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Abstract. For a general class of stochastic differential equations with
reflection that admit a Markov weak solution and satisfy a certain Lp

continuity condition, p > 1, it is shown that the associated reflected
diffusion can be decomposed as the sum of a local martingale and a con-
tinuous, adapted process of zero p-variation. In particular, when p = 2,
this implies that the associated reflected diffusion is a Dirichlet processes
in the sense of Föllmer. As motivation for such a characterization, it is
also shown that reflected diffusions belonging to a specific family within
this class are not semimartingales, but are Dirichlet processes. This fam-
ily of diffusions arise naturally as approximations of certain stochastic
networks that use the so-called generalized processor sharing scheduling
policy.
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1. Introduction

1.1. Background and Motivation. This work identifies fairly general suf-
ficient conditions under which a reflected diffusion can be decomposed as
the sum of a local martingale and a continuous adapted process of zero p-
variation, for some p greater than or equal to one. As motivation for such
a characterization, it is also shown that a large class of multidimensional,
obliquely reflected diffusions fail to be semimartingales, but are nevertheless
Dirichlet processes in the sense of Föllmer [15]. Dirichlet processes are pro-
cesses that can be expressed (uniquely) as the sum of a local martingale and
a continuous process that has zero quadratic variation and, as such, are an
extension of the class of continuous semimartingales. As is well-known, semi-
martingales form an important class of processes for stochastic integration,
they are stable under C2 transformations and admit an Itô change-of-variable
formula. However, there are many natural operations that lead out of the
class of semimartingales and motivate the consideration of Dirichlet pro-
cesses. For example, C1 functionals of Brownian motion, certain functionals
of stationary symmetric Markov processes associated with Dirichlet forms
[18], and Lipschitz functionals of a broad class of semimartingale reflected
diffusions in bounded domains [26, 27], are all Dirichlet processes that are
in general not semimartingales. Moreover, Dirichlet processes exhibit many
nice properties analogous to semimartingales. They admit a natural, Doob-
Meyer-type decomposition [7], they are stable under C1 transformations (see
Proposition 11 of [28] and also [2]) and there are extensions of stochastic
calculus and Itô’s formula that apply to Dirichlet processes (see [14], [16]
and Chapter 4 of [28]) or, more generally, to processes that admit a decom-
position as the sum of a local martingale and a continuous, adapted process
of bounded p-variation, for p ∈ (1, 2) [2].

The theory of reflected diffusions is most well-developed for semimartin-
gale or symmetric reflected diffusions. In particular, the Skorokhod problem
approach to the study of reflected diffusions [29, 10, 22] is automatically
limited to semimartingales, while the Dirichlet form approach is best suited
to analyze symmetric diffusions (see, e.g., [5], [18]). However, using the
submartingale formulation of Stroock and Varadhan [30] or the extended
Skorokhod problem [22], it is possible to construct reflected diffusions that
are neither semimartingales nor symmetric processes [3, 4, 23, 24, 31]. This
leads naturally to the question of determining when these reflected diffusions
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are semimartingales and, if they are not semimartingales, whether they be-
long to some other tractable class of processes such as Dirichlet processes.
There has been quite a lot of work that shows that, under a certain condition
on the domain and reflection directions (namely, the completely-S condition
and generalizations of it), the associated reflected diffusions are semimartin-
gales [22, 32]. In contrast, it has been a longstanding open problem (see
Section 4(iii) of [32]) to develop a theory for multidimensional reflected dif-
fusions for which this condition fails to hold (some results in two dimensions
can be found in [3, 4, 31]). As shown in [23, 24], such reflected diffusions
arise naturally as approximations of a so-called generalized processor shar-
ing model used in telecommunication networks. Thus the development of
such a theory is also of interest from the perspective of applications.

The first main result of this work (Theorem 3.1) shows that multidimen-
sional reflected diffusions belonging to a slight generalization of the family
of reflected diffusions obtained as approximations in [23, 24] fail to be semi-
martingales. In two dimensions and for the case of reflected Brownian mo-
tion, this result follows from Theorem 5 of [31] (also see [3] for an alternative
proof of this result). However, the analysis in [31] uses constructions in polar
coordinates that seem not easily generalizable to higher dimensions. We fol-
low a different approach, which is independent of dimension and allows us to
establish the result for uniformly elliptic reflected diffusions, with possibly
state-dependent diffusion coefficients, rather than just reflected Brownian
motion.

The next main result (Theorem 3.5) shows that a broad class of reflected
diffusions admit a decomposition as the sum of a local martingale and a
process of zero p-variation, for some p > 1. This class consists of Markov,
weak solutions to stochastic differential equations with reflection that have
locally bounded drift and dispersion coefficients and satisfy a certain Lp

continuity requirement (see Assumption 2). This continuity requirement
is satisfied, for example, when the associated extended Skorokhod map is
Hölder continuous with exponent greater than or equal to 2/p, but also holds
under much weaker conditions that do not even require that the (extended)
Skorokhod map be well-defined (see Remark 2.4). For the case when p = 2,
which holds, for example, when the corresponding extended Skorokhod map
is Lipschitz continuous, this implies that the associated reflected diffusion
is a Dirichlet process. Using this result, it is shown in Corollary 3.6 that
the non-semimartingale reflected diffusions considered in Theorem 3.1 are
Dirichlet processes.

The paper is organized as follows. Some common notation used through-
out the paper is first summarized in Section 1.2. The class of stochastic
differential equations with reflection under consideration is then defined in
Section 2, while Section 3 contains a rigorous statement of the main results.
The proof of Theorem 3.1 is presented in Section 4, while the proof of Theo-
rem 3.5 is given in Section 5. Some elementary results required in the proofs
are relegated to the Appendix.
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1.2. Notation. As usual, R+ or [0,∞) denote the space of all non-negative
reals, and N denotes the space of all positive integers. Given two real num-
bers a and b, a∧b and a∨b denote the minimum and maximum, repectively,
of a and b. For each positive integer J ≥ 1, RJ denotes J-dimensional
Euclidean space and the nonnegative orthant in this space is denoted by
RJ

+ = {x ∈ RJ : xi ≥ 0 for i = 1, · · · , J}. The Euclidean norm of x ∈ RJ

is denoted by |x| and the inner product of x, y ∈ RJ is denoted by 〈x, y〉.
The vectors (e1, e2, . . . , eJ) represent the usual orthonormal basis for RJ ,
with ei being the ith coordinate vector. Given a vector u ∈ RJ , uT denotes
its transpose, with analogous notation for matrices For x, y ∈ RJ and a
closed set A ⊂ RJ , d(x, y) denotes the Euclidean distance between x and y,
and d(x,A) = infy∈A d(x, y) denotes the distance between x and the set A.
For each r ≥ 0, Nr(A) = {x ∈ RJ : d(x,A) ≤ r}. The unit sphere in RJ

is represented by S1(0). Given a set A ⊂ RJ , A◦ denotes its interior, A its
closure and ∂A its boundary.

The space of continuous functions on [0,∞) that take values in RJ is
denoted by C [0,∞), and, given a set G ⊂ RJ , CG [0,∞) denotes the subset of
functions f in C [0,∞) such that f(0) ∈ G. The spaces C [0,∞) and CG [0,∞)
are assumed to be equipped with the topology of uniform convergence on
compact sets. Given f ∈ C [0,∞) and T ∈ [0,∞), Var[0,T ]f denotes the
R+ ∪ {∞}-valued number that equals the variation of f on [0, T ]. Also,
given a real-valued function f on [0,∞), its oscillation is defined by

Osc(f ; [s, t]) = sup
s≤u1≤u2≤t

|f(u2)− f(u1)|; 0 ≤ s ≤ t <∞.

For each A ∈ RJ , IA(·) denotes the indicator function of the set A, which
takes the value 1 on A and 0 on the complement of A.

Given two random variables U (i) defined on a probability space
(Ω(i),F (i),P(i)) and taking values in a common Polish space S, i = 1, 2,

the notation U (1) (d)
= U (2) will be used to imply that the random variables

are equal in distribution. Given a sequence of S-valued random variables
{U (n), n ∈ N} and U , with U (n) defined on (Ω(n),F (n),P(n)) and U defined
on (Ω,F ,P), U (n) ⇒ U is used to denote weak convergence of the sequence
U (n) to U . Also, if the sequence of random variables are all defined on the

same probability space (Ω,F ,P), the notation U (n) (P)→ 0 is used to denote
convergence in probability.

2. The Class of Reflected Diffusions

In Section 2.1, stochastic differential equations with reflection under are
introduced, and the basic assumptions on the class under study is introduced
in Section 2.2. A motivating example and some useful ramifications of the
assumptions are then presented in Section 2.3.
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2.1. Stochastic Differential Equations with Reflection. The so-called
extended Skorokhod problem (ESP), introduced in [22], is a convenient tool
for the pathwise construction of reflected diffusions. The data associated
with an ESP is the closure G of an open, connected domain in RJ and a
set-valued mapping d(·) defined on G such that d(x) = {0} for x ∈ G◦, d(x)
is a non-empty, closed and convex cone in RJ with vertex at the origin for
every x ∈ ∂G and the graph of d(·) is closed. Roughly speaking, given a
continuous path ψ, the ESP associated with (G, d(·)) produces a constrained
version φ of ψ that is restricted to live within the domain G by adding to it
a “constraining term” η whose increments over any interval lie in the closure
of the convex hull of the union of the allowable directions d(x) at the points
x visited by φ during this interval. We now state the rigorous definition of
the ESP. (In [22], the ESP was formulated more generally for càdlàg paths,
but the formulation below will suffice for our purposes since we consider
only continuous processes.)

Definition 2.1. (Extended Skorokhod Problem) Suppose (G, d(·)) and
ψ ∈ CG [0,∞) are given. Then (φ, η) ∈ CG [0,∞) × C [0,∞) are said to
solve the ESP for ψ if φ(0) = ψ(0), and if for all t ∈ [0,∞), the following
properties hold:

(1) φ(t) = ψ(t) + η(t);
(2) φ(t) ∈ G;
(3) For every s ∈ [0, t)

(2.1) η(t)− η(s) ∈ co
[
∪u∈(s,t]d(φ(u))

]
,

where co[A] represents the closure of the convex hull generated by the
set A.

If (φ, η) is the unique solution to the ESP for ψ, then we write φ = Γ̄(ψ),
and refer to Γ̄ as the extended Skorokhod map (ESM).

If a unique solution to the ESP exists for all ψ ∈ CG [0,∞), then the
associated ESM Γ̄ is said to be well-defined on CG [0,∞). In this case, it is
easily verified (see Lemma A.1) that if φ = Γ̄(ψ), then for any s ∈ [0,∞),
φs = Γ̄(ψs), where

(2.2) ψs(t) .= φ(s) + ψ(s+ t)− ψ(s) φs
.= φ(s+ t).

Moreover, a well-defined ESM is said to be Lipschitz continuous on CG [0,∞)
if for every T < ∞ there exists KT < ∞ such that, for i = 1, 2, given
ψ(i) ∈ CG [0,∞) with corresponding solution (φ(i), η(i)), we have

(2.3) sup
s∈[0,T ]

|φ(1)(s)− φ(2)(s)| ≤ KT sup
s∈[0,T ]

|ψ(1)(s)− ψ(2)(s)|.

The ESP is a generalization of the so-called Skorokhod Problem (SP)
introduced in [29]. Unlike the SP, the ESP does not require that the con-
straining term η have finite variation on bounded intervals (compare Def-
initions 1.1 and 1.2 of [22]). The ESP can be used to define solutions to



6 WEINING KANG AND KAVITA RAMANAN

stochastic differential equations with reflection (SDERs) associated with a
given pair (G, d(·)) and drift and dispersion coefficients b : RJ 7→ RJ and
σ : RJ 7→ RJ × RN .

Definition 2.2. Given (G, d(·)), b(·), σ(·), the triple (Zt, Bt), (Ω,F ,P), {Ft}
is said to be a weak solution to the associated SDER if and only if

(1) {Ft} is a filtration on the probability space (Ω,F ,P) that satisfies the
usual conditions.

(2) {Bt,Ft} is an N -dimensional Brownian motion.
(3) P

(∫ t
0 |b(Z(s))| ds+

∫ t
0 |σ(Z(s))|2 ds <∞

)
= 1 ∀t ∈ [0,∞).

(4) {Zt,Ft} is a J-dimensional, adapted process such that P a.s., (Z, Y )
solves the ESP for X, where Y .= Z −X and

(2.4) X(t) = Z(0) +
∫ t

0
b(Z(s)) ds+

∫ t

0
σ(Z(s)) dB(s) ∀t ∈ [0,∞).

