζkn−θkn≤ j+1

2m −θkn}
|G j

2m

]
= 11{θkn≤ j

2m<T,ζkn>
j

2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du.

This shows that (5.28), and therefore (5.27), holds.
Corollary 5.5 of [17] shows that M (N)

ϕ,ν is a local F (N)
t -martingale for bounded and

continuous functions ϕ. However, it is easy to see that this holds more generally
for bounded and measurable ϕ such that ϕ(a(N)

j (·), ·) is left continuous for each j,

since then ϕ(a(N)
j (·), ·) is F (N)

t -predictable. Property 2 can be established exactly
as Lemma 5.6 of [17], while property 3 follows from Lemma 5.8 of [17]. �

Suppositions (5.24) and (5.25) above are shown in Lemma 6.6 to follow from As-
sumption 3.1(3).

We now turn to the cumulative reneging processes. For any bounded measurable
function ψ on [0, Hr)× R+, consider the sequence {A(N)

ψ,η } of processes given by

(5.29) A
(N)
ψ,η (t) .=

∫ t

0

(∫
[0,Hr)

ψ(x, s)hr(x) η(N)
s (dx)

)
ds, t ∈ [0,∞).
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Due to the analogy between the service dynamics and the potential queue dynamics
(see Remark 2.2), the i.i.d nature of the sequences of service requirements and
patience times, and the independence of these two sequences from each other and
the cumulative arrival processes, the argument used in the proof of Proposition
5.1(1) can also be used to show that A(N)

ψ,η is well-defined and equals the compensator

of S(N)
ψ . Recall by (2.22) that S(N) = S

(N)
1 .

Lemma 5.2. For every N ∈ N, the process A(N)
1,η is the F (N)

t -compensator of the
process S(N). Hence, for every bounded measurable function ψ on [0, Hr) × R+

such that ψ(w(N)
j (·), ·) is left continuous for each j, the process A(N)

ψ,η is the F (N)
t -

compensator of the process S(N)
ψ . In particular, for such ψ, the process M (N)

ψ,η defined
by

(5.30) M
(N)
ψ,η

.= S
(N)
ψ −A(N)

ψ,η

is a local F (N)
t -martingale. Moreover, for every N ∈ N, t ∈ [0,∞) and m ∈ [0, Hr),

(5.31) |A(N)
ψ,η (t)| ≤ ‖ψ‖∞

(
〈1, η(N)

0 〉+ E(N)(t)
)(∫ m

0

hr(x) dx
)
<∞

for every ψ ∈ Cc([0,m)× R+) with supp(ψ) ⊂ [0,m]× R+ for m ∈ [0, Hr).

Now, note from (2.25) that R(N) = S
(N)

θ(N) , where θ(N) is defined by (2.26). Also

note from (2.25) that R(N) = S
(N)

θ(N) . Therefore, in view of (5.17), it is natural to

conjecture that the compensator of R(N) is equal to A(N)

θ(N),η
, where

(5.32)

A
(N)

θ(N),η
(t) .=

∫ t

0

(∫
[0,Hr)

11[0,χ(N)(s−)](x)hr(x) η(N)
s (dx)

)
ds, t ∈ [0,∞).

However, this is not immediate from Lemma 5.2 since θ(N)(w(N)
j (·), ·) is not left

continuous for any j. Instead, we approximate θ(N) by a sequence {θ(N)
m }N∈N

defined by

(5.33) θ(N)
m (x, s) .= 11(x− 1

m ,∞)(χ
(N)(s−)),

which is shown to be left continuous in Lemma 5.3. Then in Lemma 5.4, we use an
approximation argument to show that A(N)

θ(N),η
is indeed the compensator of R(N).

Lemma 5.3. For each m ≥ 1, x ∈ R and s ∈ R+, the sequence {θ(N)
m }N∈N defined

by (5.33) satisfies the following two properties:

(1) For every N ∈ N, x ∈ R, s ∈ R, θ(N)
m (x, s) is non-increasing in m and

converges, as m→∞, to θ(N)(x, s).
(2) For each N,m ∈ R, j ∈ Z, the process θ(N)

m (w(N)
j (·), ·) has left continuous

paths on (0,∞).

Proof. The first property is immediate from the definition of θ(N)
m . For the second

property, fix N,m ∈ N, s > 0, j ∈ Z and ω ∈ Ω. To ease the notation, we shall
suppress ω from the notation. Let {sn} be a sequence in (0,∞) such that sn ↑ s as
n→∞. We now consider two mutually exclusive cases.
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Case 1. θ
(N)
m (w(N)

j (s), s) = 1. Then w
(N)
j (s) < χ(N)(s−) + 1/m. Since w(N)

j is

non-decreasing, w(N)
j (sn) ≤ w(N)

j (s) and since χ(N)(s−) is left continuous, we have,

for all n large enough, w(N)
j (sn) < χ(N)(sn−)+1/m. Hence, θ(N)

m (w(N)
j (sn), sn) = 1

and θ
(N)
m (w(N)

j (·), ·) is left continuous at s.

Case 2. θ(N)
m (w(N)

j (s), s) = 0. Then w
(N)
j (s) ≥ χ(N)(s−) + 1/m. It follows from

Lemma A.2 that for all sufficiently large n, χ(N)(s−) − χ(N)(sn−) = s − sn > 0.
Since w(N)

j (s)−w(N)
j (sn) ≤ s−sn for all n ∈ N, this implies w(N)

j (sn) ≥ χ(N)(sn−)+

1/m for all n large enough. Hence, θ(N)
m (w(N)

j (sn), sn) = 0 and θ
(N)
m (w(N)

j (·), ·) is
again left continuous at s. �

Lemma 5.4. For every N ∈ N, the process A(N)

θ(N),η
is the F (N)

t -compensator of the

process R(N). In particular, the process M (N)

θ(N),η
defined by

(5.34) M
(N)

θ(N),η

.= R(N) −A(N)

θ(N),η

is a local F (N)
t -martingale.

Proof. Fix N ∈ N, and let A(N)

θ
(N)
m ,η

, m ∈ N, be defined in the obvious way:

(5.35) A
(N)

θ
(N)
m ,η

(t) .=
∫ t

0

(∫
[0,Hr)

θ(N)
m (x, s)hr(x) η(N)

s (dx)

)
ds.

By Lemma 5.2 and Lemma 5.3, the process A(N)

θ
(N)
m ,η

is the F (N)
t -compensator of the

process S(N)

θ
(N)
m

, and the process M (N)

θ
(N)
m ,η

defined by

(5.36) M
(N)

θ
(N)
m ,η

.= S
(N)

θ
(N)
m

−A(N)

θ
(N)
m ,η

is a local F (N)
t -martingale. Since θ

(N)
m → θ(N) pointwise on R2

+, |θ(N)
m (x, s) −

θ(N)(x, s)| ≤ 1 for all (x, s) ∈ R2
+, and E

[
S

(N)
1 (t)

]
< ∞, E

[
A

(N)
1,η (t)

]
< ∞ for all

t ∈ (0,∞), an application of the dominated convergence theorem shows that for all
t ∈ (0,∞), as m→∞,

E
[

sup
0≤s≤t

∣∣∣A(N)

θ
(N)
m ,η

(s)−A(N)

θ(N),η
(s)
∣∣∣]→ 0 and E

[
sup

0≤s≤t

∣∣∣S(N)

θ
(N)
m

(s)− S(N)

θ(N)(s)
∣∣∣]→ 0,

and hence M (N)

θ
(N)
m ,η

converges in law to M
(N)

θ(N),η
. Since

∣∣∣S(N)

θ
(N)
m

(t)− S(N)

θ
(N)
m

(t−)
∣∣∣ ≤ 1

for all t ∈ [0,∞) and m ∈ N, then M
(N)

θ(N),η
is a local F (N)

t -martingale by Corollary
1.19 of Chapter IX of [12]. �

As usual, letA
(N)

ψ,η , M
(N)

ψ,η andA
(N)

θ(N),η, M
(N)

θ(N),η denote the scaled versionsA(N)
ψ,η /N ,

M
(N)
ψ,η /N and A

(N)

θ(N),η
/N , M (N)

θ(N),η
/N , respectively. In the next proposition, we col-

lect some useful properties of these processes. Recall that the scaled reneging
process R

(N)
equals A

(N)

θ(N),η.

