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We consider a connection-level model of Internet congestion control, in-
troduced by Massoulié and Roberts [33], that represents the randomly vary-
ing number of flows present in a network. Here bandwidth is shared fairly
amongst elastic document transfers according to a weighted a-fair bandwidth
sharing policy introduced by Mo and Walrand [35] (a € (0,)). Assuming
Poisson arrivals and exponentially distributed document sizes, we focus on
the heavy traffic regime in which the average load placed on each resource is
approximately equal to its capacity. A fluid model (or functional law of large
numbers approximation) for this stochastic model was derived and analyzed
in a prior work [26] by two of the authors. Here we use the long time behav-
ior of the solutions of this fluid model established in [26] to derive a property
called multiplicative state space collapse, which loosely speaking shows that
in diffusion scale the flow count process for the stochastic model can be ap-
proximately recovered as a continuous lifting of the workload process.

Under weighted proportional fair sharing of bandwidth (o = 1) and a mild
local traffic condition, we show how multiplicative state space collapse can be
combined with uniqueness in law and an invariance principle for the diffusion
[10, 20], to establish a diffusion approximation for the workload process and
hence to yield an approximation for the flow count process. In this case, the
workload diffusion behaves like Brownian motion in the interior of a polyhe-
dral cone and is confined to the cone by reflection at the boundary, where the
direction of reflection is constant on any given boundary face. When all of
the weights are equal (proportional fair sharing), this diffusion has a product
form invariant measure. If the latter is integrable, it yields the unique station-
ary distribution for the diffusion which has a strikingly simple interpretation
in terms of independent dual random variables, one for each of the resources
of the network. We are able to extend this product form result to the case
where document sizes are distributed as finite mixtures of exponentials, and
to models that include multi-path routing. We indicate some difficulties re-
lated to extending the diffusion approximation result to values of o # 1.
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We illustrate our approximation results for a few simple networks. In par-
ticular, for a two resource linear network, the diffusion lives in a wedge that
is a strict subset of the positive quadrant. This geometrically illustrates the
entrainment of resources, whereby congestion at one resource may prevent
another resource from working at full capacity. For a four resource network
with multi-path routing, the product form result under proportional fair shar-
ing is expressed in terms of independent dual random variables, one for each
of a set of generalized cut constraints.
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 3

1. INTRODUCTION. We consider a connection-level model of Internet con-
gestion control introduced and studied by Massoulié and Roberts [33]. This stochas-
tic model represents the randomly varying number of flows present in a network
where bandwidth is dynamically shared between flows that correspond to continu-
ous transfers of individual elastic documents. This model, which we shall refer to
as a flow level model, assumes a “separation of time scales” such that the time scale
of the flow dynamics (i.e., of document arrivals and departures) is much longer than
the time scale of the packet level dynamics on which rate control schemes such as
TCP converge to equilibrium. We consider the flow level model operating under
a family of bandwidth sharing policies introduced by Mo and Walrand [35] called
weighted a-fair policies. Here @ is a parameter lying in (0, ). The case o =1 is
called weighted proportional fair sharing and the case o — o corresponds to what
is called weighted max-min fair.

Assuming Poisson arrivals and exponentially distributed document sizes, de Ve-
ciana, Lee and Konstantopoulos [11] and Bonald and Massoulié [3] studied sta-
bility of the flow level model operating under weighted a-fair bandwidth sharing
policies (including limiting values of a). Lyapunov functions constructed in [11]
for weighted max-min fair and proportionally fair policies, and in [3] for weighted
a-fair policies (o € (0,)), imply positive recurrence of the Markov chain as-
sociated with the model when the average load on each resource is less than its
capacity. Lin, Shroff and Srikant [30, 31, 39] have recently given sufficient con-
ditions for stability of a Markov model under a back-pressure algorithm when the
assumption of time scale separation is relaxed. For more general document size
distributions, there are a few results for specific values of a or specific distribu-
tions or topologies that provide sufficient conditions for stability of the flow level
model operating under bandwidth sharing policies [6, 8, 28, 32]. A summary of
these results is provided in the introduction to [14]. In general, it remains an open
question whether, with renewal arrivals and arbitrarily (rather than exponentially)
distributed document sizes, the flow level model is stable under an a-fair band-
width sharing policy a € (0,0) when the nominal load placed on each resource is
less than its capacity (see [14, 15] for some first steps in this direction). Here we
restrict to the case of Poisson arrivals and exponential document sizes, for which
stability is well understood.

We are interested in using diffusion approximations to explore the performance
of the flow level model operating under a weighted o -fair bandwidth sharing policy
when the average load placed on each resource is approximately equal to its capac-
ity, i.e., the system is heavily loaded. We are particularly interested in manifesta-
tions of the phenomenon of entrainment, whereby congestion at some resources
may prevent other resources from working at their full capacity.