(5) The set {t : Z(t) ∈ ∂G} has P a.s. zero Lebesgue measure. In
particular,

(2.5)
∫ ∞

0
I∂G(Z(s)) ds = 0.

This is similar to the usual definition for weak solutions for SDEs (see, for
example, Definitions 3.1 and 3.2 of [20]), except that property 4 is modified
to define reflection and property 5 captures the notion of “instantaneous”
reflection (see, for example, pages 87–88 of [17]). A strong solution can also
be defined in an analogous fashion.

Definition 2.3. Given a probability space (Ω,F ,P) and an N -dimensional
Brownian motion B on (Ω,F ,P), Z is said to be a strong solution to the
SDER associated with (G, d(·)), b(·), σ(·) and initial condition ξ if P(Z(0) =
ξ) = 1 and properties 3–5 of Definition 2.2 hold with {Ft} equal to the
completed and augmented filtration generated by the Brownian motion B.

For a precise construction of the filtration {Ft} referred to in Definition
2.3, see (2.3) of [20]). In what follows, given the constraining process Y in
property 4 of Definition 2.2, the quantity L will denote the associated total
variation measure: for 0 ≤ s ≤ t <∞, let

(2.6) L(s, t) .= Var(s,t]Y and L(t) .= L(0, t].

Observe that the process L in the second definition in (2.6) is {Ft}-adapted
and takes values in the extended non-negative reals, R+.

2.2. Main Assumptions. We now introduce certain basic assumptions on
(G, d(·)), b(·) and σ(·) that will be used in the paper. In Section 2.3 we
provide a concrete motivating example of a family of SDERs that arise in
applications, which satisfy all the stated assumptions.

The first assumption asserts that Markov, weak solutions of the associated
SDER exist.
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Assumption 1. There exists a weak solution to the SDER associated with
(G, d(·)), b(·), σ(·) that has the Markov property.

Next, we impose a kind of Lp-continuity condition on the ESM.

Assumption 2. There exist p > 1, q ≥ 2 and KT < ∞, T ∈ (0,∞), such
that the weak solution Z to the SDER satisfies, for every 0 ≤ s ≤ t ≤ T ,

(2.7) E [|Y (t)− Y (s)|p | Fs] ≤ KTE

[
sup
u∈[s,t]

|X(u)−X(s)|q | Fs

]
,

where X is the process defined by (2.4) and Y .= Z −X.

Remark 2.4. Assumption 2 holds under rather mild conditions on the ESP
– for example, when the following oscillation inequality is satisfied for any
solution (φ, η) to the ESP for a given ψ: for every 0 ≤ s ≤ t < ∞, there
exists Cs,t <∞ such that

Osc(φ, [s, t]) ≤ Cs,tOsc(ψ, [s, t]).

In this case, since (Z, Y ) solve the ESP for X, we have for 0 ≤ s ≤ t ≤ T ,

|Y (t)−Y (s)| ≤ Osc(Y, [s, t]) ≤ Cs,tOsc(X, [s, t]) ≤ 2CT sup
u∈[s,t]

|X(u)−X(s)|,

where CT = max0≤s≤t≤T Cs,t < ∞, and so Assumption 2 holds with p =
q = 2 and KT = 4C2

T . The oscillation inequality can be shown to hold
in many situations of interest (see, for example, Lemma 2.1 of [32]). If
the ESM associated with (G, d(·)) is well-defined and Lipschitz continuous
on CG [0,∞), then the oscillation inequality is also automatically satisfied,
and so Assumption 2 again holds with p = q = 2. More generally, if the
ESM is well-defined and Hölder continuous on CG [0,∞) with some exponent
α ∈ (0,∞), then Assumption 2 holds for any p > 1 ∨ (α/2) and q = αp.

Assumption 3. The coefficients b and σ are locally bounded, i.e., they are
bounded on every compact subset of G.

2.3. A Motivating Example and Ramifications of the Assumptions.
We now describe a family of multi-dimensional ESPs (G, d(·)) that arise in
applications. Fix J ∈ N, J ≥ 2. The J-dimensional ESPs in this family
have domain RJ

+ and a constraint vector field d(·) that is parametrized by a
“weight” vector α = (α1, . . . , αJ) with αi > 0 for i = 1, . . . , J and

∑J
i=1 αi =

1. Associated with each such α is the ESP (RJ
+, d(·)), where for x ∈ ∂G,

d(x) .=

{ ∑
i:xi=0

βidi : βi ≥ 0

}
with

(di)j
.=

{
− αj

1− αi
for j 6= i,

1 for j = i,
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for i, j = 1, . . . , J . As mentioned in the introduction in Section 1.1, reflected
diffusions associated with this family were shown in [23, 24] to arise as
heavy traffic approximations of the so-called generalized processor sharing
(GPS) model in communication networks (see also [9] and [11]). Indeed,
the characterization of this class of reflected diffusions serves as one of the
motivations for this work.

Next, we define a broad class of SDERs that slightly generalizes the family
of GPS ESPs.

Definition 2.5. We will say (G, d(·)), b(·), σ(·) are Class A SDERs if they
satisfy the following conditions.

(1) The ESM associated with the ESP (G, d(·)) is well-defined and Lip-
schitz continuous on CG [0,∞).

(2) G is a closed convex cone with vertex at the origin, V = {0} and
there exists ~v ∈ G such that

〈~v, d〉 = 0 for all d ∈ d(x) ∩ S1(0), x ∈ ∂G \ {0}.

(3) There exists a constant K̃ <∞ such that for all x, y ∈ G,

|σ(x)− σ(y)|+ |b(x)− b(y)| ≤ K̃|x− y|

and
|σ(x)| ≤ K̃ |b(x)| ≤ K̃(1 + |x|).

(4) The covariance function a : G→ RJ×RJ defined by a(·) = σT (·)σ(·)
is uniformly elliptic, i.e., there exists λ > 0 such that

(2.8) uTa(x)u ≥ λ|u|2 for all u ∈ RJ , x ∈ G.

The conditions in property 3 can be relaxed to a local Lipschitz and linear
growth condition on both b and σ, and the main result can still be proved
by localization using the current arguments. However, to keep the notation
simple, we impose the additional restrictions above.

Remark 2.6. ESPs in the GPS family defined above were shown to satisfy
properties 1 and 2 (with ~v = e1 + . . .+ eJ) of Definition 2.5 in Theorem 3.6
and Lemma 3.4 of [22].

In Theorem 2.7 we summarize some consequences of Assumptions 1–3,
showing in particular that Class A SDERs satisfy these assumptions. The
proof essentially follows from Theorem 4.3 of [22] and Proposition 4.1 of
[19]. To state the theorem, we will need to introduce the following set:

(2.9) V .= {x ∈ ∂G : there exists d ∈ S1(0) such that {d,−d} ⊂ d(x)}.

Theorem 2.7. Suppose (G, d(·)), b(·) and σ(·) satisfy Assumptions 1 and
2,and let (Zt, Bt), (Ω,F ,P), {Ft} be a weak solution to the associated SDER.
Then Z is an Ft-semimartingale on [0, TV), where

(2.10) TV
.= inf{t ≥ 0 : Z(t) ∈ V},
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and P a.s., Z admits the decomposition

(2.11) Z(·) = Z(0) +M(·) +A(·),
where for t ∈ [0, TV),

(2.12) M(t) .=
∫ t

0
σ(Z(s)) · dB(s), A(t) .=

∫ t

0
b(Z(s)) ds+ Y (t),

and Y has finite variation on [0, t] and satisfies

(2.13) Y (t) =
∫ t

0
γ(s) dL(s),

where L is given by (2.6) and γ(s) ∈ d(Z(s)), dL a.e. s ∈ [0, t]. Moreover,
if (G, d(·)), b(·) and σ(·) satisfy properties 1 and 3 of Definition 2.5, then
they also satisfy Assumptions 1, 3 and Assumption 2 with p = q = 2. In this
case, Z is in fact the pathwise unique strong solution to the SDER, satisfies
the strong Markov property and has E[|Z(t)|2] < ∞ for every t ∈ (0,∞) if
E[|Z(0|2] <∞.

Proof. By property 4 of Definition 2.2, (Z,Z−X) P a.s. satisfy the ESP for
X, where X is defined by (2.4) and is hence a semimartingale. Theorem 2.9
of [22] then shows that Y = Z−X has a.s. finite variation on any closed sub-
interval of [0, TV). When combined with the definition (2.4) of X and the
fact that

∫ ·
0 b(Z(s)) ds is a process of bounded variation, this establishes the

first assertion that Z is an Ft-semimartingale on [0, TV) with decomposition
as in (2.11)–(2.13).

Next, suppose (G, d(·)), b(·), σ(·) satisfy properties 1 and 3 of Definition
2.5. Then property 3 of Definition 2.5 implies Assumption 3, and, by Re-
mark 2.4, property 1 ensures that Assumption 2 holds with p = q. Moreover,
Theorem 4.3 of [22] and Proposition 4.1 of [19] show that, in fact, the as-
sociated SDER admits a pathwise unique strong solution Z, which has the
strong Markov property and, so in particular, Assumption 1 is also satis-
fied. Thus Assumptions 1–3 hold. The last assertion of the theorem can
be established using standard techniques, by a modification of the proof in
Theorem 4.3 of [22], in the same manner as this result is proved for strong
solutions to SDEs, and so we omit the details of the proof. �

We conclude this section by stating a consequence of property 2 of Def-
inition 2.5 that will be useful in the sequel. Let Γ1 denote the (extended)
Skorokhod map associated with the 1-dimensional (extended) Skorokhod
problem with G = R+ and d(0) = R+, d(x) = 0 if x > 0. It is well-known
(see, for example, [29] or Lemma 3.6.14 of [20]) that Γ1 is well-defined on
CR+ [0,∞), and in fact has the explicit form

(2.14) Γ1(ψ)(t) = ψ(t) + sup
s∈[0,t]

[−ψ(s)] ∨ 0.

Lemma 2.8. Suppose that (G, d(·)) satsifies property 2 of Definition 2.5. If
(φ, η) solves the associated ESP for ψ ∈ CG [0,∞), then 〈φ, ~v〉 = Γ1(〈ψ, ~v〉).
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The proof of this lemma is exactly analogous to the proof of Corollary 3.5
of [22], and is thus omitted.

3. Statement of Main Results

Theorem 2.7 shows that if V = ∅ then Z is a semimartingale. In fact, it
was shown in Theorem 1.3 of [22] that when V = ∅, the ESM coincides with
the SM. Our main focus is to understand the behavior of reflected diffusions
Z associated with ESPs (G, d(·)) for which V 6= ∅, with the GPS family
being a representative example. In [22] it was shown that, for the GPS
family of ESPs, Z is a semimartingale until the first time it hits the origin.
However, our first result, Theorem 3.1, shows that Z is not a semimartingale
on [0,∞).

Theorem 3.1. Suppose (G, d(·)), b(·) and σ(·) describe a Class A SDER.
Then the unique pathwise solution Z to the associated SDER is not a semi-
martingale.

The proof of Theorem 3.1 is given in Section 4.3, building on preliminary
results obtained in Sections 4.1 and 4.2. As mentioned in the introduction
given in Section 1.1, for the special case when G is a convex wedge in R2 and
the directions of constraint on the two faces are constant and point at each
other, b ≡ 0 and σ is the identity matrix (i.e., Z is a reflected Brownian
motion), this result follows from Theorem 5 of [31] (with the parameters
α = 1 and the wedge angle π less than 180◦ therein). The fact that, when
J = 2, the reflected Brownian motion Z defined here is the same as the
reflected Brownian motion defined via the submartingale formulation in [31]
follows from Theorem 1.4(2) of [22]. This two-dimensional result can also be
viewed as a special case of Proposition 4.13 of [3]. However, the proofs in [3]
and [31] do not seem to extend easily to higher dimensions. In this paper,
we take a different approach that is applicable in arbitrary dimensions and
to more general diffusions, in particular providing a different proof of the
two-dimensional result mentioned above.

As is well-known, when a process is a semimartingale, C2 functionals
of the process can be characterized using Itô’s formula. Theorem 3.1 can
thus be viewed as a somewhat negative result since it suggests that Class A
reflected diffusions and, in particular, reflected diffusions associated with the
GPS family that arise in applications, may not possess desirable properties.
However, we show in Corollary 3.6 that these diffusions are indeed tractable
by establishing that they belong to the class of Dirichlet processes (in the
sense of Föllmer). This follows as a special case of a more general result,
Theorem 3.5.