Proposition 5.5. The following properties hold.
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(1) For every ψ ∈ Cb([0, Hr)× R+) and t ∈ [0,∞),

(5.37) lim
N→∞

E
[
〈M (N)

ψ,η 〉(t)
]

= 0.

Moreover,

(5.38) lim
N→∞

E
[
〈M (N)

θ(N),η〉(t)
]

= 0.

Consequently, M
(N)

ψ,η ⇒ 0 and M
(N)

θ(N),η ⇒ 0 as N →∞.
(2) For every T <∞ and ψ ∈ Cb([0, Hr)× R+),

(5.39) sup
N

E
[
R

(N)
(T )
]
<∞ and lim sup

N
E
[∣∣∣A(N)

ψ,η (T )
∣∣∣] <∞.

Also, for t ∈ [0,∞) and N ∈ N,

(5.40) lim
δ→0

E
[
R

(N)
(t+ δ)−R(N)

(t)
]

= 0.

For every δ > 0 and interval Z = [L+ δ,Hr) with L ∈ (0, Hr − δ),

(5.41) E
[
S

(N)

11Z (t+ δ)− S(N)

11Z (t)|F (N)
t

]
≤ Ur(δ)η(N)

t [L,Hr)

where Ur(·) is the renewal function associated with the patience time dis-
tribution Gr.

(3) Suppose that the limit

(5.42) lim
L→Hr

sup
N∈N

E
[
η

(N)
0 (L,Hr)

]
= 0

holds and, if Hr <∞, then

(5.43) lim
L→Hr

sup
N∈N

E

[∫
[0,L)

1−Gr(L)
1−Gr(x)

η
(N)
0 (dx)

]
= 0

is also satisfied. Then the following three properties hold.
(a) For each t ∈ [0,∞),

lim
L→Hr

sup
N

E

[∫ t

0

(∫
[L,Hr)

hr(x) η(N)
s (dx)

)
ds

]
= 0.

(b) For every ψ ∈ Cb([0, Hr)× R+) and T ∈ [0,∞),

lim
δ→0

lim sup
N

E

[
sup
t∈[0,T ]

(
A

(N)

ψ,η (t+ δ)−A(N)

ψ,η (t)
)]

= 0

and for each t ∈ [0,∞)

lim
δ→0

lim sup
N

E
[
S

(N)
ψ (t+ δ)− S(N)

ψ (t)
]

= 0.

(c) Given L < Hr and any sequence of measurable subsets BR ⊂ [0, L]
such that the Lebesgue measure of BR goes to zero as R → ∞, we
have for every T ∈ [0,∞),

(5.44) lim
R→∞

lim sup
N

E

[
sup
t∈[0,T ]

A
(N)

11BR ,η
(t)

]
= 0.
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Proof. This proposition can be proved in the same way as Lemma 5.6, Lemma 5.8
and Lemma 5.9 of [17]. Note that the renewal function used in the proofs of Lemma
5.6 and 5.8 of [17] was defined from the cumulative distribution function G in [17],
which was assumed to have no mass at ∞. However the proofs given there apply
here when Gr may possibly have a mass at ∞ and the renewal function associated
with Gr here is now simply given by Ur(·) =

∫ ·
0

∑∞
n=1(gr)∗n(s) ds, where (gr)∗n is

the n-th convolution of gr on [0,∞). �

5.2. An Alternative Representation for the Compensator of R(N). We now
derive an alternative, more convenient, representation for A(N)

θ(N),η
, or more generally,

for processes of the form A
(N)

θ(N),η
, but with hr replaced by an arbitrary measurable

function h. In what follows, recall that F η
(N)
t (x) = η

(N)
t [0, x]. Also let (F η

(N)
t )−1

be its inverse, as defined in (1.1).

Proposition 5.6. For each N ∈ N, t ≥ 0 and measurable function h on [0, Hr),

(5.45)
∫

[0,Hr)

11[0,χ(N)(t−)](x)h(x)η(N)
t (dx) =

∫ Q(N)(t)+ι(N)(t)

0

h((F η
(N)
t )−1(y))dy,

where

(5.46) ι(N)(t) .=
{

0 if (χ(N)(t−)− χ(N)(t))(K(N)(t)−K(N)(t−)) = 0,
1 if (χ(N)(t−)− χ(N)(t))(K(N)(t)−K(N)(t−)) > 0.

Proof. Fix N ∈ N, t ≥ 0 and a measurable function h on [0, Hr). By the represen-
tation (2.3) for η(N), we have

(5.47)

∫
[0,Hr)

11[0,χ(N)(t−)](x)h(x)η(N)
t (dx)

=
E(N)(t)∑

j=−E(N)
0 +1

h
(
w

(N)
j (t)

)
11{w(N)

j (t)≤χ(N)(t−)}11{w(N)
j (t)<rj}

.

Moreover, by (2.6),

Q(N)(t) = η
(N)
t [0, χ(N)(t)] =

E(N)(t)∑
j=−E(N)

0 +1

11{w(N)
j (t)≤χ(N)(t)}11{w(N)

j (t)<rj}
.

Thus Q(N)(t) is the total number of customers who have arrived to the system
and have not reneged by t and whose potential waiting times at t are less than
or equal to χ(N)(t). If we arrange those customers in increasing order of their
potential waiting times at t, then for i = 1, 2, · · · , Q(N)(t), (F η

(N)
t )−1(i) is exactly

the potential waiting time at t of the ith customer.
Suppose that (χ(N)(t−)− χ(N)(t))(K(N)(t)−K(N)(t−)) = 0. This implies that

either we have χ(N)(t−) = χ(N)(t) holds or we have χ(N)(t−) > χ(N)(t) and
K(N)(t) = K(N)(t−) hold, which means the head-of-the-line customer right be-
fore time t reneges at time t. In this case, the right-hand-side of (5.47) can be
re-expressed as ∫ Q(N)(t)

0

h((F η
(N)
t )−1(y))dy.
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On the other hand, suppose that (χ(N)(t−)−χ(N)(t))(K(N)(t)−K(N)(t−)) > 0.
In this case, the head-of-the-line customer right before time t departs for service
at time t and this customer is counted in the righthand side of (5.47) but not in
Q(N)(t). Hence the right-hand-side of (5.47) should be re-expressed as∫ Q(N)(t)+1

0

h((F η
(N)
t )−1(y))dy.

�

As an immediate consequence of (2.25), Lemma 5.4, (5.32) and Proposition 5.6,
we obtain the following alternative representation for the compensator A(N)

θ(N),η
of

R(N):

(5.48) A
(N)

θ(N),η
(t) .=

∫ t

0

(∫ Q(N)(t)+ι(N)(t)

0

hr((F η
(N)
s )−1(y))dy

)
ds, t ∈ [0,∞),

where ι(N) is given by (5.46).

6. Tightness of Pre-limit Sequences

The main objective of this section is to show that, under suitable assumptions,
the sequences of scaled state processes {(X(N)

, ν(N), η(N))} and auxiliary processes
are tight. Specifically, from (2.23) and (5.18) it is clear that for every t, D

(N)

· (t) :
ϕ 7→ D

(N)

ϕ (t) and A
(N)

·,ν : ϕ 7→ A
(N)

ϕ,ν (t) are Radon measures on [0, Hs) and, likewise

from (2.24) and (5.31) it follows that S
(N)

· (t) : ψ 7→ S
(N)

ψ (t) and A
(N)

·,η : ψ 7→ A
(N)

ψ,η (t)
define Radon measures on [0, Hr). It is also easy to see that these processes are
càdlàg. Now, define

Y .= R+ × (DR+ [0,∞))3 ×MF [0, Hs)×DMF [0,Hs)[0,∞)×MF [0, Hr)

×DMF [0,Hr)[0,∞)× (DMF ([0,Hs)×R+)[0,∞))2 × (DMF ([0,Hr)×R+)[0,∞))2

equipped with the product metric. Then Y is clearly a Polish space. Also, let

Y
(N) .=

(
X

(N)
(0), E

(N)
, X

(N)
, R

(N)
, ν

(N)
0 , ν(N), η

(N)
0 , η(N),(6.49)

A
(N)

·,ν , D
(N)

· , A
(N)

·,η , S
(N)

·

)
, N ∈ N.