There are several motivations for our work. One source of motivation lies in

imsart-aap ver. 2006/03/07 file: revcongestion.tex date: August 4, 2008



4 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

fixed point approximations of network performance for TCP networks (cf. [7, 13,
36]). These approximations require, as input, information on the joint distribution
of the numbers of flows present on different routes, where dependencies between
these numbers may be induced by the bandwidth sharing mechanism. Similarly, an
understanding of such joint distributions seems important if the performance mod-
els for a single bottleneck described by Ben Fred; et al. [1] are to be generalized to
a network.

Another motivation is that the flow level model typically involves the simulta-
neous use of several resources. Due to the exponential document sizes, this model
can be equated (in distribution) with a stochastic processing network (SPN) as in-
troduced by Harrison [16]. Open multiclass queueing networks operating under
head-of-the-line (HL) service disciplines are a special case of SPNs without simul-
taneous resource possession. For certain queueing networks of this type, it has been
shown [5, 42] that suitable asymptotic behavior of critical fluid models implies a
property called multiplicative state space collapse, which in turn validates the use
of Brownian model approximations for these networks in heavy traffic. For more
general SPNs, investigation of the behavior of critical fluid models, of a related
notion of multiplicative state space collapse, and of the implications for diffusion
approximations, are in the early stages of development. The analysis in this paper
can be viewed as a contribution to such an investigation for models involving si-
multaneous resource possession. For another contribution, see the paper of Ye and
Yao [44] who consider a stochastic processing network with simultaneous resource
possession; in contrast to the fully heavily loaded, multiple bottleneck situation
considered here, Ye and Yao consider the situation of a single heavily loaded bot-
tleneck. A further recent contribution is the important paper of Shah and Wischik
[38] who have proved multiplicative state space collapse for a class of “switched”
networks with multiple bottlenecks operating under a family of scheduling policies
related to the maximum weight algorithm introduced by Tassiulas and Ephremides
[40].

Finally, although we restrict to exponential document sizes in this paper, we
would like to relax that assumption in future work. Although this involves a sig-
nificantly more elaborate stochastic model (cf. [14]) to keep track of residual doc-
ument sizes (because of the processor sharing nature of the bandwidth sharing
policy), knowing the results for exponential document sizes is likely to be useful
for such work.

1.1. Overview. In this paper, we consider the flow level model with Poisson ar-
rivals and exponentially distributed document sizes operating under a weighted Q-
fair bandwidth sharing policy for o € (0,0). We focus on the heavy traffic regime
in which the average load placed on each resource is approximately equal to its
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 5

capacity. We recall the definition of a critical fluid model from the prior work [26]
of two of the authors; this model is a formal functional law of large numbers ap-
proximation to the flow level model. The asymptotic behavior of this critical fluid
model was studied in [26]. Here we show how this behavior can be used to prove
a property called multiplicative state space collapse. Loosely speaking this says
that in diffusion scale the flow count process can be approximately recovered by
a continuous lifting of the lower dimensional workload process. Given the asymp-
totic behavior of the critical fluid model, our proof of multiplicative state space
collapse follows a general line of argument pioneered by Bramson in [5], where
open multiclass queueing networks operating under certain head-of-the-line (HL)
service disciplines are treated. There are some differences in setup and proof de-
tails between our treatment and Bramson’s [5]. These are described in detail at the
beginning of Section 6. However, we wish to emphasize that our main line of argu-
ment follows that of Bramson [5]. It is interesting to note that in contrast to prior
results on state space collapse for open multiclass queueing networks, our lifting
map can be nonlinear (for a # 1).

The multiplicative state space collapse result leads to a natural conjecture for
a diffusion approximation to the workload process. For the case of weighted pro-
portional fair sharing of bandwidth (o = 1), we combine multiplicative state space
collapse with uniqueness in law for the diffusion [10] and an invariance principle
[20] for semimartingale reflecting Brownian motions living in domains with piece-
wise smooth boundaries to obtain a diffusion approximation for the flow count pro-
cess under a mild local traffic condition. This diffusion lives in a polyhedral cone.
It behaves like Brownian motion in the interior of the cone and is confined to the
cone by reflection (or regulation) at the boundary where the direction of reflection
is constant on any given boundary face. We illustrate this diffusion approximation
result for a simple two resource linear network. Then the diffusion lives in a wedge
that is a strict subset of the positive quadrant. This geometrically illustrates the en-
trainment of resources, whereby congestion at one resource may prevent another
resource from working at full capacity. We also observe how the wedge can vary
with the weights. Ongoing work is directed towards establishing diffusion approxi-
mations for the workload process when o # 1. We mention some of the difficulties
associated with this. These center around the fact that when a # 1 and the workload
dimension is three or higher, although the state space for the proposed diffusion ap-
proximation for the workload process is a cone, it is not a polyhedral cone. Indeed,
the cone has curved boundary faces that intersect non-smoothly and can even meet
in cusp-like singularities. The current lack of a general existence and uniqueness
theory (and an associated invariance principle) for reflecting Brownian motions in
such domains is a major obstacle to proving the conjecture for o # 1.