In order to state the theorem, we first recall the definitions of zero p-
variation processes and Dirichlet processes (see, e.g., [15], Theorem 2).
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Definition 3.2. For p > 0, a continuous process A is of zero p-variation if
and only if for any T > 0,

(3.15)
∑
ti∈πn

|A(ti)−A(ti−1)|p (P)→ 0,

for any sequence {πn} of partitions of [0, T ] with ∆(πn) .= maxti∈πn(ti+1 −
ti) → 0 as n → ∞. If the process A satisfies (3.15) with p = 2, then A is
said to be of zero energy.

Definition 3.3. The stochastic process Z is said to be a Dirichlet process
if the following decomposition holds:

(3.16) Z = M +A,

where M is an Ft-adapted local martingale and A is a continuous, Ft-
adapted, zero energy process with A(0) = 0.

Note that this is weaker than the original definition of a Dirichlet process
given by Föllmer [15], which required that M and A in the decomposition
(3.16) be square integrable and A satisfy E

[∑
ti∈πn |Ati −Ati−1 |2

]
→ 0 as

∆πn → 0, rather than (3.15) with p = 2. However, our definition coincides
with Definition 2.4 of [7] (see also Definition 12 of [28]).

Remark 3.4. The decomposition of a Dirichlet process Z, into a local
martingale and a zero energy process starting at 0, is unique. For any p > 1
and partition πn of [0, T ],∑

ti∈πn

|A(ti+1)−A(ti)|p ≤ max
ti∈πn

|A(ti+1)−A(ti)|p−1Var[0,T ](A).

Therefore, it follows that if A is continuous and of finite variation, then it is
also of zero p-variation, for all p > 1. In particular, this shows that the class
of Dirichlet processes generalizes the class of continuous semimartingales.

Theorem 3.5. Suppose (G, d(·)), b(·) and σ(·) satisfy Assumptions 1 and
3, let Z be an associated weak solution that satisfies Assumption 2 for some
p > 1, and let Y = Z −X, where X is defined by (2.4). Then Y has zero
p-variation.

As an immediate consequence of Theorem 3.5, Definition 3.3 and Theorem
2.7, we have the following result.

Corollary 3.6. Suppose (G, d(·)), b(·) and σ(·) satisfy Assumptions 1 and
3, and also Assumption 2 with p = 2. Then the associated reflected diffusion
is a Dirichlet process. In particular, reflected diffusions associated with Class
A SDERs are Dirichlet processes.
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4. Reflected Diffusions Associated with Class A SDERs

Throughout this section we will assume that (G, d(·)), b(·) and σ(·) de-
scribe a Class A SDER. Let B be an N -dimensional Brownian motion on a
given probability space (Ω,F ,P), let {Ft} be the right-continuous augmen-
tation of the filtration generated by B (see Definition (2.3) given in [20]).
Also, let Z be the pathwise unique strong solution to the associated SDER
(which exists by Theorem 2.7), let X be defined by (2.4), let Y .= Z − X
and let L be the total variation process of Y as defined in (2.6). We use E to
denote expectation with respect to P and, for z ∈ G, Pz (respectively, Ez) to
denote the probability (respectively, expectation) conditioned on Z(0) = z.

This section is devoted to the proof of our first main result, Theorem 3.1.
The key step is to show that the constraining process Y in the extended
Skorokhod decomposition for Z has P0 a.s. infinite variation. More precisely,
for a given ε ≥ 0, consider the hyperplane

(4.17) Hε
.=
{
x ∈ Rd : 〈~v, x〉 = ε

}
∩G,

where ~v is the vector in property 3 of Definition 2.5 and let

(4.18) τ ε
.= inf{t ≥ 0 : Z(t) ∈ Hε} ε ≥ 0.

Then we establish the following result.

Theorem 4.1. There exists T <∞ such that P0(L(T ) =∞) > 0.

A somewhat subtle point to note is that Theorem 4.1 does not immedi-
ately establish the fact that Z is not a semimartingale because we do not
know a priori that the decomposition Z = M +A given in (2.11) and (2.12)
must be the Doob decomposition of Z if were a semimartingale. However,
in Section 4.3 (see Proposition 4.2) we establish that this is indeed the case,
thus obtaining Theorem 3.1 from Theorem 4.1. First, in Section 4.1, we
establish Theorem 4.1 for the case when b ≡ 0. The proof for the general
case is obtained from this result via a Girsanov transformation in Section
4.2.

4.1. The Zero Drift Case. Throughout this section we assume b ≡ 0 and
we prove the following result, which implies Theorem 4.1 since P0(τ1 <
∞) = 1 in this case (see Lemma 4.10).

Proposition 4.1. If b ≡ 0, then we have

(4.19) E0

[
e−L(τ1)

]
= 0,

and hence,

(4.20) L(τ1) =∞ P0 a.s.

The proof of Proposition 4.1 is given in Section 4.1.3. First, in Section
4.1.1 we establish a simple upper bound on E0[e−L(τ1)]. We then establish
a weak convergence result in Section 4.1.2, which is subsequently used to
obtain certain estimates in Lemmas 4.8 and 4.9.
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4.1.1. An Upper Bound. To begin with, we use the strong Markov property
of Z to obtain an upper bound on E0[e−L(τ1)]. For ε > 0, recursively define
two sequences of times {τ εn}n∈N and {αεn}n∈N as follows: αε0

.= 0 and for
n ∈ N,

(4.21) τ εn
.= inf

{
t ≥ αεn−1 : Z(t) ∈ Hε

}
αεn

.= inf {t ≥ τ εn : Z(t) ∈ H0} ,

where H0 = {0} because G is a closed convex cone with vertex at 0. Also,
recall the definition of τ0 given in (4.18) with ε = 0. Since Z is continuous
and Hε and H0 are closed, it is clear that τ0, τ εn and αεn are Ft-stopping
times. For conciseness, we will often denote τ ε1 and αε1 simply by τ ε and αε,
respectively. Note that this is consistent with the notation of τ ε given in
(4.18).

Lemma 4.2. For every ε > 0,

E0

[
e−L(τ1)

]
≤

E0

[
PZ(τε)

(
τ0 ≥ τ1

)]
E0

[
PZ(τε) (τ0 ≥ τ1)

]
+ E0

[
EZ(τε)

[(
1− e−L(τ0)

)
I{τ0<τ1}

]] .
Proof. From the elementary inequality

L(τ1) ≥
∞∑
n=1

(L(αεn ∧ τ1)− L(τ εn ∧ τ1)),

it immediately follows that

(4.22) E0

[
e−L(τ1)

]
≤ E0

[
e
−
∞P

n=1
(L(αε

n∧τ1)−L(τε
n∧τ1))

]
.

On the set {αε ≥ τ1}, we have αεn ∧ τ1 = τ εn ∧ τ1 = τ1 for every n ≥ 2.
Therefore, the right-hand side of (4.22) can be decomposed as

E0

[
e
−
∞P

n=1
(L(αε

n∧τ1)−L(τε
n∧τ1))

]
= E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε≥τ1}

]
+E0

[
e
−
∞P

n=1
(L(αε

n∧τ1)−L(τε
n∧τ1))

I{αε<τ1}

]
.
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Conditioning on Fαε and using the fact that I{αε<τ1}, L(αε∧τ1) and L(τ ε∧
τ1) are Fαε-measurable, the last term above can be rewritten as

E0

[
e
−
∞P

n=1
(L(αε

n∧τ1)−L(τε
n∧τ1))

I{αε<τ1}

]
= E0

[
E0

[
e−
P∞

n=1(L(αε
n∧τ1)−L(τε

n∧τ1))I{αε<τ1}

∣∣∣Fαε

]]
= E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}E0

[
e
−
∞P

n=2
(L(αε

n∧τ1)−L(τε
n∧τ1))∣∣∣Fαε

]]

= E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}EZ(αε)

[
e
−
∞P

n=1
(L(αε

n∧τ1)−L(τε
n∧τ1))

]]

= E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}

]
E0

[
e
−
∞P

n=1
(L(αε

n∧τ1)−L(τε
n∧τ1))

]
,

where the second-last equality uses the strong Markov property of Z and the
last equality follows because Z(αε) ≡ 0. Combining the last two assertions
and rearranging terms, we obtain

E0

[
e
−
∞P

n=1
(L(αε

n∧τ1)−L(τε
n∧τ1))

]
=

E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε≥τ1}

]
1− E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}

] .
This, together with (4.22), yields the inequality

(4.23) E0

[
e−L(τ1)

]
≤

E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε≥τ1}

]
1− E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}

] .
We now show that the upper bound stated in the lemma follows from

(4.23). Indeed, using the non-negativity of L(αε ∧ τ1)− L(τ ε ∧ τ1) and the
strong Markov property of Z, we obtain

(4.24)
E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε≥τ1}

]
≤ E0

[
I{αε≥τ1}

]
= E0

[
E0

[
I{αε≥τ1} | Fτε

]]
= E0

[
PZ(τε)

(
τ0 ≥ τ1

)]
,

where recall τ0 = inf{t ≥ 0 : Z(t) ∈ H0}. Similarly, once again conditioning
on Fτε and using the strong Markov property of Z, we obtain

E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}

]
= E0

[
E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}

∣∣∣Fτε

]]
= E0

[
EZ(τε)

[
e−L(τ0∧τ1)I{τ0<τ1}

]]
.
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Therefore,

(4.25)

1− E0

[
e−(L(αε∧τ1)−L(τε∧τ1))I{αε<τ1}

]
= E0

[
1− EZ(τε)

[
e−L(τ0∧τ1)I{τ0<τ1}

]]
= E0

[
PZ(τε)(τ0 ≥ τ1)

]
+ E0

[
EZ(τε)

[(
1− e−L(τ0)

)
I{τ0<τ1}

]]
.

The lemma follows from (4.23), (4.24) and (4.25). �

Next, we establish an elementary lemma that holds when the drift is zero.
Recall the vector ~v of property 2 of Definition 2.5.

Lemma 4.3. When b ≡ 0, the process 〈Z, ~v〉 is an Ft-martingale on [0, τ0]
and for every ε > 0, P0 a.s.,

(4.26) PZ(τε)(τ
0 ≥ τ1) = ε.

Proof. First, note that H0 = {0} = V by property 2 of Definition 2.5 and so
TV defined in (2.10) coincides with τ0. From Lemma 2.8 and the continuous
paths of Y , it follows that for t ∈ [0, τ0], 〈Y (t), ~v〉 = 0 and so P a.s.,

(4.27) 〈Z(t), ~v〉 = 〈Z(0), ~v〉+ M̃, t ∈ [0, τ0],

where M̃ .= 〈
∫ ·

0 σ(Z(s)) · dB(s), ~v〉 is an Ft martingale on [0, τ0] since σ is
uniformly bounded. This establishes the first assertion of the lemma. Now,
the quadratic variation 〈M̃〉 of M̃ is given by

〈M̃〉(t) =
∫ t

0

~vTa(Z(s))~v ds for t ∈ [0,∞),

where a .= σTσ. By property 4 of Definition 2.5, a(·) is uniformly elliptic.
Therefore, 〈M̃〉 is strictly increasing and 〈M̃〉∞

.= limt→∞〈M̃〉(t) = ∞ P
a.s. Let

T (t) .= inf{s ≥ 0 : 〈M̃〉(s) > t},
Gt

.= FT (t) and B̃(t) .= M̃(T (t)) for t ∈ [0,∞). Then {B̃t,Gt}t≥0 is a
standard one-dimensional Brownian motion (see, e.g., Theorem 4.6 on page
174 of [20]). Let τ̃ ε .= inf{t ≥ 0 : B̃(t) = ε}. Then by (4.27) we have P0 a.s.,

PZ(τε)

(
τ0 ≥ τ1

)
= P

(
τ̃0 ≥ τ̃1 | B̃(0) = ε

)
= ε,

where the latter follows from standard properties of Brownian motion. This
proves (4.26). �

Remark 4.4. From Lemmas 4.2 and 4.3, we conclude that for every ε > 0,

E
[
e−L(τ1)

]
≤ ε

ε+ E0

[
EZ(τε)

[(
1− e−L(τε)

)
I{τ0<τ1}

]] .
Thus, to show (4.19), it suffices to show that

(4.28) lim inf
ε↓0

1
ε
E0

[
EZ(τε)

[(
1− e−L(τε)

)
I{τ0<τ1}

]]
=∞.
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This is established in Section 4.1.3 using scaling arguments. In Section 4.1.2,
we establish some preliminary results required for the proof. The reader may
prefer to skip forward to the proof of Proposition 4.1 in Section 4.1.3 and
refer back to the results in Sections 4.1.2 when required.