The main result of this section is

Theorem 6.1. Suppose Assumption 3.1 is satisfied. Then the sequence {Y (N)}
defined in (6.49) is relatively compact in the Polish space Y, and therefore tight.

The relative compactness of {Y (N)} follows from Assumption 3.1 and Lemmas
6.3, 6.4, 6.6 and 6.7 below. Since Y is a Polish space, tightness is then a direct
consequence of Prohorov’s theorem.

We start by recalling Kurtz’ criteria (see Theorem 3.8.6 of [8] for details) for the
relative compactness of a sequence {H(N)} of processes in DR+ [0,∞).

Proposition 6.2. (Kurtz’ criteria) The sequence of processes {H(N)} is relatively
compact if and only if the following two properties hold.
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K1: For every rational t ≥ 0,

lim
R→∞

sup
N

P(H
(N)

(t) > R) = 0.

K2: For each t > 0, there exists β > 0 such that

lim
δ→0

sup
N

E
[∣∣∣H(N)

(t+ δ)−H(N)
(t)
∣∣∣β] = 0.

Lemma 6.3. Suppose Assumption 3.1 holds. Then the sequences {X(N)}, {D(N)},
{K(N)}, {R(N)}, {S(N)}, {〈1, ν(N)〉}, {〈1, η(N)〉}, the sequences {D(N)

ϕ }, {A(N)

ϕ,ν } for

ϕ ∈ Cb([0, Hs)×R+), and the sequences {S(N)
ψ }, {A(N)

ψ,η } for every ψ ∈ Cb([0, Hr)×
R+), are relatively compact.

Proof. Fix T ∈ (0,∞). It follows from Proposition 5.1, (2.19) and (3.36) that for
ϕ ∈ Cb([0, Hs)× R+),

sup
N

E
[
A

(N)

ϕ,ν (T )
]

= sup
N

E[D
(N)

ϕ (T )] ≤ ||ϕ||∞ sup
N

E[X
(N)

(0) + E
(N)

(T )] <∞.

Similarly, by Lemma 5.2, (2.21) and (3.36), we have for every ψ ∈ Cb([0, Hr)×R+),

sup
N

E[A
(N)

ψ,η (T )] = sup
N

E[S
(N)

ψ (T )] ≤ ||ψ||∞ sup
N

E[X
(N)

(0) + E
(N)

(T )] <∞.

Together with property 3b of Proposition 5.1 and properties 2 and 3b of Proposition
5.5, we conclude that {D(N)

ϕ }, {S(N)

ψ }, {A(N)

ϕ,ν }, {A
(N)

ψ,η } and {R(N)} satisfy K1 and

K2 of Proposition 6.2, and thus are relatively compact. Since D
(N)

= D
(N)

1 and
S

(N)
= S

(N)

1 , then {D(N)} and {S(N)} are also relatively compact. By Assumption
3.1, the sequences {E(N)} and {X(N)

(0)} are relatively compact. Since for every
t ≥ 0, 〈1, ν(N)

t 〉 ≤ X(N)
(t) ≤ X(N)

(0) +E
(N)

(t) by (2.17) and (2.12), we infer that
〈1, ν(N)

t 〉 and X
(N)

satisfy K1 of Proposition 6.2. In addition, (2.12) also shows
that ∣∣∣X(N)

(t)−X(N)
(s)
∣∣∣ ≤ ∣∣∣E(N)

(t)− E(N)
(s)
∣∣∣+
∣∣∣D(N)

(t)−D(N)
(s)
∣∣∣

+
∣∣∣R(N)

(t)−R(N)
(s)
∣∣∣ ,

and by (2.17) and the Lipschitz continuity of the function [1 − x]+ with Lipschitz
constant 1, we have∣∣∣〈1, ν(N)

t 〉 − 〈1, ν(N)
s 〉

∣∣∣ =
∣∣∣[1−X(N)

(t)]+ − [1−X(N)
(s)]+

∣∣∣ ≤ ∣∣∣X(N)
(t)−X(N)

(s)
∣∣∣ .

Hence {X(N)} and {〈1, ν(N)〉} satisfy K2 of Proposition 6.2 and are relatively com-
pact. In turn, by (2.16), the relative compactness of {D(N)} and {〈1, ν(N)〉} implies
that of {K(N)}. Moreover, (2.13) implies that for every s, t ∈ [0,∞),∣∣∣〈1, η(N)

t 〉 − 〈1, η(N)
s 〉

∣∣∣ ≤ ∣∣∣E(N)
(t)− E(N)

(s)
∣∣∣+
∣∣∣S(N)

(t)− S(N)
(s)
∣∣∣ ,(6.50)

〈1, η(N)
t 〉 ≤ 〈1, η(N)

0 〉+ E
(N)

(t).(6.51)

Thus 〈1, η(N)〉 is also relatively compact, and the proof is complete. �
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Lemma 6.4. Suppose Assumption 3.1 holds. For every f ∈ C1
c (R+), the sequences

{〈f, ν(N)〉} and {〈f, η(N)〉} of DR[0,∞)-valued random variables are relatively com-
pact.

Proof. Fix t ∈ [0,∞). By (2.27) and (2.28), for every f ∈ C1
c (R+), we have

〈f, ν(N)
t 〉 − 〈f, ν(N)

0 〉 =
∫ t

0

〈f ′, ν(N)
s 〉 ds−D(N)

f (t) + f(0)K
(N)

(t)

and

〈f, η(N)
t 〉 − 〈f, η(N)

0 〉 =
∫ t

0

〈f ′, η(N)
s 〉ds− S(N)

f (t) + f(0)E
(N)

(t).

Since {D(N)

f }, {K(N)}, {S(N)

f } and {E(N)} are relatively compact due to Lemma
6.3 and property 1 of Assumption 3.1, it suffices to show that the sequences
{
∫ ·

0
〈f ′, ν(N)

s 〉 ds} and {
∫ ·

0
〈f ′, ηs〉 ds} are tight. It follows from (6.51) that for δ ∈

(0, 1),∣∣∣∣∣
∫ t+δ

t

〈f ′, η(N)
s 〉ds

∣∣∣∣∣ ≤ ||f ′||∞
∫ t+δ

t

|〈1, η(N)
s 〉|ds ≤ ||f ′||∞δ

(
〈1, η(N)

0 〉+ E
(N)

(t+ 1)
)
.

Hence, we have

E

[∣∣∣∣∣
∫ t+δ

t

〈f ′, η(N)
s 〉ds

∣∣∣∣∣
]
≤ ||f ′||∞δ sup

N
E[〈1, η(N)

0 〉+ E
(N)

(t+ 1)].

For each t ∈ [0,∞), by (2.3) and Assumption 3.1, it follows that

(6.52) sup
N

E
[
〈1, η(N)

t 〉
]
≤ sup

N
E
[
〈1, η(N)

0 〉+ E
(N)

(t)
]
<∞.

Then (6.52) implies

lim
δ→0

sup
N

E

[∣∣∣∣∣
∫ t+δ

t

〈f ′, η(N)
s 〉ds

∣∣∣∣∣
]

= 0.

Similarly, since 〈1, ν(N)
s 〉 ≤ 1 for every s ∈ [0,∞) and N ∈ N,

lim
δ→0

sup
N

E

[∣∣∣∣∣
∫ t+δ

t

〈f ′, ν(N)
s 〉ds

∣∣∣∣∣
]
≤ lim
δ→0
||f ′||∞δ = 0.