4.1.2. A Weak Convergence Result. Recall that we have assumed that the
drift b ≡ 0. Now, let {εk}k∈N and {xk}k∈N be sequences such that εk → 0
as k →∞ and xk ∈ Hεk

for k ∈ N. For each k ∈ N, let Z(k) be the pathwise
unique solution to the associated SDER with initial condition xk, and let
X(k), Y(k) and L(k) be the associated processes as defined in Definition 2.2
and (2.6). For k ∈ N, consider the scaled process

Bk(t) .=
B(ε2

kt)
εk

t ∈ [0,∞),

which is a standard Brownian motion due to Brownian scaling. Similarly,
define

(4.29) Ak(t) .=
A(k)(εk2t)

εk
A = X,Y, Z, L,

and let Fkt
.= Fεk

2t for t ∈ [0,∞). Clearly, the processes Zk, Bk, Y k

and Lk are {Fkt }-adapted and Lk(t) = Var[0,t]Y
k for every t ≥ 0. For

(r,R) ∈ (0,∞)2 such that r < R, let

(4.30) θkr,R
.= inf

{
t ≥ 0 : 〈Zk(t), ~v〉 6∈ (r,R)

}
k ∈ N.

This section contains two main results. Roughly speaking, the first re-
sult (Lemma 4.6) shows that for the question under consideration, we can
in effect replace the state-dependent diffusion coefficient σ(·) by σ(0). This
property is then used in Corollary 4.7 to provide bounds on the total varia-
tion sequence Lk(θkr,R), as εk → 0, which are used to obtain two important
estimates in Lemmas 4.8 and 4.9 of the next section. First, in Remark 4.5
we establish a simple equivalence between (Xk, Zk, Y k) and another triplet
of processes that will be easier to work with.

Remark 4.5. For notational conciseness, we define the scaled diffusion
coefficient

σk(x) .= σ(εkx) x ∈ RJ , k ∈ N.
Then, by the definition of Z(k) and the scaling (4.29), it follows that

Xk(t) =
xk
εk

+
1
εk

∫ ε2kt

0
σ(Zk(s)) dB(s) =

xk
εk

+
∫ t

0
σk(Z(k)(s)) dB

k(s),

where the last equality holds by the time-change theorem for stochastic
integrals (see Proposition 1.4 in Chapter V of [25]). This implies Zk is a
strong solution to the SDER associated with (G, d(·)), b ≡ 0, σk and the
Brownian motion {Bk(t),Fkt } defined on (Ω,F ,P), with initial condition
xk/εk. If σ satisfies properties 3 and 4 of Definition 2.5 then so does σk,
and thus (G, d(·)), b ≡ 0 and σk also describe a Class A SDER. Therefore,
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by Theorem 2.7 there exists a pathwise unique solution Z̃k to the associated
SDER for the Brownian motion {Bt,Ft} with initial condition xk/εk. Let
X̃k, Ỹ k be defined in the usual manner:

(4.31) X̃k(t) =
xk
εk

+
∫ t

0
σk(Z̃k(s)) dB(s) t ∈ [0,∞),

and Ỹ k = Z̃k − X̃k. From the fact that solutions to Class A SDERs are
unique in law by Theorem 2.7, it then follows that

(4.32) (Xk, Zk, Y k)
(d)
= (X̃k, Z̃k, Ỹ k),

where recall that
(d)
= indicates equality in distribution.

Lemma 4.6. Suppose b ≡ 0 and xk/εk → x as k →∞. Then the following
properties hold:

(1) As k →∞,

(4.33) E

[
sup
t∈[0,T ]

|Z̃k(t)− Z(t)|2
]
→ 0

and (Xk, Zk, Y k) ⇒ (X,Z, Y ), where (Z, Y ) satisfy the ESP path-
wise for

(4.34) X
.= x+ σ(0)B.

(2) For all but countably many pairs (r,R) ∈ (0,∞)2 such that r < R,

max
i=1,...,J

sup
s∈[0,θk

r,R]

Y k
i (s)⇒ max

i=1,...,J
sup

s∈[0,θr,R]

Y i(s) as k →∞,

where

(4.35) θr,R
.= inf

{
t ≥ 0 : 〈Z(t), ~v〉 6∈ (r,R)

}
.

Proof. Note that since xk/εk ∈ H1 for every k ∈ N and H1 is closed, we
must have x ∈ H1. We first prove property 1. Let X̃k, Z̃k and Ỹ k be as in
Remark 4.5. Then, by (4.32), it clearly suffices to show that (X̃k, Z̃k, Ỹ k)⇒
(X,Z, Y ). From (4.31) and (4.34), it follows that for t ∈ [0,∞),

|X̃k(t)−X(t)|2 ≤
∣∣∣∣xkεk − x+

∫ t

0

(
σk(Z̃k(s))− σ(0)

)
dB(s)

∣∣∣∣2
≤

(∣∣∣∣xkεk − x
∣∣∣∣+
∣∣∣∣∫ t

0

(
σk(Z(s))− σ(0)

)
dB(s)

∣∣∣∣
+
∣∣∣∣∫ t

0

(
σk(Z̃k(s))− σk(Z(s))

)
dB(s)

∣∣∣∣)2

.



18 WEINING KANG AND KAVITA RAMANAN

Using the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for all a, b, c ∈ R and taking
the supremum over t ∈ [0, T ] and then expectations of both sides, we obtain

E

[
sup
t∈[0,T ]

|X̃k(t)−X(t)|2
]

≤ 3
∣∣∣∣xkεk − x

∣∣∣∣2 + 3E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
σk(Z(s))− σ(0)

)
dB(s)

∣∣∣∣2
]

+3E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
σk(Z̃k(s))− σk(Z(s))

)
dB(s)

∣∣∣∣2
]
.

Since σ is uniformly bounded, the stochastic integrals on the right-hand side
are martingales. By applying the Burkholder-Davis-Gundy (BDG) inequal-
ity, the Lipschitz condition on σ, the definition of σk and Fubini’s theorem,
we obtain

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
σk(Z̃k(s))− σk(Z(s))

)
dB(s)

∣∣∣∣2
]

≤ C2E
[∫ T

0

∣∣∣σk(Z̃k(s))− σk(Z(s))
∣∣∣2 ds]

≤ C2K̃
2ε2
kE
[∫ T

0

∣∣∣Z̃k(s)− Z(s)
∣∣∣2 ds]

≤ C2K̃
2ε2
k

∫ T

0
E

[
sup
u∈[0,s]

∣∣∣Z̃k(u)− Z(u)
∣∣∣2] ds,

where C2 <∞ is the universal constant in the BDG inequality. Using similar
arguments, we can also obtain

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
σk(Z(s))− σ(0)

)
dB(s)

∣∣∣∣2
]
≤ C2K̃

2ε2
k

∫ T

0
E

[
sup
u∈[0,s]

∣∣Z(u)
∣∣2] ds

≤ C2K̃
2ε2
kTE

[
sup
t∈[0,T ]

∣∣Z(t)
∣∣2] .

Combining the last three displays, and setting C̃T
.= 3C2K̃

2
T (1 ∨ T ) < ∞,

we have
(4.36)

E

[
sup
t∈[0,T ]

|X̃k(t)−X(t)|2
]
≤ C̃T ε

2
k

∫ T

0
E

[
sup
u∈[0,s]

∣∣∣Z̃k(u)− Z(u)
∣∣∣2] ds

+Rk(T ),

where

(4.37) Rk(T ) .= 3
∣∣∣∣xkεk − x

∣∣∣∣2 + C̃T ε
2
kE

[
sup
t∈[0,T ]

∣∣Z(t)
∣∣2]→ 0 as k →∞



REFLECTED DIFFUSIONS AND DIRICHLET PROCESSES 19

since xk/εk → x, εk → 0 as k →∞ and, by the assumed Lipschitz continuity
of Γ,

E

[
sup
t∈[0,T ]

∣∣Z(t)
∣∣2] ≤ K2

TE

[
sup
t∈[0,T ]

|x+ σ(0)B(t)|2
]

≤ 2K2
T |x|2 + 2K2

T |σ(0)|2E

[
sup
t∈[0,T ]

|B(t)|2
]

<∞.

Now (4.36), along with the Lipschitz continuity of the map Γ̄, shows that

E

[
sup
t∈[0,T ]

|Z̃k(t)− Z(t)|2
]
≤ K2

TR
k(T )+K2

T C̃T ε
2
k

∫ T

0
E

[
sup
u∈[0,s]

∣∣∣Z̃k(u)− Z(u)
∣∣∣2] ds.

So, an application of Gronwall’s lemma shows that

E

[
sup
t∈[0,T ]

|Z̃k(t)− Z(t)|2
]
≤ K2

TR
k(T )eK

2
T C̃T ε

2
k → 0 as k →∞,

where the convergence to zero follows from (4.37), and the limit εk → 0 as
k → ∞. This proves (4.33). In turn, substituting the last inequality back
into (4.36) and, again using (4.37) and the fact that εk → 0, we also obtain

E

[
sup
t∈[0,T ]

|X̃k(t)−X(t)|2
]
→ 0 as k →∞,

which implies X̃k ⇒ X. Since the mapping from X̃k 7→ (X̃k, Z̃k, Ỹ k) is con-
tinuous, by the continuous mapping theorem it follows that (X̃k, Z̃k, Ỹ k)⇒
(X,Z, Y ) and property 1 is established.

We now turn to property 2. By property 1, we have (Zk, Y k) ⇒ (Z, Y )
as k → ∞. This immediately implies that for all but countably main pairs
(r,R) ∈ (0,∞)2 such that r < R, as k →∞,

(Zk(· ∧ θkr,R), Y k(· ∧ θkr,R), θkr,R)⇒ (Z(· ∧ θr,R), Y (· ∧ θr,R), θr,R).

(For an argument that justifies this implication, see, e.g., the proof of The-
orem 4.1 on page 354 of [13]). Using the continuity of the map (f, g, t) 7→
maxi=1,...,J sups∈[0,t] gi(s) from C [0,∞)×C [0,∞)×R+ to R+, an application
of the continuous mapping theorem yields property 2. �

Corollary 4.7. Suppose b ≡ 0 and xk/εk → x as k → ∞. Then for each
pair (r,R) ∈ (0,∞) such that r < R, the following properties hold.

(1) P
(

supk∈N L
k(θkr,R) <∞

)
= 1.

(2) εkLk(θkr,R)⇒ 0.
(3) P

(
L(θr,R) <∞

)
= 1 and if r < 〈x, ~v〉 < R, P

(
L(θr,R) > 0

)
> 0.

Proof. If 〈x, ~v〉 < r or 〈x, ~v〉 > R, then θr,R = 0 and θkr,R = 0 for all k
sufficiently large. In this case, properties (1)–(3) hold trivially. Hence, for
the rest of the proof, we assume that r ≤ 〈x, ~v〉 ≤ R.
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We start with property 1. Let X̃k, Z̃k and Ỹ k be defined as in Remark
4.5, and let L̃k be defined as in (2.6), but with Y replaced by Ỹ k. By (4.32),
it follows that (Lk, θkr,R) and (L̃k, θ̃kr,R) have the same distribution for each
k ∈ N, where θ̃kr,R is defined in the obvious way:

θ̃kr,R
.= inf

{
t ≥ 0 : 〈Z̃k(t), ~v〉 6∈ (r,R)

}
.

Using Lemma 2.8 and the uniform ellipticity condition, it can be shown that
P
(
θ̃kr,R

)
= 1. Therefore, to prove property 1, it suffices to show that

P
(

sup
k∈N

L̃k(θ̃kr,R ∧ T ) <∞
)

= 1 for each T > 0.

Fix T ∈ (0,∞). Since r > 0, there exists δ > 0 such that 〈y, ~v〉 < r for
all y with |y| ≤ δ. Let κ̃kδ

.= inf{t ≥ 0 : |Z̃k(t)| ≤ δ}. Then θkr,R ≤ κ̃kδ for all
k ∈ N. Let

C̃k = sup
t∈[0,T ]

|Z̃k(t)| ∨ |X̃k(t)|.