Moreover, by (6.52), we also have, for every t ∈ [0,∞),

sup
N

E
[∣∣∣∣∫ t

0

〈f ′, η(N)
s 〉ds

∣∣∣∣] ≤ sup
N

E
[∫ t

0

|〈f ′, η(N)
s 〉|ds

]
≤ ||f ′||∞t sup

N
E
[
〈1, η(N)

0 〉+ E
(N)

(t)
]
<∞

and

sup
N

E
[∣∣∣∣∫ t

0

〈f ′, ν(N)
s 〉ds

∣∣∣∣] ≤ sup
N

E
[∫ t

0

|〈f ′, ν(N)
s 〉|ds

]
≤ ||f ′||∞t <∞.

This implies that
{∫ ·

0
〈f ′, η(N)

s 〉ds
}

and
{∫ ·

0
〈f ′, ν(N)

s 〉ds
}

both satisfy criteria K1
and K2 of Proposition 6.2 and hence are relatively compact. This completes the
proof of the lemma. �
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Next, we show that {ν(N)} and {η(N)} are tight, and hence are relatively compact
with respect to the topology on DMF [0,Hs)[0,∞) and DMF [0,Hr)[0,∞), respectively.
Since, as mentioned in Section 1.3.1, MF [0, Hs) and MF [0, Hr), equipped with
the topology of weak convergence, are Polish spaces, we can apply Jakubowski’s
criteria to establish the tightness of {ν(N)} and {η(N)}. For convenience, we recall
Jakubowski’s criteria.

Proposition 6.5. (Jakubowski) A sequence {π(N)} of DMF [0,H)[0,∞)-valued ran-
dom elements defined on (Ω,F ,P) is tight if and only if the following two conditions
hold.

J1: For each T > 0 and 0 < δ < 1, there are compact subsets C̃T,δ of
MF [0, H) such that

lim inf
N→∞

P
(
ν

(N)
t ∈ C̃T,δ for all t ∈ [0, T ]

)
> 1− δ.

J2: There exists a family F of real continuous functions F on MF [0, H) that
separates points inMF [0, H) and is closed under addition such that {π(N)}
is F-weakly tight, i.e., for every F ∈ F, the sequence {F (π(N)), s ∈ [0,∞)}
is tight in DR[0,∞).

Lemma 6.6. Suppose Assumption 3.1 holds. The sequences {ν(N)} and {η(N)}
are relatively compact. Moreover, (5.24), (5.25), (5.42) and (5.43) hold.

Proof. By Lemma 6.4 and Remark 5.11 of [17], it follows that {ν(N)} and {η(N)}
satisfy Jakubowski’s J2 criterion. Therefore, it suffices to show that they also
satisfy Jakubowski’s J1 criterion. By (2) and (3) of Assumption 3.1, we have
that for almost every ω ∈ Ω, supN ν

(N)
0 (ω)[0, Hs) < ∞. Then by Lemma A

7.5 of [14], we have that for every ε > 0, there exists k(ω, ε) < ∞ such that
supN ν

(N)
0 (ω)(k(ω, ε), Hs) < ε. Similarly, due to (2) and (4) of Assumption 3.1,

we have that for almost every ω ∈ Ω, supN η
(N)
0 (ω)[0, Hr) < ∞. Once again, by

Lemma A 7.5 of [14], we infer that for every ε > 0, there exists l(ω, ε) < ∞ such
that supN η

(N)
0 (ω)(l(ω, ε), Hr) < ε. Combining the fact, proved in Lemma 6.4 that

〈1, η(N)〉 is tight with the argument for tightness of ν(N) given in Lemma 5.12 of
[17], we can also establish the tightness of {η(N)}. We omit the details. �

We end this section by establishing the relative compactness of the measure-
valued processes associated with the departure and cumulative reneging functionals
and their compensators.

Lemma 6.7. Suppose Assumption 3.1 holds. Then the sequences {D(N)

· } and
{A(N)

·,ν } are relatively compact in DMF ([0,Hs)×R+)[0,∞). Similarly, the sequences

{S(N)

· } and {A(N)

·,η } are relatively compact in DMF ([0,Hr)×R+)[0,∞).

Proof. The proof of this lemma follows the same argument as that used to prove
Lemma 5.13 of [17], with Lemma 5.10, Lemma 5.6, M , Lemma 5.8(1), and Corol-
lary 5.5 in [17] replaced by Lemma 6.3, Proposition 5.1(2), Hs, Proposition 5.1(3a)
and Proposition 5.1(1) of this paper to obtain the result for D

(N)

· and A
(N)

·,ν , and by
Lemma 6.3, Proposition 5.5(2), Hr, Proposition 5.5(3a), Lemma 5.4 and Proposi-
tion 5.5(1) of this paper to obtain the result for S

(N)

· and A
(N)

·,η . �
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7. Strong Law of Large Numbers Limits

7.1. Characterization of Subsequential Limits. The focus of this section is
the following theorem which, in particular, establishes existence of a solution to the
fluid equations.

Theorem 7.1. Suppose that Assumptions 3.1–3.3 hold. Let (X, ν, η) be the limit
of any subsequence of {X(N)

, ν(N), η(N)}. Then (X, ν, η) solves the fluid equations.

The rest of the section is devoted to the proof of this theorem. Let (E,X(0), ν0, η0)
be the S0-valued random variable that satisfies Assumption 3.1, and let {Y (N)}N∈N
be the sequence of processes defined in (6.49). Then, by Assumption 3.1, Theo-
rem 6.1 and the facts that M

(N)

·,ν = D
(N)

· − A(N)

·,ν ⇒ 0 by Proposition 5.1(1) and

M
(N)

·,η = S
(N)

· −A(N)

·,η ⇒ 0 by Lemma 5.4, there exist processes X ∈ DR+ [0,∞), R ∈
DR+ [0,∞), ν ∈ DMF [0,Hs)[0,∞), η ∈ DMF [0,Hr)[0,∞), A·,ν ∈ DMF ([0,Hs)×R+)[0,∞),
D· ∈ DMF ([0,Hs)×R+)[0,∞), A·,η ∈ DMF ([0,Hr)×R+)[0,∞), S· ∈ DMF ([0,Hr)×R+)[0,∞)

such that Y
(N)

converges weakly (along a suitable subsequence) to

Y
.=
(
X(0), E,X,R, ν0, ν, η0, η, A·,ν , A·,ν , A·,η, A·,η, S

)
∈ Y.

Denoting this subsequence again by Y
(N)

and invoking the Skorokhod Represen-
tation Theorem, with a slight abuse of notation, we can assume that, P a.s.,
Y

(N) → Y . Without loss of generality, we may further assume that the above
convergence holds everywhere.

We now identify some properties of the limit that will be used to prove Theorem
7.1. We immediately obtain that, as N → ∞, D

(N)
= D

(N)

1 → A1,ν . Together
with (2.20) and (2.12), this implies that

(7.53) X = X(0) + E −A1,ν −R.
By the first part of Assumption 3.3, Lemma 5.16 and Proposition 5.17 of [17], It
follows that

(7.54) A1,ν =
∫ ·

0

〈hs, νs〉ds.

On comparing (7.53) and (7.54) with (3.45), it is clear that in order to prove
Theorem 7.1, it is necessary to show that R, Q, and η satisfy the relation (3.45).
This is established in Proposition 7.2 by using the representation (5.48) of the
compensator of R(N) to determine the limit of the sequence {R(N)} of the scaled
reneging processes. The additional arguments required to complete the proof of
Theorem 7.1 are provided at the end of the section.

Proposition 7.2. For every T ∈ [0,∞), as N →∞,

(7.55) E

[
sup
t∈[0,T ]

∣∣∣∣∣A(N)

θ(N),η(t)−
∫ t

0

(∫ Q(s)

0

hr((F ηs)−1(y))dy

)
ds

∣∣∣∣∣
]
→ 0.

Moreover, R
(N) → R, where

(7.56) R(t) =
∫ t

0

(∫ Q(s)

0

hr((F ηs)−1(y))dy

)
ds, t ∈ [0,∞).



FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING 35

Let R̃(t) be defined by the right-hand-side of (7.56) for t ∈ [0,∞). Then (7.55)
implies A(N)

θ(N),η
⇒ R̃. Since R̃ is continuous, R

(N)
= M

(N)

θ(N),η + A
(N)

θ(N),η by Lemma

5.4 and M
(N)

θ(N),η ⇒ 0 by Proposition 5.5(1), it follows that R
(N) ⇒ R̃. This implies

R̃ = R and thus the second statement of Proposition 7.2 follows from the first
statement. To establish (7.55), first note that, using (5.48) and the elementary
equality (F η

(N)
s )−1(N ·) = (F η

(N)
s )−1(·), simple algebraic manipulations show that

(7.57) A
(N)

θ(N),η(t) .=
∫ t

0

(∫ Q
(N)

(t)+ι(N)(t)

0

hr((F η
(N)
s )−1(y))dy

)
ds, t ∈ [0,∞),

where as usual ι(N) .= ι(N)/N and ι(N) is given by (5.46). Next, observe that for
all t ∈ [0, T ] and L ∈ [0, Hr),

(7.58)
∣∣∣A(N)

θ(N),η(t)− R̃(t)
∣∣∣ ≤ C(N)

1 (t, L) + C
(N)

2 (t, L) + C3(t, L),

where C
(N)

i (t, L), i = 1, 2 and C3(t, L) are defined, for t ∈ [0,∞), by

C
(N)

1 (t, L) .=

∣∣∣∣∣∣
∫ t

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

hr((F η
(N)
s )−1(y))dy

 ds(7.59)

−
∫ t

0

(∫ Q(s)∧Fηs (L)

0

hr((F
ηs)−1(y))dy

)
ds

∣∣∣∣∣ ,
(7.60) C

(N)

2 (t, L) .=

∣∣∣∣∣
∫ t

0

(∫ Q
(N)

(s)+ι(N)(s)

(Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

hr((F η
(N)
s )−1(y))dy

)
ds

∣∣∣∣∣ ,
and

(7.61) C3(t, L) .=
∫ t

0

(∫ Q(s)

Q(s)∧Fηs (L)

hr((F ηs)−1(y))dy

)
ds.

As a precursor to the proof of (7.55) of Proposition 7.2, we first establish some
path properties of the limiting queue measure η in Lemma 7.3 and some estimates
in Lemma 7.4. These two preliminary results will be used in Lemma 7.5 to show
that for any L ∈ [0, Hr), limN→∞ supt∈[0,T ]

∣∣∣C(N)

1 (t, L)
∣∣∣ = 0 in the case when hr

is continuous. Next, Lemma 7.6 extends this to include general hr that is locally
integrable in [0, Hr). All these results are then combined to prove Proposition 7.2.

Lemma 7.3. For every L ∈ [0, Hr), ηt is continuous at L for almost every t ≥ 0.
Moreover, for t ∈ (0,∞) and L ∈ [0, Hr), if ηt({L}) > 0, then ηt(L,L+ ε) > 0 for
all sufficiently small ε.

Proof. By (4.6) of Corollary 4.2, it follows that for every L ∈ [0, Hr),

ηt({L}) =
∫

[0,Hr)

11{L}(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx)(7.62)

+
∫ t

0

11{L}(t− s)(1−Gr(t− s)) dE(s).
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It is easy to see that the right-hand-side of the above display is zero except when
η0(L− t) > 0 if t ≤ L or when E(t−L)−E((t−L)−) > 0 if t > L. Since the jump
points of both η0 and E are countable, ηt is continuous at L for almost every t ≥ 0.

Next, suppose ηt({L}) > 0. Then by (7.62), at least one of the following two
cases must occur:

(7.63)
∫

[0,Hr)

11{L}(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx) > 0

or

(7.64)
∫ t

0

11{L}(t− s)(1−Gr(t− s)) dE(s) > 0.

If (7.63) holds, then it must be that L−t ∈ [0, Hr), (1−Gr(L))/(1−Gr(L−t)) > 0
and η0({L− t}) > 0. By Assumption 3.2 and the continuity of (1−Gr(·+ t))/(1−
Gr(·)), it then follows that for all sufficient small ε > 0,∫

[0,Hr)

11(L,L+ε)(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx) > 0.

However, similar to (7.62), an application of (4.6) of Corollary 4.2 with f = 11(L,L+ε)

shows that the term on the left-hand-side of the last display is dominated by
ηt(L,L+ ε), and so the lemma is established in this case. On the other hand, sup-
pose (7.64) holds. The proof in this case follows a similar argument. Indeed, first
note that (7.64) implies t−L > 0, 1−Gr(t−L) > 0 and E(t−L)−E((t−L)−) > 0.
By Assumption 3.2 and the continuity of 1−Gr(t−·), for all sufficiently small ε > 0,
1−Gr(t− ·) is strictly positive on (L,L+ ε) and E((t− L)−)−E(t− L− ε) > 0.
Another application of (4.6) of Corollary 4.2 then shows that

ηt(L,L+ ε) ≥
∫ t

0

11(L,L+ε)(t− s)(1−Gr(t− s)) dE(s) > 0,

and the proof of the lemma is complete. �

Lemma 7.4. Let T ∈ [0,∞) and L ∈ [0, Hr). The following estimates hold.

(1) For m ∈ [0, Hr) and every ` ∈ L1
loc[0, H

r) with support in [0,m], there
exists L̃(m,T ) <∞ such that

(7.65)

∣∣∣∣∣
∫ T

0

〈`, ηs〉 ds

∣∣∣∣∣ ≤ L̃(m,T )
∫

[0,Hr)

|`(x)|dx.

(2) Suppose h is a measurable function such that C̃hL
.= supx∈[0,L] |h(x)| < ∞.

Then, P-a.s.,

(7.66) sup
N

sup
s∈[0,T ]

∫ L

0

h(x)η(N)
s (dx) ≤ C̃hL sup

N

(
〈1, η(N)

0 〉+ E
(N)

(T )
)
<∞.

Proof. The first estimate can be proved in the same manner as Lemma 5.16 of [17]
due to the similarity between the dynamics of ν and η. The second estimate follows
from (2.13) and Assumption 3.1. �
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Lemma 7.5. Let L ∈ [0, Hr) and T ≥ 0. For every continuous function h on
[0,∞), as N →∞,

sup
t∈[0,T ]

∣∣∣∣∣∣
∫ t

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

h((F η
(N)
s )−1(y))dy

 ds(7.67)

−
∫ t

0

(∫ Q(s)∧Fηs (L)

0

h((F
ηs)−1(y))dy

)
ds

∣∣∣∣∣→ 0.

Proof. From the convergence of η(N) to η and Q
(N)

to Q, it follows that, as N →∞,
η

(N)
s ⇒ ηs and Q

(N)
(s)→ Q(s) for almost every s ≥ 0. Also, by Lemma 7.3, ηs is

continuous at L for almost every s ≥ 0. Let s ≥ 0 be a time at which η
(N)
s ⇒ ηs

and Q
(N)

(s) → Q(s) as N → ∞ and ηs is continuous at L. Since η(N)
s ⇒ ηs, we

have F η
(N)
s (x)→ F ηs(x) as N →∞ for all x ∈ [0, Hr) except on a countable subset

of [0, Hr). Therefore, by Theorem 13.6.3 of [28], we have (F η
(N)
s )−1 → (F ηs)−1 on

[0, F ηs(Hr−)) in the M1 topology. For s ∈ [0, T ], we now show that, as N →∞,
(7.68)∫ (Q

(N)
(s)+ι(N)(s))∧Fη

(N)
s (L)

0

h((F η
(N)
s )−1(y))dy →

∫ Q(s)∧Fηs (L)

0

h((F
ηs)−1(y))dy.