By property 1 of Lemma 4.6, we have Z̃k ⇒ Z and X̃k ⇒ X as k → ∞.
Also, due to the Lipschitz continuity of the ESM Γ̄ and (4.34), P-a.s., we
have

sup
t∈[0,T ]

|Z(t)| ≤ KT sup
t∈[0,T ]

|X(t)| ≤ KT

(
|x|+ |σ(0)| sup

s∈[0,T ]
|B(s)|

)
<∞,

and hence P(supk∈N C̃
k <∞) = 1. Moreover, V = {0} and for each ω ∈ Ω,

(Z(·, ω), Y (·, ω)) solves the ESP for X(·, ω). Therefore, from Lemma 2.8 of
[22], it is easy to see that there exist ρ > 0, independent of k, a finite set I =
{1, ..., I} and a collection of open sets {Oi, i ∈ I} of RJ that satisfy properties
1 and 2 of Lemma 2.8 of [22]. Moreover, from the proof of Lemma 2.9 of [22],
for each ω ∈ Ω, there exist integers N(ω) <∞ and times {Tm(ω), m ∈ N},
defined for Z(ω) in the same way as M and {Tm, m ∈ N} are defined in
terms of φ in Lemma 2.9 of [22], except that we replace ρ and δ by ρ/2 and
δ/2, respectively. Since (Xk, Zk, Y k)⇒ (X,Z, Y ) as k →∞ and (X,Z, Y )
has continuous paths, by invoking the Skorokhod representation theorem,
we may assume without loss of generality that there exists Ω̃ with P(Ω̃) = 1
such that for every ω ∈ Ω̃, (Xk(ω), Zk(ω), Y k(ω)) → (X(ω), Z(ω), Y (ω))
uniformly on [0, T ] as k → ∞. Let k̄ < ∞ be such that for all k > k̄,
supt∈[0,T ] |Zk(t, ω) − Z(t, ω)| < (ρ ∧ δ)/4. As in the proof of Lemma 2.9 of
[22], for each m < N(ω), let km be the index of Ok associated with Tm.
Then, Zk(·, ω) will stay in Nρ(Okm) during the interval [Tm(ω), Tm+1(ω)).
Exactly as in the proof of Lemma 2.9 of [22] (note that the argument there
only requires that φ(t) ∈ Nρ(Okm−1) for t ∈ [Tm−1, Tm)), we can then argue
that L̃k(T ∧ τkδ (ω), ω) ≤ (4C̃k(ω)N(ω))/ρ for ω ∈ Ω̃. Together with the fact
that P(supk∈N C̃

k <∞) = 1 and N(ω) <∞ for each ω ∈ Ω, this shows that
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P(L̃k(τ̃kδ ∧ T ) < ∞) = 1. Since L̃k(θ̃kr,R ∧ T ) ≤ L̃k(τ̃kδ ∧ T ), we then have
P(supk∈N L̃

k(θ̃kr,R ∧ T ) <∞) = 1. This completes the proof of property 1.
Property 2 follows directly from property 1 and the fact that εk → 0 as

k →∞. As for property 3, the first assertion follows from Theorem 2.7 and
the fact that θr,R < TV . For the second assertion, notice that, with positive
probability, the Brownian motion x+σ(0)B will exit G before it hits one of
the two levels Hr and HR. Hence, L(θr,R) should be positive with positive
probability in order to constrain x + σ(0)B to stay in G, and the second
assertion follows. �

4.1.3. Proof of Proposition 4.1. Since the relation (4.20) follows from (4.19).
in order to prove Proposition 4.1, it suffices to establish (4.19). In turn, by
Remark 4.5, (4.19) is implied by the estimate (4.28), which we reproduce
below:

(4.38) lim inf
ε↓0

1
ε
E0

[
EZ(τε)

[(
1− e−L(τ0)

)
I{τ0<τ1}

]]
=∞.

We will establish this estimate using the strong Markov property and scaling
arguments. First, we need to introduce some additional notation. Let Λε
denote the following collection of hyperplanes:

(4.39) Λε
.=
⋃
n∈Z

H2nε.

For x ∈ Λε, let Nε(x) denote the pair of hyperplanes in Λε that are adjacent
to the hyperplane on which x lies. More precisely, let

(4.40) Nε(x) .= H2n−1ε ∪H2n+1ε for x ∈ H2nε, n ∈ Z.

Moreover, for ε > 0, let {βεn}n∈N be the sequence of random times defined
recursively by βε0

.= 0 and for n ∈ N,

(4.41) βεn
.= inf{t ≥ βεn−1 : Z(t) ∈ Nε(Z(βεn−1))}.

It is easy to see that {βεn}n∈N defines a sequence of stopping times (for
completeness, a proof is provided in Lemma B.1).

Fix ε > 0. Observe that L is non-decreasing and for x ∈ Hε, Px-a.s.,
βεn ≤ τ0 for every n ∈ N. Since Z(τ ε) 6= 0 when ε > 0, this implies that for
every n ∈ N,

(4.42) EZ(τε)

[(
1− e−L(τ0)

)
I{τ0<τ1}

]
≥ EZ(τε)

[(
1− e−L(βε

n)
)

I{τ0<τ1}

]
.

Using the expansion

1− e−L(βε
n) = 1− e−L(βε

n−1) + e−L(βε
n−1)

(
1− e−(L(βε

n)−L(βε
n−1))

)
,



22 WEINING KANG AND KAVITA RAMANAN

conditioning on Fβε
n−1

, and invoking the strong Markov property of Z, the
right-hand side of (4.42) can be further expanded as

EZ(τε)

[(
1− e−L(βε

n)
)

I{τ0<τ1}
]

= EZ(τε)

[(
1− e−L(βε

n−1)
)

I{τ0<τ1}

]
+EZ(τε)

[
EZ(τε)

[
e−L(βε

n−1)
(

1− e−(L(βε
n)−L(βε

n−1))
)

I{τ0<τ1}

∣∣∣Fβε
n−1

]]
= EZ(τε)

[(
1− e−L(βε

n−1)
)

I{τ0<τ1}

]
+EZ(τε)

[
e−L(βε

n−1)EZ(βε
n−1)

[(
1− e−L(βε

1)
)

I{τ0<τ1}
]]
.

Observing that the first term on the right-hand side is identical to the term
on the left-hand side, except for a shift down in the index n, we can iterate
this procedure and use the relation L(βε0) = L(0) = 0 to conclude that for
any n ∈ N,

(4.43)
EZ(τε)

[(
1− e−L(βε

n)
)

I{τ0<τ1}
]

=
n∑

m=1

EZ(τε)

[
e−L(βε

m−1)EZ(βε
m−1)

[(
1− e−L(βε

1)
)

I{τ0<τ1}

]]
.

We now show that each term in the sum on the right-hand side of (4.43)
is O(ε) (as ε ↓ 0) with a constant that is independent of m. This proof
relies on the estimates obtained in the next two lemmas. In both lemmas,
Z(k), Y(k), L(k) will denote the processes defined at the beginning of Section
4.1.2, and for ε > 0, βε(k),n is defined as βεn is in (4.41), but with Z(k) in place
of Z: βε(k),0

.= 0 and for n ∈ N,

(4.44) βε(k),n
.= inf

{
t ≥ βε(k),n−1 : Z(k)(t) ∈ N1

(
Z(k)

(
βε(k),n−1

))}
.

Likewise, the processes Zk, Y k, Lk are defined in terms of Z(k), Y(k), L(k) via
(4.29), and βk,εn is defined as in (4.41), but with Z replaced by Zk. With
these definitions, due to the scaling, we have the equivalence

(4.45) ε2
kβ

k,1
n = βεk

(k),n, k, n ∈ N.

Lemma 4.8. Suppose b ≡ 0. Then there exists C > 0 such that

(4.46) lim inf
ε↓0

1
ε

inf
x∈Hε

Ex
[(

1− e−L(βε
1)
)

I{τ0<τ1}

]
≥ C.

Proof. Let εk, k ∈ N, with εk ↓ 0 as k → ∞, and xk ∈ Hεk
, k ∈ N, be

sequences such that

(4.47)
lim inf
ε↓0

1
ε

inf
x∈Hε

Ex
[(

1− e−L(βε
1)
)

I{τ0<τ1}

]
≥ 1

2
lim inf
k→∞

1
εk

Exk

[(
1− e−L(β

εk
1 )
)

I{τ0<τ1}

]
.

Since H1 is compact and xk/εk ∈ H1 for every k ∈ N, we can assume without
loss of generality (by choosing a further subsequence if necessary) that there
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exists x ∈ H1 such that xk/εk → x as k → ∞. Moreover, since the law
of (Z(k), Y(k), Lk) under P is the same as the law of (Z, Y, L) under Pxk

, we
have

(4.48)

lim inf
k→∞

1
εk

Exk

[(
1− e−L(β

εk
1 )
)

I{τ0<τ1}

]
= lim inf

k→∞

1
εk

E
[(

1− e−L(k)

“
β

εk
(k),1

”)
I{τ0

(k)
<τ1

(k)
}

]
,

with βε(k),1 defined as in (4.44), and τ ε(k) and τk,ε defined as follows:
(4.49)

τ ε(k)
.= inf

{
t ≥ 0 : Z(k)(t) ∈ Hε

}
τk,ε

.= inf
{
t ≥ 0 : Zk(t) ∈ H ε

εk

}
.

Assume without loss of generality that k is large enough so that εk < 1.
Then applying the mean value theorem for the function fk(x) = 1 − eεkx,
we infer that for x ≥ 0, there exists ε∗k ∈ (0, εk) such that

1− e−εkx

εk
= xe−ε

∗
kx ≥ xe−x.

Thus, applying first the scaling (4.29) and then the above inequality, along
with the relation βεk

(k),1 = ε2
kβ

k,1
1 , we have for all k sufficiently large,

1
εk

E
[(

1− e−L(k)(β
εk
(k),1

)
)

I{τ0
(k)
<τ1

(k)
}

]
= E

[(
1− e−εkL

k(βk,1
1 )

εk

)
I{τk,0<τk,1}

]

≥ E
[
Lk(βk,11 )e−L

k(βk,1
1 )I{τk,0<τk,1}

]
.

Comparing this with (4.47) and (4.48), it is clear that to prove the lemma
it suffices to show that there exists C̃ > 0 such that

(4.50) lim inf
k→∞

E
[
Lk(βk,11 )e−L

k(βk,1
1 )I{τk,0<τk,1}

]
≥ C̃.

Choose r ∈ (1/2, 1) and R ∈ (1, 2) such that the convergence in property
2 of Lemma 4.6 holds. Then property 3 of Corollary 4.7 implies that there
exists δ > 0 such that

P

(
max
i=1,...,J

sup
t∈[0,θr,R]

Y i(t) > δ

)
> 2δ.

Property 2 of Lemma 4.6 and the Portmanteau theorem then imply that

P

(
max
i=1,...,J

sup
t∈[0,θr,R]

Y i(t) > δ

)
≤ lim inf

k→∞
P

 max
i=1,...,J

sup
t∈[0,θk

r,R]

Y k
i (t) > δ


≤ lim inf

k→∞
P
(
Lk
(
θkr,R

)
> δ
)
.
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The last two statements, along with the fact that βk,11 ≥ θkr,R for all k, imply
that there exists K <∞ such that

(4.51) P
(
Lk
(
βk,11

)
> δ
)
≥ δ for all k ≥ K.

Next, choose r′ ∈ (0, 1/2) and R′ ∈ (2,∞). Then βk,11 ≤ θkr′,R′ . By property
1 of Corollary 4.7, there exists c <∞ such that

P
(

sup
k∈N

Lk(θkr′,R′) < c

)
≥ 1− δ

4
.

It follows that

(4.52) sup
k∈N

P
(
e−L

k(βk,1
1 ) > e−c

)
≥ sup

k∈N
P
(
Lk(θkr′,R′) < c

)
≥ 1− δ

4
.

On the other hand, since εk → 0 as k →∞, by (4.26) of Lemma 4.3 we have

P(τk,0 < τk,1) = P(τ0
(k) < τ1

(k)) = 1− εk → 1 as k →∞.

By choosing K larger if necessary, we can assume that for all k ≥ K,

(4.53) P(τk,0 < τk,1) ≥ 1− δ

4
.

Now define the set

Sk
.=
{
τk,0 < τk,1, e−L

k(βk,1
1 ) ≥ e−c, Lk(βk,11 ) > δ

}
.

Then (4.51), (4.52) and (4.53), together show that for k ≥ K, P(Sk) ≥ δ/2.
Therefore, for all k ≥ K,

E
[
Lk(βk,11 )e−L

k(βk,1
1 )I{τk,0<τk,1}

]
≥ E

[
Lk(βk,11 )e−L

k(βk,1
1 )I{τk,0<τk,1}ISk

]
≥ δe−c δ

2
,

and so (4.50) holds with C̃ = δ2e−c/2. This completes the proof of the
lemma. �

Lemma 4.9. Suppose b ≡ 0. For every n ∈ N,

lim
ε↓0

sup
x∈Hε

Ex
[
1− e−L(βε

n)
]

= 0.