Observing that, since
∣∣ι(N)

∣∣ ≤ 1/N , we have

(7.69) (Q
(N)

(s) + ι(N)(s)) ∧ F η
(N)
s (L)→ Q(s) ∧ F ηs(L), as N →∞.

we consider the following two cases.
Case 1. Q(s)∧F ηs(L) < F ηs(Hr−). In this case, due to (7.69), for all sufficiently
large N , (Q

(N)
(s) + ι(N)(s))∧F η(N)

s (L) < F ηs(Hr−). For each n ∈ N, by Theorem
11.5.1 of [28] and the continuity of h, we obtain for each t < F ηs(Hr−), as N →∞,

sup
u∈[0,t]

∣∣∣∣∫ u

0

h((F η
(N)
s )−1(y))dy −

∫ u

0

h((F
ηs)−1(y))dy

∣∣∣∣→ 0.

Combining this with (7.69), we obtain (7.68).
Case 2. Q(s) ∧ F ηs(L) = F ηs(Hr−). we first claim that in this case Q(s) =
F ηs(L) = F ηs(Hr−). Indeed, F ηs(L) ≤ F ηs(Hr−) because F ηs is non-decreasing
and L < Hr, while Q(s) ≤ η[0, Hr) = F ηs(Hr−) by (3.44). On the other hand, the
reverse inequalities Q(s) ≥ F ηs(Hr−) and F ηs(L) ≥ F ηs(Hr−) hold by the case
assumption, and so the claim follows. Now, define L̄ .= (F

ηs)−1(F ηs(Hr−)). Then
L = (F

ηs)−1(F ηs(L)) ≤ L and

(7.70) F ηs(L̄) = F ηs(L) = F ηs(Hr−).

Moreover, it follows from the second assertion of Lemma 7.3 that L̄ is a point of
continuity for ηs. By (7.70), the change of variables formula then yields

(7.71)
∫ Q(s)∧Fηs (L)

0

h((F
ηs)−1(y))dy =

∫
[0,Hr)

h(x)ηs(dx) =
∫

[0,L̄]

h(x)ηs(dx).
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Also, by Proposition 5.6 and another application of the change of variables formula,
we have

(7.72)

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

h((F η
(N)
s )−1(y))dy

=
∫

[0,χ(N)(s−)]

11[0,L](x)h(x)η(N)
s (dx).

Expanding the term on the right-hand-side, we obtain∫
[0,χ(N)(s−)]

11[0,L](x)h(x)η(N)
s (dx)(7.73)

=
∫

[0,L̄]

11[0,L](x)h(x)η(N)
s (dx)−

∫
(χ(N)(s−)∧L̄,χ(N)(s−)]

11[0,L](x)h(x)η(N)
s (dx)

+
∫

(χ(N)(s−)∧L̄,L̄]

11[0,L](x)h(x)η(N)
s (dx).

Combining the last four displays, it is clear that to prove (7.68) it suffices to show
that the second and the third terms on the right-hand-side of (7.73) converge to
zero, as N → ∞. Recall the constant C̃hL defined in Lemma 7.4. C̃hL < ∞ since
h is continuous. Then the second term is bounded above by C̃hLη

(N)
s (χ(N)(s−) ∧

L̄, χ(N)(s−)], and by Portmanteau’s theorem, the fact that L̄ is a point of continuity
of ηs and the claim F ηs(L) = F ηs(Hr−) proved above, it follows that

lim
N→∞

η(N)
s (χ(N)(s−) ∧ L̄, χ(N)(s−)] ≤ lim

N→∞
η(N)
s (L̄,Hr) = ηs[L̄,H

r) = 0.

On the other hand, the third term on the right-hand-side of (7.73) is bounded
above by C̃hLη

(N)
s (χ(N)(s−) ∧ L̄, L̄] and this converges to zero as N → ∞ because,

as shown below, lim infN→∞ χ(N)(s−) ≥ L̄. We argue by contradiction to justify
this last assertion. Suppose this assertion were false. Then there must exist a
subsequence {Nk}k∈N such that limk→∞ χ(Nk)(s−) = L̄− δ for some δ > 0. Hence,
for k large enough, χ(Nk)(s−) < L̄ − δ/2. By Lemma A.2, we have χ(Nk)(s−) ≥
χ(Nk)(s). Hence η(Nk)

s [0, L̄ − δ/2] ≥ Q
(Nk)

(s) by (2.6). Sending k → ∞ and using
the convergence η(Nk)

s ⇒ ηs, the fact that [0, L̄− δ/2] is closed and Portmanteau’s
theorem, we obtain ηs[0, L̄− δ/2] ≥ Q(s). This contradicts the definition of L̄, and
hence completes the proof of (7.68).

Finally, we deduce (7.67) from (7.68) using the bounded convergence theorem,
whose application is justified by the bounds (7.71), (7.72) and the estimate (7.66).

�

We now generalize Lemma 7.5 to allow for generally locally integrable function
hr.

Lemma 7.6. Let L < Hr, for every t ∈ [0,∞) and N ∈ N, let C
(N)

1 (t, L) be defined
as in (7.59). Then for every T ∈ [0,∞),

(7.74) lim
N→∞

sup
t∈[0,T ]

C
(N)

1 (t, L) = 0.

Proof. Since hr lies in L1
loc[0, H

r) and is nonnegative, there exists a sequence of non-
negative continuous functions {hrn}n≥1 on [0, Hr) such that

∫ L
0
|hr(x)−hrn(x)|dx→

0 as n→∞ and hrn has common compact support in [0, Hr). For each n ∈ N, since
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(7.74) holds with hrn in place of hr due to Lemma 7.5, in order to prove (7.74), it
suffices to show that, as n→∞, the following two convergence results hold.
(7.75)

sup
N

∫ T

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

∣∣∣hrn((F η
(N)
s )−1(y))− hr((F η

(N)
s )−1(y))

∣∣∣ dy
 ds→ 0,

and

(7.76)
∫ T

0

(∫ Q(s)∧Fηs (L)

0

∣∣hrn((F ηs)−1(y))− hr((F ηs)−1(y))
∣∣ dy) ds→ 0.

We first consider (7.75). It is easy to see that, by Proposition 5.6, for everyN,n ∈ N,

∫ T

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

∣∣∣hrn((F η
(N)
s )−1(y))− hr((F η

(N)
s )−1(y))

∣∣∣ dy
 ds

=
∫ T

0

(∫
[0,χ(N)(s−)∧L]

|hrn(x)− hr(x)|η(N)
s (dx)

)
ds

≤
∫ T

0

(∫
[0,L]

|hrn(x)− hr(x)|η(N)
s (dx)

)
ds.

By the same argument that is used to prove Proposition 5.7 of [17], we can show
that

(7.77)

∫ T

0

(∫
[0,L]

|hrn(x)− hr(x)|η(N)
s (dx)

)
ds

≤
(〈

1, η(N)
0

〉
+ E

(N)
(t)
)∫ L

0

|hrn(x)− hr(x)|dx.

Since supN
(〈

1, η(N)
0

〉
+ E

(N)
(t)
)
< ∞ due to Assumption 3.1, and hrn converges

in L1
loc[0, H

r) to hr, we obtain (7.75) from (7.77). Similarly, observe that∫ T

0

(∫ Q(s)∧Fηs (L)

0

∣∣hrn((F ηs)−1(y))− hr((F ηs)−1(y))
∣∣ dy) ds

≤
∫ T

0

(∫
[0,L]

|hrn(x)− hr(x)|ηs(dx)

)
ds.

By (7.65) and the convergence of hrn to hr in L1
loc[0, H

r), the term on the right-
hand-side of the above display converges to 0, as n→∞, and (7.76) follows. �

Proof of Proposition 7.2. We first show that, for any L < Hr,

E

[
sup
t∈[0,T ]

C
(N)

1 (t, L)

]
→ 0 as N →∞.(7.78)

Indeed, this follows from Lemma 7.6 and an application of the dominated conver-
gence theorem, where the latter is justified because, by (7.71), (7.72) of Lemma
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7.5,

E

[
sup
t∈[0,T ]

C
(N)

1 (t, L)

]
≤ E

[∫ T

0

(∫
[0,L]

hr(x)η(N)
s (dx)

)
ds

]

+E

[∫ T

0

(∫
[0,L]

hr(x)ηs(dx)

)
ds

]
,

which is bounded uniformly in N by (7.66) and Assumption 3.1.
Taking first the supremum over t ∈ [0, T ], and next expectations and then the

limsup of both sides of (7.58), due to (7.78) we conclude that for every L < Hr,

(7.79)
lim supN→∞ E

[
supt∈[0,T ]

∣∣∣A(N)

θ(N),η(t)− R̃(t)
∣∣∣]

≤ sup
N

E
[
C

(N)

2 (T, L)
]

+ E
[
C3(T, L)

]
.