Proof. Fix n ∈ N. We prove the lemma using an argument by contradiction.
Suppose that there exists δ0 > 0 and a sequence εk, k ∈ N, such that εk ↓ 0
as k →∞ and for every k ∈ N,

sup
x∈Hεk

Ex
[
1− e−L(β

εk
n )
]
≥ δ0.

For each k ∈ N, let xk ∈ Hεk
be such that

(4.54) Exk

[
1− e−L(β

εk
n )
]
≥ δ0

2
.
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Since, the law of (Z(k), Y(k), L(k)) under P is the same as the law of (Z, Y, L)
under Pxk

, (4.54) is equivalent to

(4.55) E
[
1− e−L(k)(β

εk
(k),n

)
]
≥ δ0

2
,

with βε(k),n defined by (4.44). Since H1 is compact and xk/εk ∈ H1 for every
k ∈ N, we can assume without loss of generality (by choosing an appropriate
subsequence, if necessary) that there exists x ∈ H1 such that xk/εk → x as
k →∞.

The definition (4.29) of the scaling and the relation ε2
kβ

k,1
n = βεk

(k),n show
that

(4.56) E
[
1− e−L(k)(β

εk
(k),n

)
]

= E
[
1− e−εkL

k
“
βk,1

n

”]
.

Moreover, since xk ∈ Hεk
implies Zk(0) = xk/εk ∈ H1, it follows that, on the

interval
[
0, βk,1n

]
, 〈Zk(t), ~v〉 ∈ [2−n, 2n]. Therefore, there exist 0 < r < 2−n

and R > 2n such that βk,1n ≤ θkr,R, where θkr,R is defined in (4.30). As a
result, we conclude that

E
[
1− e−εkL

k(βk,1
n )
]
≤ E

[
1− e−εkL

k(θk
r,R)
]
→ 0 as k →∞,

where the last limit holds due to the weak convergence εkL
k(θkr,R) ⇒ 0

established in Corollary 4.7, and the fact that x 7→ 1 − e−x is a bounded
continuous function. When combined with (4.56), this contradicts (4.54)
and thus proves the lemma. �

We can now wrap up the proof of Proposition 4.1.

Proof of Proposition 4.1. First observe that by Lemma 4.8, there exists C >
0 and ε0 > 0 such that for all ε < ε0, the relation

inf
x∈Hε

Ex
[(

1− e−L(βε
1)
)

I{τ0<τ1}

]
≥ C

2
ε

is satisfied. In turn, this relation, together with the fact that Z(τ ε) ∈ Hε

and, for any x ∈ Hε, Px-a.s.,

(4.57) 〈Z(βεn−1), ~v〉 ≤ 2n−1ε,

implies that for all ε < 2−(n−1)ε0 and m = 1, . . . , n,

(4.58)
EZ(τε)

[
e−L(βε

m−1)EZ(βε
m−1)

[
(1− e−L(βε

1))I{τ0<τ1}
]]

≥ C

2
EZ(τε)

[
e−L(βε

m−1)〈Z(βεm−1), ~v〉
]
.

When combined with (4.42) and (4.43), this shows that

(4.59)
E0

[
EZ(τε)

[(
1− e−L(τ0)

)
I{τ0<τ1}

]]
≥ C

2

n∑
m=1

EZ(τε)

[
e−L(βε

m−1)〈Z(βεm−1), ~v〉
]
.
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Each summand on the right-hand side can be rewritten in the more conve-
nient form

EZ(τε)

[
e−L(βε

m−1)〈Z(βεm−1), ~v〉
]

= EZ(τε)

[
〈Z(βεm−1), ~v〉

]
−EZ(τε)

[(
1− e−L(βε

m−1)
)
〈Z(βεm−1), ~v〉

]
.

Since b ≡ 0, Lemma 4.3 and the uniform bound (4.57) shows that 〈Z, ~v〉 is
a martingale on [0, βεn]. In addition, because βεm−1 ≤ βεn and 〈Z(τ ε), ~v〉 = ε,
it follows that

E0

[
EZ(τε)

[
〈Z(βεm−1), ~v〉

]]
= E0[ε] = ε.

Furthermore, by (4.57), Lemma 4.9 and the bounded convergence theorem,
for any n ∈ N and m = 1, . . . , n,

lim supε↓0
1
ε
E0

[
EZ(τε)

[(
1− e−L(βε

m−1)
)
〈Z(βεm−1), ~v〉

]]
≤ 2n−1 limε↓0 E0

[
sup
x∈Hε

Ex
[
(1− e−L(βε

m−1)
]]

= 0.

Combining the last three assertions, we see that for every n ∈ N and m =
1, . . . , n,

lim inf
ε↓0

1
ε
E0

[
EZ(τε)

[
e−L(βε

m−1)〈Z(βεm−1), ~v〉
]]

= 1.

Together with (4.59), this shows that for every n ∈ N,

lim inf
ε↓0

1
ε
E0

[
EZ(τε)

[(
1− e−L(τ0)

)
I{τ0<τ1}

]]
≥ nC

2
.

Taking the limit as n → ∞, we obtain (4.38), thus completing the proof of
the proposition. �

4.2. The General Drift Case. In this section we establish Theorem 4.1.
Specifically, we generalize the case of zero drift, established in Proposition
4.1, to arbitrary bounded, Lipschitz drifts (as mentioned in Section 2.3,
this can be extended to drifts satisfying the usual Lipschitz and growth
conditions) by using a Girsanov transformation. As usual, let Z be the
unique solution to the Class A SDER, which exists by Theorem 2.7, and let
τ1 be the first hitting time to H1, as defined in (4.18). We begin with a
simple lemma that shows that τ1 is finite with positive P0 probability.

Lemma 4.10. We have

(4.60) P0

(
τ1 <∞

)
> 0.

Moreover, if infx:〈x,~v〉≤1〈b(x), ~v〉 ≥ 0, then

(4.61) P0

(
τ1 <∞

)
= 1.

Proof. Recall the definition of X and M given in (2.4) and (2.12) and let
Ĥ

.= 〈H,~v〉 for H = Z,M,X. By Lemma 2.8 and Theorem 2.7, we know
that Ẑ = Γ1(X̂), where Γ1 is the 1-dimensional Skorokhod map. Let T (t) .=
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inf{s ≥ 0 : 〈M̂〉s > t}. Then, due to the uniform ellipticity of a, T is strictly
increasing and M̂(T (·)) is a 1-dimensional Brownian motion. In turn, this
implies Ẑ is a one-dimensional reflected Brownian motion with drift∫ t

0
〈b(Z(T (s))), ~v〉 dT (s) =

∫ t

0
〈b(Z(T (s))), ~v〉 1

~vTa(Z(s))~v
ds.

Since 〈b(x), ~v〉/~vTa(x)~v is continuous on G, there exists κ ∈ (−∞,∞) such
that

〈b(x), ~v〉
~vTa(x)~v

> κ for all x ∈ G, 〈x, ~v〉 ≤ 1.

Consider the process X̃ defined by X̃(t) .= κt+M(T (t)) for t ∈ [0,∞) and let
Z̃

.= Γ1(X̃) be a one-dimensional reflected Brownian motion with constant
drift κ. Then X̂(T (t))− X̂(T (s)) ≥ X̃(t)− X̃(s) for every 0 ≤ s ≤ t, and so
the comparison principle for Γ1 (see, for example, equation (4.1) in Lemma
4.1 of [21]) shows that Ẑ(T (t)) ≥ Z̃(t) for every t ∈ [0, τ̂1], where

τ̂1 .= inf{t > 0 : Ẑ(T (t)) = 1}.

Since T (τ̂1) = τ1, it follows that

P0(Z̃(t ∧ τ̂1) ≤ Ẑ(T (t) ∧ τ1) for all t ≥ 0) = 1.

Since T is strictly increasing, we have τ1 =∞ if and only if τ̂1 =∞. Then
on the set τ1 =∞, we must have

Z̃(t) ≤ Ẑ(T (t)) < 1 for all t ∈ [0,∞).

Since Z̃ will hit 1 with positive P0 probability, and in fact will hit 1 P0 a.s.
if κ ≥ 0 (see, for example, page 197 of [20]), this implies (4.60) and (4.61)
and the proof of the lemma is complete. �

Proof of Theorem 4.1. The uniform ellipticity of a(·) ensures that a−1(·)
exists. Let µ .= −bTa−1σ, note that µTµ = babT , and define
(4.62)

D(t) .= exp
{∫ t

0
µ(Z(s)) dB(s)− 1

2

∫ t

0
b(Z(s))a(Z(s))bT (Z(s)) ds

}
for t ∈ [0,∞). Property 3 of Definition 2.5 guarantees that µT (Z(·))µ(Z(·))
has linear growth and so {D(t),Ft} is a martingale by Corollary 5.16 of [20].

Fix T < ∞. Define a new probability measure Q0 on (Ω,F , {FT }) by
setting

Q0(A) = E [D(T )IA] for A ∈ FT .
Define

B̂(t) .= B(t) +
∫ t

0
σT (Z(s))a−1(Z(s))b(s) ds, t ∈ [0, T ].
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By Girsanov’s theorem (see Theorem 5.1 of [20]), under Q0, {B̂t,Ft}t∈[0,T ]

is a Brownian motion and

Z(t) =
∫ t

0
σ(Z(s)) dB̂(s) + Y (t), t ∈ [0, T ],

where (Z, Y ) satisfy the ESP pathwise for Z − Y . Since, under Q0, Z is the
solution to a Class A SDER with no drift, by Proposition 4.1, we know that

Q0

(
L(τ1) <∞, τ1 ≤ T

)
= 0.

Since P0 � Q0 (with dP0/dQ0 = D−1(T ) on FT ), this implies

P0

(
L(τ1) <∞, τ1 ≤ T

)
= 0.

Since T <∞ is arbitrary, sending T →∞ (along a countable sequence), we
conclude that

P0

(
L(τ1) <∞, τ1 <∞

)
= 0.

However, P0(τ1 < ∞) > 0 by Lemma 4.10. Hence, P0(L(τ1) = ∞, τ1 <
∞) > 0, which in turn implies that there exists T <∞ such that P0(L(T ) =
∞) > 0. Note that if infx∈G:〈x,~v〉≤1〈b(x), ~v〉 ≥ 0, then P0(τ1 < ∞) = 1 and
so we in fact have P0(L(τ1) =∞) = 1. �

4.3. The Semimartingale Property for Z. Recall from Theorem 2.7
that the process Z has the decomposition Z = M +A, where

(4.63) M =
∫ ·

0
σ(Z(s)) dB(s) A =

∫ ·
0
b(Z(s)) ds+ Y,

and Y is the constraining term associated with the ESP. M is clearly a
(local) martingale. However, as mentioned earlier, Theorem 4.1 does not
immediately imply that Z is not a semimartingale because we do not know
a priori that the above decomposition must be the Doob decomposition of
Z if it were a semimartingale. The following result shows that this is indeed
the case.

Proposition 4.2. If Z were a semimartingale then its Doob decomposition
must be Z = M +A.

Proof. Suppose that Z is a semimartingale, and let its (unique) Doob de-
composition take the form

Z = M̃ + Ã,

where M̃ is an {Ft}-adapted continuous local martingale and Ã is an {Ft}-
adapted continuous, process with P a.s. finite variation on bounded intervals.

Fix R <∞ and let θR
.= inf{t ≥ 0 : |M(t)| ≥ R}. For each ε > 0, define

two sequences of stopping times {τ εn}n∈N and {ξεn}n∈N as follows: ξε0
.= 0 and

for n ∈ N,
τ εn

.= inf
{
t ≥ ξεn−1 : Z(t) ∈ Hε

}
∧ θR,

ξεn
.= inf

{
t ≥ τ εn : Z(t) ∈ Hε/2

}
∧ θR.
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(For notational conciseness, we have suppressed the dependence of these
stopping times on R.) From the equality Z = M +A = M̃ + Ã, we have

Z(t ∧ ξεn)− Z(t ∧ τ εn) = M(t ∧ ξεn)−M(t ∧ τ εn) +A(t ∧ ξεn)−A(t ∧ τ εn)

= M̃(t ∧ ξεn)− M̃(t ∧ τ εn) + Ã(t ∧ ξεn)− Ã(t ∧ τ εn).(4.64)

By uniqueness of the Doob decomposition, clearly Z(· ∧ ξεn) − Z(· ∧ τ εn)
is an {Ft}-adapted semimartingale, with Doob decomposition (4.64). On
the other hand, since M is an {Ft}-adapted continuous (local) martingale,
and M is uniformly bounded on [0, θR], the stopped processes M(·∧ξεn) and
M(·∧τ εn) are {Ft}-adapted continuous martingales. Hence, M(·∧ξεn)−M(·∧
τ εn) is also an {Ft}-adapted continuous martingale. Moreover, Theorem 2.7
implies that Y (· ∧ ξεn) − Y (· ∧ τ εn), and therefore A(· ∧ ξεn) − A(· ∧ τ εn), has
P a.s. finite variation on each bounded time interval. By uniqueness of the
Doob decomposition, we conclude that for every ε > 0 and t ∈ [0,∞),

M(t ∧ ξεn)−M(t ∧ τ εn) = M̃(t ∧ ξεn)− M̃(t ∧ τ εn).

Summing over n ∈ N on both sides of the last equation, we obtain

(4.65)
∞∑
n=1

(M(t ∧ ξεn)−M(t ∧ τ εn)) =
∞∑
n=1

(M̃(t ∧ ξεn)− M̃(t ∧ τ εn)).

On the other hand, P a.s., because M(0) = 0 and ξεn → θR as n→∞, we
have the elementary relation

M(t ∧ θR) =
∞∑
n=1

(M(t ∧ ξεn)−M(t ∧ ξεn−1)), t ∈ [0,∞).

Therefore, we can write

M(t ∧ θR)−
∞∑
n=1

(M(t ∧ ξεn)−M(t ∧ τ εn))

=
∞∑
n=1

(M(t ∧ τ εn)−M(t ∧ ξεn−1))

=
∫ t

0

∞∑
n=1

I(ξε
n−1,τ

ε
n](s) dM(s)

=
∫ t

0

∞∑
n=1

I(ξε
n−1,τ

ε
n](s)I[0,ε](〈~v, Z(s)〉) dM(s).
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The last equality holds because 〈~v, Z(s)〉 ≤ ε for s ∈ (ξεn−1, τ
ε
n]. So, by

Doob’s maximal martingale inequality, it follows that

E

 sup
s∈[0,t]

∣∣∣∣∣
∞∑
n=1

(M(s ∧ ξεn)−M(s ∧ τ εn))−M(s ∧ θR)

∣∣∣∣∣
2


≤ 4E

∣∣∣∣∣
∞∑
n=1

(M(t ∧ ξεn)−M(t ∧ τ εn))−M(t ∧ θR)

∣∣∣∣∣
2


= 4E

∣∣∣∣∣
∫ t

0

∞∑
n=1

I(ξε
n−1,τ

ε
n](s)I[0,ε](〈~v, Z(s)〉) dM(s)

∣∣∣∣∣
2


≤ 4E
[∫ t

0
I[0,ε](〈~v, Z(s)〉) |a(Z(s))| ds

]
.

Since a is bounded on the set {x : 〈~v, x〉 ≤ ε}, by the bounded convergence
theorem we have

lim
ε→0

E
[∫ t

0
I{〈~v,Z(s)〉≤ε} |a(Z(s))| ds

]
= |a(0)|E

[∫ t

0
I{〈~v,Z(s)〉=0} ds

]
= 0,

where the last equality is a consequence of the fact that 〈~v, Z〉 is a uniformly
elliptic one-dimensional reflected diffusion (see Lemma 2.8) and consequently
spends zero Lebesgue time at the origin (see, for example, page 90 of [17]).

An exactly analogous argument, with θ̃R
.= inf{t ≥ 0 : |M̃ |(t) ≥ R} and

ξ̃εn, τ̃
ε
n defined like ξεn, τ

ε
n, but with θR replaced by θ̃R, shows that

lim
ε→0

E

 sup
s∈[0,t]

∣∣∣∣∣
∞∑
n=1

(M̃(s ∧ ξ̃εn)− M̃(s ∧ τ̃ εn))− M̃(s ∧ θ̃R)

∣∣∣∣∣
2


≤ lim
ε→0

4J2
J∑
i=1

E
[∫ t

0
I[0,ε](〈~v, Z(s)〉) d〈M̃i〉(s)

]
= 4J2

J∑
i=1

E
[∫ t

0
I{0}(〈~v, Z(s)〉) d〈M̃i〉(s)

]
= 4J2

J∑
i=1

E
[∫ t

0
I{0}(Zi(s)) d〈M̃i〉(s)

]
.

The last equality uses the property that Zi(s) = 0 for every i = 1, . . . , J
if and only if 〈~v, Z(s)〉 = 0 (see property 2 of Definition 2.5). By the
assumption that Z̃i is a semimartingale with decomposition M̃i+Ãi, the oc-
cupation times formula for continuous semimartingales (see, e.g., Corollary
1.6 in Chapter VI of [25]) and the fact that the set {x : xi = 0} has zero
Lebesgue measure, we have, a.s.,∫ t

0
I{0}(Zi(s)) d〈M̃i〉(s) =

∫ t

0
I{0}(Zi(s)) d〈Zi〉(s) = 0, i = 1, . . . , J.
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Combining the last four displays with (4.65), we conclude that M(t∧ θR) =
M̃(t ∧ θ̃R), P0-a.s., for every t ≥ 0. This in turn implies that θR = θ̃R P0

a.s. and, sending R → ∞ and invoking the continuity of both M and M̃ ,
we have M = M̃ P0-a.s. In turn, this implies A = Ã, thus completing the
proof of the theorem. �

The proof of Theorem 3.1 is now a simple consequence of Theorem 4.1
and Proposition 4.2.

Proof of Theorem 3.1. If Z were a semimartingale, then by Proposition
4.2 Z = M + A is the Doob decomposition for Z and so, in particular, we
must have P0(L(T ) <∞) = 1 for every T ∈ [0,∞), where L(T ) = Var[0,T ]Y .
However, this contradicts the assertion of Theorem 4.1 that there exists
T < ∞ such that P0(L(T ) = ∞) > 0. Thus we conclude that Z is not a
semimartingale. �

Remark 4.11. We expect that similar, but somewhat more involved, argu-
ments could be used to show that the semimartingale property fails to hold
for a more general class of reflected diffusions in the non-negative orthant, in
particular those that arise as approximations of generalized processor shar-
ing networks (rather than just a single station, as considered in [23, 24]).
Such diffusions would to satisfy properties 1, 2 and 4 of Definition 2.5 but
have more complicated V-sets (see [12] for a description of the ESP associ-
ated with such a network). This is a subject of future work.

5. Dirichlet Process Characterization

This section is devoted to the proof of Theorem 3.5. Specifically, here we
only assume that (G, d(·)), b(·) and σ(·) satisfy Assumptions 1 and 3, and
let (Zt, Bt), (Ω,F ,P), {Ft} be a Markov, weak solution to the associated
SDER that satisfies Assumption 2 for some constants p > 1, q ≥ 2 and
KT <∞, T ∈ (0,∞). As usual, let Y = Z −X, with X as defined in (2.4),
and recall that Z admits the decomposition

Z(t) = Z(0) +
∫ t

0
b(Z(s)) d s+

∫ t

0
σ(Z(s)) dB(s) + Y (t), t ∈ [0,∞),

and
∫ ·

0 b(Z(s)) ds is a process of bounded variation, and therefore of bounded
p-variation for any p > 1 by Remark 3.4. As a result, in order to establish
Theorem 3.5, it suffices to show that under P, Y has zero p-variation.

In Section 5.1, we first show that it suffices to establish a localized version
(5.68) of the zero p-variation condition on Y . This is used to prove Theorem
3.5 in Section 5.2.

5.1. Localization. Fix T > 0, let {πn, n ≥ 1} be a sequence of partitions
of [0, T ] such that ∆(πn) → 0 as n → ∞. As mentioned above, to prove



32 WEINING KANG AND KAVITA RAMANAN

Theorem 3.5 we need to establish the following result:

(5.66)
∑
ti∈πn

|Y (ti)− Y (ti−1)|p (P)→ 0 as ∆(πn)→∞.

For each m ∈ (0,∞), let

(5.67) ζm
.= inf{t > 0 : |Z(t)| ≥ m}.

It is easy to see that P-a.s., ζm → ∞ as m → ∞. We now show that the
localized version, (5.68) below, is equivalent to (5.66).

Lemma 5.1. The result (5.66) holds if and only if for each m ∈ (0,∞),

(5.68)
∑
ti∈πn

|Y (ti ∧ ζm)− Y (ti−1 ∧ ζm)|p (P)→ 0 as ∆(πn)→ 0.

Proof. First assume (5.68) holds for every m ∈ (0,∞). For any m ∈ (0,∞)
and δ > 0,

P

(∑
ti∈πn

|Y (ti)− Y (ti−1)|p ≥ δ

)

≤ P

(∑
ti∈πn

|Y (ti)− Y (ti−1)|p ≥ δ, ζm > T

)
+ P(ζm ≤ T )

= P

(∑
ti∈πn

|Y (ti ∧ ζm)− Y (ti−1 ∧ ζm)|p ≥ δ, ζm > T

)
+ P(ζm ≤ T )

≤ P

(∑
ti∈πn

|Y (ti ∧ ζm)− Y (ti−1 ∧ ζm)|p ≥ δ

)
+ P(ζm ≤ T ).

Taking limits as ∆(πn) → 0, the first term on the right-hand side vanishes
due to (5.68). Next, sending m → ∞, and using the fact that ζm → ∞ P
a.s., the second term also vanishes, and so we obtain (5.66). This proves the
“if” part of the result.

For the converse, suppose (5.66) holds. Let θmn
.= sup{ti ∈ πn : ti ≤ ζm}.

Then∑
ti∈πn

|Y (ti ∧ ζm)− Y (ti−1 ∧ ζm)|p ≤
∑
ti∈πn

|Y (ti)− Y (ti−1)|p + |Y (ζm ∧ T )− Y (θmn )|p.

Taking limits as ∆(πn) → 0, the last term vanishes P a.s. since |ζm ∧ T −
θmn | ≤ ∆(πn) and Y is continuous. Therefore, (5.68) follows from (5.66). �

5.2. Proof of Theorem 3.5. For each ε > 0, recursively define two se-
quences of stopping times {τ εn}n∈N and {ξεn}n∈N as follows: ξε0

.= 0 and for
n ∈ N,

(5.69) τ εn
.= inf

{
t ≥ ξεn−1 : d(Z(t),V) = ε

}
,

ξεn
.= inf {t ≥ τ εn : d(Z(t),V) = ε/2} .
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For each ε > 0, we have the decomposition

∑
ti∈πn

|Y (ti)− Y (ti−1)|p =
∑
ti∈πn

∞∑
k=1

|Y (ti)− Y (ti−1)|pI(τε
k ,ξ

ε
k)(ti−1)

+
∑
ti∈πn

∞∑
k=0

|Y (ti)− Y (ti−1)|pI[ξε
k,τ

ε
k+1](ti−1).

Therefore, for any given δ > 0, we have

(5.70)

P

(∑
ti∈πn

|Y (ti)− Y (ti−1)|p > δ

)

≤ P

(∑
ti∈πn

∞∑
k=1

|Y (ti)− Y (ti−1)|pI[τε
k ,ξ

ε
k)(ti−1) >

δ

2

)

+P

(∑
ti∈πn

∞∑
k=0

|Y (ti)− Y (ti−1)|pI[ξε
k,τ

ε
k+1)(ti−1) >

δ

2

)
.

Under additional uniform boundedness assumptions on b and σ, the proof
of (5.66) is essentially a consequence of the following two lemmas, which
provide estimates on the two terms on the right-hand side of (5.70).

Lemma 5.2. Suppose b and σ are uniformly bounded. Then, as ∆(πn)→ 0,
for each ε > 0, we have

(5.71) P

(∑
ti∈πn

∞∑
k=1

|Y (ti)− Y (ti−1)|pI[τε
k ,ξ

ε
k)(ti−1) >

δ

2

)
→ 0.

Proof. Fix ε > 0, n ∈ N and let

Ωε
n
.=

Z(t) 6∈ V ∀t ∈
⋃

k∈N:ξε
k≤T

[ξεk, ξ
ε
k + ∆(πn)]

 .

Also, define

N ε .= inf {k ≥ 0 : either τ εk > T or ξεk > T} .