However, by Proposition 5.5(3a), as L→ Hr,

sup
N

E
[
C

(N)

2 (T, L)
]
≤ sup

N
E

[∫ T

0

∫
[L,Hr)

hr(x)η(N)
s (dx)ds

]
→ 0.

On the other hand, by the same argument that was used to show E[R3(m)] → 0
as m→ M in the proof of Proposition 5.17 in [17], it follows that Assumption 3.3
implies

lim
L→Hr

E
[
C3(T, L)

]
= 0.

Then the proposition is a direct consequence of the last three displays and the fact
that R

(N) → R.

Combining the above results, we now prove the main limit result.

Proof of Theorem 7.1. Fix t ∈ [0,∞) such that ν(N)
t

w→ νt, η(N) w→ η, E
(N)

(t)→
E(t), X

(N)
(t) → X(t), R

(N)
(t) → R(t), A

(N)

·,ν
w→ A·,ν , D

(N)

·
w→ A·,ν , A

(N)

·,η
w→ A·,η,

S
(N)

·
w→ A·,η as N →∞. Since Y

(N) → Y a.s., this occurs for t outside a countable
set. By Proposition 5.17 of [17], this implies that as N →∞,

(7.80) D
(N)

ϕ (t)→ Aϕ,ν(t) =
∫ t

0

〈ϕ(·, s)hs(·, s), νs〉 ds, ϕ ∈ Cb([0, Hs)× R+).

An analogous argument of Proposition 5.17 of [17] also implies that as N →∞,

(7.81) S
(N)

ψ (t)→ Aψ,η(t) =
∫ t

0

〈ψ(·, s)hr(·, s), ηs〉 ds, ψ ∈ Cb([0, Hr)× R+).

In particular, when ϕ = ψ = 1, the above two displays together with Proposition
5.1(2) and Proposition 5.5(2) imply that (3.39) holds. Also we immediately obtain
that, as N →∞, 〈1, ν(N)

t 〉 → 〈1, νt〉 and 〈1, η(N)
t 〉 → 〈1, ηt〉. When combining with

(2.15), (2.17), (2.14), (2.20), (2.12), (2.6), (7.56), this implies that all the equations
in Definition 3.3 are satisfied at time t expect (3.40) and (3.42).

It only remains to show that (3.40) and (3.42) are also satisfied at time t. This
can be proved first for (3.40) and then for (3.42) by using the argument in proving
that ν and K satisfy (3.5) in the proof of Theorem 5.15 in [17]. Then it follows that
all fluid equations are satisfied for all but countably many t. By right-continuity
(with respect to t) of each of the terms in all fluid equations, we conclude that all
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fluid equations are a.s. satisfied for all t ∈ [0,∞). This completes the proof of the
desired result that (X, ν, η) satisfies the fluid equations.

7.2. Proof of Theorem 3.8. This section is devoted to the proof of Theorem 3.8.
Observe that the virtual waiting time defined in (2.18) can be rewritten in terms
of the fluid-scaled quantities as

W (N)(t) .= inf
{
s ≥ 0 : D

(N)
(t+ s)−D(N)

(t) + T (N)

t (s) > Q
(N)

(t)
}
.(7.82)

We first show that for each t ∈ [0,∞), T (N)

t ⇒ T t as N → ∞. Notice that a
customer j who arrived into the system before time t and has not reneged by time
t must have a potential waiting time w

(N)
j (u) > u − t for all u > t sufficiently

small. In addition, for that customer to have reneged from the queue (that is,
before entering service) in the period [t, t+ s], there must exist a time u ∈ [t, t+ s]
when the customer is still in queue (i.e., has not yet entered service) or, equivalently,
satisfies w(N)

j (u) < χ(N)(u−), the waiting time of the head-of-the-line customer just
prior to u, and the customer reneges, so that her potential waiting time changes
from linear increase to being flat. Therefore, for each s ∈ [0,∞), T (N)

t (s) can be
alternately expressed as

T (N)
t (s) =

∑
u∈[t,t+s]

E(N)(u)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u>+)=0

)11{u−t<w(N)
j (u)≤χ(N)(u−)}.

Let

T (N),1
t (s) .=

∑
u∈[t,t+s]

E(N)(u)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u+)=0

)11{w(N)
j (u)≤χ(N)(u−)}

and

T (N),2
t (s) .=

∑
u∈[t,t+s]

E(N)(u)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u+)=0

)11{w(N)
j (u)≤u−t}.

It is easy to see that T (N)
t (s) = T (N),1

t (s) − T (N),2
t (s), T (N),1

t (s) = R(N)(t + s) −
R(N)(t) and T (N),2

t (s) ≤ S(N)(t+ s)−S(N)(t). Therefore, an application of Kurtz’
criteria in Proposition 6.2 shows that the relative compactness of the fluid scaled
versions T (N),1

t and T (N),2

t of T (N),1
t and T (N),2

t , respectively, follows from that of
R

(N)
and S

(N)
established in Lemma 6.3. By a straightforward adaption of the

argument used in Proposition 7.2 to show the convergence of R
(N)

to R, we can
conclude that T (N)

t (s)⇒ T t as N →∞.
Recall the application of the Skorokhod representation theorem in Theorem 7.1

to assume, without loss of generality, that Y
(N)

converges a.s. to Y . Here, we
can also assume, in addition, that T (N)

t (s) → T t a.s., as N → ∞. Since Q is
continuous at t and, by (7.54), A1,ν =

∫ ·
0
〈hs, νs〉ds is continuous by the integral

representation, and T t has continuous paths by definition, it follows that, almost
surely, Q

(N)
(t) → Q(t) and for each T ∈ [0,∞), sups∈[0,T ] |D

(N)
(t + s) − A1,ν(t +

s)| → 0 and sups∈[0,T ] |T
(N)

t (s)−T t| → 0 as N →∞. From (7.82), it is easy to see
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that W (N)(t) ≤ (D
(N)

)−1(D
(N)

(t)+Q
(N)

(t))−t for each N . By the tightness result
established in Theorem 6.1, we know that D

(N)
(t) +Q

(N)
(t) is bounded uniformly

in N and due to Lemma 4.10 of [23] and the assumption that A1,ν is uniformly

strictly increasing, we also know that (D
(N)

)−1 → A
−1

1,ν uniformly on compact sets
as N → ∞. Hence, W (N)(t) is bounded uniformly in N . Therefore there exists a
subsequence, W (Nn)(t), n ∈ N, that converges to a limit in [0,∞), which we denote
by W ∗. From (7.82) and the right-continuity of D

(N)
, Q

(N)
and T (N)

t , we then have
D

(Nn)
(t + W

(Nn)
(t)) −D(Nn)

(t) + T (Nn)

t (W
(Nn)

(t)) ≥ Q
(Nn)

(t). Sending n → ∞,
we obtain

(7.83) A1,ν(t+W ∗)−A1,ν(t) + T t(W ∗) ≥ Q(t).