Observe that N ε <∞ P a.s., since Z has P a.s. continuous sample paths and
therefore crosses the levels {z ∈ G : d(z,V) = ε} and {z ∈ G : d(z,V) = ε/2}
at most a finite number of times in the interval [0, T ]. The continuity of Z
also implies that for each ε > 0,

(5.72) P (Ωε
n)→ 1 as ∆(πn)→ 0.
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On the set Ωε
n, we have

(5.73)

∑
ti∈πn

∞∑
k=1

|Y (ti)− Y (ti−1)|pI[τε
k ,ξ

ε
k)(ti−1)

≤ max
ti∈πn

|Y (ti)− Y (ti−1)|p−1
∑
ti∈πn

∞∑
k=1

L(ti−1, ti]I[τε
k ,ξ

ε
k)(ti−1)

= max
ti∈πn

|Y (ti)− Y (ti−1)|p−1
∑
ti∈πn

∞∑
k=1

L(ti−1, ti]I[τε
k ,ξ

ε
k)(ti−1)

≤ max
ti∈πn

|Y (ti)− Y (ti−1)|p−1
∞∑
k=1

L(τ εk ∧ T, (ξεk + ∆(πn)) ∧ T ].

By definition, P a.s. (Z, Y ) satisfy the ESP for X. Therefore by Lemma A.1,
for each k ∈ N, (Z(τ εk ∧ T + ·), Y (τ εk ∧ T + ·) − Y (τ εk ∧ T )) P a.s. solve the
ESP for Z(τ εk ∧ T ) +X(τ εk ∧ T + ·)−X(τ εk ∧ T ). On Ωε

n, Z is away from V
on [τ εk ∧ T, (ξεk + ∆(πn)) ∧ T ] for each k ≥ 1, and hence by Theorem 2.9 of
[22] it follows that L(τ εk ∧ T, (ξεk + ∆(πn))∧ T ] <∞. Together with the fact
that N ε <∞ P a.s., this implies that

∞∑
k=1

L(τ εk ∧ T, (ξεk + ∆(πn)) ∧ T ] <∞ P almost surely on Ωε
n.

On the other hand, since Y is continuous on [0, T ] and p > 1, we have

max
ti∈πn

|Y (ti)− Y (ti−1)|p−1 → 0 as ∆(πn)→ 0.

Combining the above two displays with (5.72), we conclude that for every
δ > 0, as ∆(πn)→ 0,

P

(
max
ti∈πn

|Y (ti)− Y (ti−1)|p−1
∞∑
k=1

L(τ εk ∧ T, (ξεk + ∆(πn)) ∧ T ] >
δ

2

)
→ 0.

Together with (5.73), this shows that (5.71) holds and completes the proof
of the lemma. �

Lemma 5.3. Suppose b and σ are uniformly bounded. Then there exists a
finite constant C <∞ such that for each ε > 0,

(5.74)

lim
4(πn)→0

P

(∑
ti∈πn

∞∑
k=0

|Y (ti)− Y (ti−1)|pI[ξε
k,τ

ε
k+1)(ti−1) >

δ

2

)

≤


C

δ
E

[∫ T

0

∞∑
k=0

I[ξε
k,τ

ε
k+1](t) dt

]
if q = 2,

0 if q > 2.
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Proof. Fix ε > 0. Then by Markov’s inequality (whose application is justi-
fied by (5.77) nd (5.78) below) and the monotone convergence theorem,

(5.75)

P

(∑
ti∈πn

∞∑
k=0

|Y (ti)− Y (ti−1)|pI[ξε
k,τ

ε
k+1)(ti−1) >

δ

2

)

≤ 2
δ

∑
ti∈πn

∞∑
k=0

E
[
|Y (ti)− Y (ti−1)|pI[ξε

k,τ
ε
k+1)(ti−1)

]
.

Let a = σTσ and let C̄ > 1 be an upper bound on |b|, |σ| and |a|. By
Assumption 2, the definition (2.4) of X and the elementary inequality |x+
y|q ≤ 2q(|x|q + |y|q), there exists KT <∞ such that for each ti ∈ πn,
(5.76)
E
[
|Y (ti)− Y (ti−1)|p

∣∣∣Fti−1

]
≤ KTE

[
sup

u∈[ti−1,ti]
|X(u)−X(ti−1)|q

∣∣∣Fti−1

]

≤ 2qKTE

[
sup

u∈[ti−1,ti]

∣∣∣∣∣
∫ u

ti−1

b(Z(v)) dv

∣∣∣∣∣
q

+ sup
u∈[ti−1,ti]

∣∣∣∣∣
∫ u

ti−1

σ(Z(v)) dBv

∣∣∣∣∣
q ∣∣∣Fti−1

]

≤ 2qKTE

[
C̄q(ti − ti−1)q +

(
q

q − 1

)q ∣∣∣∣∣
∫ ti

ti−1

σ(Z(v)) dBv

∣∣∣∣∣
q ∣∣∣Fti−1

]
≤ 2qKT C̄

q∆(πn)q−1(ti−1 − ti)

+2qKT

(
q

q − 1

)q
K̃E

(∫ ti

ti−1

|a(Z(v))| dv

)q/2 ∣∣∣Fti−1


≤ 2qKT C̄

q∆(πn)q−1(ti−1 − ti) + 2qKT

(
q

q − 1

)q
K̃C̄q/2(ti − ti−1)q/2.

Here, the third inequality holds due to the uniform bound on b(·), the
Markov property of Z and Doob’s maximal martingale inequality, while the
fourth inequality follows, with K̃ < ∞ a universal constant, by an applica-
tion of the martingale moment inequality, which is justified since the uniform
boundedness on a ensures that the stochastic integral is a martingale.

Define C̃ .= 2qKT [C̄q ∨ (qqC̄q/2K̃/(q − 1)q)]. We now consider two cases.
If q > 2, it follows from (5.76) that, for all sufficiently large n such that
∆(π)n < 1,

E
[
|Y (ti)− Y (ti−1)|p | Fti−1

]
≤ C̃∆(πn)q/2−1(ti−1 − ti).

Multiplying both sides of this inequality by I[ξε
k,τ

ε
k+1)(ti−1), which is Fti−1-

measurable since τ εk and ξεk are stopping times, then taking expectations and
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subsequently summing over k = 0, 1, . . . , and ti ∈ πn, it follows that

(5.77)
∑
ti∈πn

∞∑
k=0

E
[
|Y (ti)− Y (ti−1)|pI[ξε

k,τ
ε
k+1)(ti−1)

]
≤ C̃∆(πn)q/2−1T.

Since ∆(πn)q/2−1 → 0 as n→∞, combining this with (5.75), we then obtain

lim
4(πn)→0

P

(∑
ti∈πn

∞∑
k=0

|Y (ti)− Y (ti−1)|pI[ξε
k,τ

ε
k+1)(ti−1) >

δ

2

)
= 0.

On the other hand, if q = 2, again multiplying both sides of (5.76) by
I[ξε

k,τ
ε
k+1)(ti−1), then taking expectations, subsequently summing over k =

0, 1, . . . , and ti ∈ πn, and then using the monotone convergence theorem,
we obtain with C̃ as above,

(5.78)

∑
ti∈πn

∞∑
k=0

E
[
|Y (ti)− Y (ti−1)|pI[ξε

k,τ
ε
k+1)(ti−1)

]
≤ C̃

(
T∆(πn)q−1 + E

[∑
ti∈πn

(ti − ti−1)
∞∑
k=0

I[ξε
k,τ

ε
k+1)(ti−1)

])
≤ C̃T (∆(πn)q−1 + 1).

Sending ∆(πn) → 0 on both sides of the first inequality in (5.78), and in-
voking the bounded convergence theorem, the right-continuity of I[ξε

k,τ
ε
k+1)(·)

and the definition of the Riemann integral, we obtain

lim
∆(πn)→0

∞∑
k=0

E
[
|Y (ti)− Y (ti−1)|pI[ξε

k,τ
ε
k+1)(ti−1)

]
≤ C̃E

[∫ T

0

∞∑
k=0

I[ξε
k,τ

ε
k+1)(t) dt

]
.

Together with (5.75), this shows that (5.74) holds with C = 2C̃. �

Proof of Theorem 3.5. Due to Lemma 5.1, using a localization argument and
the local boundedness of b and σ stated in Assumption 3, we can assume
without loss of generality that a, b and σ are bounded. Then, combining
(5.70) with Lemmas 5.2 and 5.3, we have

lim
∆(πn)→0

P

(∑
ti∈πn

|Y (ti)− Y (ti−1)|p > δ

)

≤


C

δ
E

[∫ T

0

∞∑
k=0

I[ξε
k,τ

ε
k+1](t) dt

]
if q = 2,

0 if q > 2.

for every ε > 0, and so the result follows if q > 2. If q = 2, sending ε ↓ 0 and
using the bounded convergence theorem and the definition of the stopping
times ξεk and τ εk , we see that the term on the right-hand side converges to

C

δ
E
[∫ T

0
IV(Z(t)) dt

]
= 0,
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where the last equality follows from the fact that V ⊂ G and (2.5). This
proves (5.66), and Theorem 3.5 then follows from the discussion at the be-
ginning of Section 5. �
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Appendix A. Elementary Properties of the ESP

Lemma A.1. If (φ, η) is a solution to the ESP (G, d(·)) for ψ ∈ CG [0,∞),
then for each 0 ≤ s < ∞, (φs, ηs) is a solution to the ESP for φ(s) + ψs,
where φs(·) .= φ(s+ ·),

ψs(·) .= ψ(s+ ·)− ψ(s) and ηs(·) .= η(s+ ·)− η(s).

Moreover, if the ESM is well-defined and Lipschitz continuous on CG [0,∞)
then for every T <∞, there exists K̃T <∞ such that for every 0 ≤ s < t ≤
T + s,

|η(t)− η(s)| ≤ K̃T sup
u∈[0,t−s]

|ψ(s+ u)− ψ(s)|.

Proof. Fix s ∈ [0,∞) and a path ψ ∈ DG [0,∞). The first statement follows
from Lemma 2.3 of [22]. It implies that ηs = Γ̄(ψ1) − ψ1, where ψ1 .=
φ(s) + ψs. On the other hand, consider the path ψ2 which is equal to the
constant φ(s) on [0,∞), i.e., ψ2(u) .= φ(s) for all u ∈ [0,∞). Then clearly
(φ(s), 0) is the unique solution to the ESP for ψ2, i.e., 0 = Γ̄(ψ2)(u)−ψ2(u)
for all u ∈ [0,∞). Using the Lipschitz continuity of the ESM, for δ ∈ [0, T−s]
we obtain

|ηs(δ)− 0| ≤ sup
u∈[0,δ]

∣∣Γ̄(ψ1)(u)− ψ1(u)− Γ̄(ψ2)(u) + ψ2(u)
∣∣

≤ sup
u∈[0,δ]

∣∣Γ̄(ψ1)(u)− Γ̄(ψ2)(u)
∣∣+ sup

u∈[0,δ]
|ψ1(u)− ψ2(u)|

≤ KT sup
u∈[0,δ]

|ψs(u)|+ sup
u∈[0,δ]

|ψs(u)|,

where KT <∞ is the Lipschitz constant of Γ̄ on [0, T ]. The lemma follows
by letting K̃T

.= KT + 1 and δ = t− s. �

Appendix B. Auxiliary Results

For completeness, we provide the proof of the fact that the sequences of
times defined in Section 4.1.3 are stopping times.

Lemma B.1. {βεn}n∈N, {βε(k),n}n∈N, k ∈ N, are sequences of {Ft}-stopping

times. Also, {βk,εn }n∈N, k ∈ N, are sequences of {Fkt }-stopping times.
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Proof. Clearly, βε0
.= 0 is an {Ft}-stopping time. Now, suppose βεn−1 is an

{Ft}-stopping time and note that for each ε > 0, n ∈ N and t ∈ [0,∞),

{βεn ≤ t} =
⋃
k∈Z

[
{βεn−1 ≤ t} ∩

{
Z(βεn−1) ∈ H2kε

}
∩Aεk,n(t)

]
,

where

Aεk,n(t) .=

{
sup

s∈[βε
n−1,t]

〈Z(s), ~v〉 ≥ 2k+1ε

}
∪

{
inf

s∈[βε
n−1,t]

〈Z(s), ~v〉 ≤ 2k−1ε

}
.

Then {βεn−1 ≤ t} ∈ Ft because βεn−1 is an {Ft}-stopping time. Since Z

is continuous we also know that {βεn−1 ≤ t} ∩
{
Z(βεn−1) ∈ H2kε

}
lies in

Ft. In addition, the continuity of 〈Z, ~v〉 and the fact that [2k+1ε,∞) and
(−∞, 2k−1ε] are closed show that {βεn−1 ≤ t} ∩ Aεn,k(t) ∈ Ft. When com-
bined, this implies that {βεn ≤ t} ∈ Ft or, equivalently, that βεn is an {Ft}-
stopping time, and the first assertion follows by induction. The proof for
the other sequences is exactly analogous. �
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