Together with (3.57), this shows that W (t) ≤W ∗. Now, suppose that W (t) < W ∗,
and fix w such that W (t) < w < W ∗. Since A1,ν is uniformly strictly increasing
and T t is non-decreasing, the inequality (7.83) implies that A1,ν(t+w)−A1,ν(t) +

T t(w) > Q(t). Therefore, for sufficiently large N , we have D
(N)

(t+w)−D(N)
(t) +

T (N)

t (w) > Q
(N)

(t) and hence W (N)(t) ≤ w. In turn, this implies that W (Nn)(t) ≤
w for sufficiently large n ∈ N. Sending n → ∞ and using the convergence of
W (Nn)(t) to W ∗, we then obtain W ∗ ≤ w. This contradicts the choice of w. Hence
W (t) = W ∗, and this proves the desired result.
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Appendix A. Explicit Construction of the State Processes

In this section, we construct all state processes and auxiliary processes in Section
2.2 from the initial data {E(N)

0 , X(N)(0), w(N)
j (0), a(N)

j (0), j = −E(N)
0 + 1, · · · , 0},

{α(N)
E (t), t ∈ [0,∞)}, {vj , j ∈ Z} and {rj , j ∈ Z}.
Fix N and, for simplicity, we omit the dependence on N in notation. Let E(0) =

0. The process E on [0,∞) can be obtained from αE using the relation (2.1). For
j ∈ N, let wj(0) = 0. Let ` = 0, τ0 = 0, and let R(τ`) = D(τ`) = K(τ`) = 0,

(A.1) Q(τ`)
.= [X(τ`)−N ]+,

and for j > E(τ`), let wj(τ`) = aj(τ`) = 0. Now, for t ∈ [τ`,∞), define

(A.2) χ`(t) .= inf{x > 0 : ητ` [0, x] ≥ Q(τ`)}+ t− τ`.
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Also, for j = −E0 + 1, · · · , 0, · · · , E(τ`) and t ∈ [τ`,∞), let

w`j(t)
.= (wj(τ`) + t− τ`) ∧ rj ,

a`j(t)
.=
{

0 if wj(τ`) = rj or wj(τ`) ≤ χ`(τ`),
(aj(τ`) + t− τ`) ∧ vj if χ`(τ`) < wj(τ`) < rj ,

η`t
.=

E(τ`)∑
j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o,

ν`t
.=

E(τ`)∑
j=−E0+1

δaj(t)11n
daj
dt (t+)>0

o,

R`(t) .=
E(τ`)∑

j=−E0+1

∑
s∈[0,t]

11n
wj(s)≤χl(s−),

dwj
dt (s−)>0,

dwj
dt (s+)=0

o,

D`(t) .=
E(τ`)∑

j=−E0+1

∑
s∈[0,t]

11n
daj
dt (s−)>0,

daj
dt (s+)=0

o.
Next, define

τ`+1
.= inf{t > 0 : (D`(t)−D(τ`)) ∧ (R`(t)−R(τ`)) ∧ (E(t)− E(τ`)) > 0}.

For t ∈ [τ`, τ`+1), let Y (t) = Y `(t) for Y = wj , aj , j ∈ −E0+1, . . . , E(τ`), R, D, η, ν
and χ and set Y (t) = Y (τ`) for Y = X, Q, wj , aj , j > E(τ`). Moreover, define

X(τ`+1) .= X(τ`) + E(τ`+1)− E(τ`)−D(τ`+1) +D(τ`)
−R(τ`+1) +R(τ`),

ητ`+1

.= η`τ`+1
+ (E(τ`+1)− E(τ`))δ0,

and, if E(τ`+1) > E(τ`), then E(τ`+1) = E(τ`) + 1, and then let wj(τ`+1) .= 0 for
j ∈ {E(τ`) + 1, . . . , E(τ`+1)}. In this case, Q(τ`+1) and χ(τ`+1) can be defined via
the equations (A.1) and (A.2), but with ` replaced by ` + 1, and the procedure
can be reiterated. Now, max{` : τ` ≤ t} is bounded by E0 + E(t), and is therefore
a.s. finite. Therefore, τ` → ∞ as ` → ∞, and so the above procedure constructs
the above processes on [0,∞). K and S can then be defined, respectively, via the
equations (2.14) and (2.13).

For each j ≥ −E(N)
0 , by the construction, we have that

wj(t) =
∑

E(`)≥j

11[τ`,τ`+1)(t)(wj(τ`) + t− τ`) ∧ rj

=
{
t ∧ rj if j = −E(N)

0 , · · · , 0,
(t− ζj) ∧ rj otherwise,

where ζj = inf{t > 0 : E(t) = j}. Hence wj constructed is indeed the potential
waiting time process of customer j. It is also not to hard to see that aj constructed
is the age process of customer j and satisfies (2.7). We next show that the process
χ constructed satisfies (2.5). It is easy to see that χ(0) = χ0(0) by (A.2) with t = 0
and ` = 0. The χ(0) satisfies (2.5) for t = 0. When t ∈ [τ0, τ1), Q(t) = Q(0),
ηt = η0

t , and χ(t) = χ0(t). Then we can see that

χ0(t) = inf{x > 0 : ητ0 [0, x] ≥ Q(τ0)}+ t− τ0 = inf{x > 0 : ηt[0, x] ≥ Q(t)}.



FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING 45

Hence χ satisfies (2.5) on the interval [τ0, τ1). By the standard induction argument,
we can see that χ satisfies (2.5) for all t ≥ 0.

For each t ≥ 0, by the construction, we have that

ηt =
∞∑
`=0

11[τ`,τ`+1)(t)
E(τ`)∑

j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o

=
∞∑
`=0

11[τ`,τ`+1)(t)
E(t)∑

j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o

=
E(t)∑

j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o.
This shows that the η constructed satisfies (2.3). The similar argument shows that
the processes ν, D and R constructed satisfy (2.8), (2.9) and (2.11), respectively.
Finally, K and S satisfy (2.14) and (2.13) by the construction.

Recall that, for t ∈ [0,∞), F̃t is the σ-algebra generated by

(E0, X(0), αE(s), wj(s), aj(s), j ∈ {−E0 + 1, . . . , 0} ∪ N, s ∈ [0, t]}
and {Ft} is the associated completed, right-continuous filtration.

Lemma A.1. The processes wj , aj , j ≥ −E0+1 and E, R, D, η, ν, χ, X, Q, K, S
are càdlàg and {Ft}-adapted.

Proof. The càdlàg property of those processes follows from the construction. Now
we show that all the processes are {Ft}-adapted. Indeed, it follows immediately
from (2.1), (2.3), (2.8), (2.9) and (2.10) that E, η, ν, D and S are Ft-adapted. We
next show that χ is Ft-adapted. By equations (2.4) and (2.5) evaluated at time 0,
it follows that χ(0) is a function of X(0) and η0 and hence F0-adapted. Now, let
t > 0. For each ` ≥ 0, by the induction argument, χ`(t) is Ft-adapted and τ` is
an Ft-stopping time. Since χt = χ`t if t ∈ [τ`, τ`+1), then χ is Ft-adapted. Due to
equations (2.11) and (2.12), since {χ(N)(s−), s ≤ t} is F (N)

t -adapted, then X(N) is
F (N)
t -adapted. Moreover, by (2.11), we have R is F (N)

t -adapted. Finally, it follows
from (2.4) and (2.14) that Q and K are Ft-adapted. �

The next lemma establishes some basic properties of χ(t), the waiting time of
the head-of-the-line customer at time t, defined in (2.5).

Lemma A.2. χ is piecewise linear with downward jumps that occur when the
head-of-the-line customer either enters service (due to a departure from service)
or reneges from the queue. Hence, χ(t−) ≥ χ(t) for every t ∈ (0,∞). Moreover,
for every t > 0, there exists εt(ω) ∈ (0, t) such that for all t̃ ∈ (t − εt(ω), t),
χ(t−)− χ(t̃−) = t− t̃ > 0.

Proof. By the construction, χt = χ`t if t ∈ [τ`, τ`+1). Since χ` is linear on [τ`, τ`+1),
χ is piecewise linear. Also χ can only jump at τ`+1, ` ≥ 0. Based on the definition
of τ`+1, it is not hard to see that χ can only have a downward jump at τ`+1 when the
head-of-the-line customer either enters service (D`(τ`+1) − D(τ`) > 0) or reneges
from the queue (R`(τ`+1) − R(τ`) > 0). Then we have χ(t−) ≥ χ(t) for every
t ∈ (0,∞). The last statement of the lemma follows from the fact that χ is càdlàg
and piecewise linear. �
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