In the case of proportional fair sharing, i.e., when o = 1 and all of the weights for
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6 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

the bandwidth sharing policy are equal, we show that the approximating diffusion
has a product form invariant measure. When the latter is integrable over the state
space, our results suggest a strikingly simple approximation for the joint stationary
distribution of the number of flows present on different routes under proportional
fair sharing and the mild local traffic condition. In this, each of the resources of
the network has associated with it a dual random variable; these dual variables are
independent and exponentially distributed; and the formal approximation to the
number of flows on a route is proportional to the sum of the dual variables along
the route.

We also indicate an extension of the product form result to the situation where
document sizes are finite mixtures of exponential distributions. Under this exten-
sion, the formal approximation for the joint stationary distribution for the number
of flows present on different routes is insensitive: that is, the approximation does
not depend on the distributions of document sizes other than through the means of
these distributions, provided the distributions are finite mixtures of exponentials.
This result complements the known result [3, 4, 33] that, for proportional fair shar-
ing and a small class of topologies and parameters, the stationary distribution for
the number of flows present on different routes is exactly insensitive: that is, the
stationary distribution does not depend on the distributions of document sizes other
than through the means of these distributions.

Finally, we indicate a relation to more general models with routing. There is
considerable interest in multi-path routing in the Internet, and rate control schemes
generalizing TCP have been proposed [19, 25]. It is known that the stability region
for the flow level model may be strictly increased if multi-path routing is allowed
[19, 27]. We show that our results on diffusion approximations under proportional
fair sharing extend to the multi-path case. The local traffic condition becomes more
difficult to verify in this setting, but if it is satisfied then our results suggest a simple
approximation for the stationary distribution of the numbers of source-destination
flows in terms of independently distributed dual variables, one for each generalized
cut constraint.

A summary of some of the results of this paper (without proofs) was given in
the conference proceedings papers [22] and [23].

1.2. Notation and Terminology. For each positive integer d > 1, RY will de-
note d-dimensional Euclidean space and the positive orthant in this space will be
denoted by RY = {x ¢ RY: % >0 for i =1,...,d}. When d = 1, we sometimes
write R instead of R! and R instead of }Ri. The Euclidean norm of x € RY will be
denoted by |x|. Vectors in RY will be assumed to be column vectors unless specif-
ically indicated otherwise. The transpose of a vector or matrix will be denoted
by the use of a superscript /. Inequalities between vectors in RY will be interpreted
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 7

componentwise, that is, for X, y € RY, x <yis equivalent toX; <y; for i=1,...,d.
For each x € RY and each set S C RY, the distance between x and S is denoted by

d(x,S) =inf{|x—y|:y € S}.

For X, y € R, XVy = max{x, y}. For each X € R, |X] denotes the largest integer
less than or equal to X. Given a vector X € RY, the d x d diagonal matrix with the
entries of X on its diagonal will be denoted by diag(x). For positive integers d; and
d,, the norm of a d; x d, matrix A will be given by

1Al = (%%Aﬁ-)l/z.

i=1j=1

The set of non-negative integers will be denoted by Z, and the set of points in Ri
with all integer coordinates will be denoted by Zi. A sum over an empty set of
indices will be taken to have a value of zero. The cardinality of a finite set S will be
denoted by |S|. For 0 < s <t < oo, any integer d > 1, and any bounded function X :
5.] — B9, Tet [X(-)] s = SuPycisq X(U)| and when's =0, let [x(-) [t = [)(-) | 0

All stochastic processes in this paper will be assumed to have sample paths that
are right continuous with finite left limits (r.c.L.1.). We denote by ([0, ), RY) the
space of r.c.L1l. functions from [0,) into RY and we endow this space with the
usual Skorokhod J;-topology. We denote by C([0,),RY) the space of continu-
ous functions from [0,) into RY. The Borel g-algebra on either ([0, 00),RY)
or C([0,),RY) will be denoted by &Y. Consider X, X! X2, ..., each of which is
a d-dimensional process (possibly defined on different probability spaces). The
sequence {X"}_, is said to be tight if the probability measures induced by the
X" on the measurable space (ID([0,%),RY), %9) form a tight sequence, i.e., they
form a weakly relatively compact sequence in the space of probability measures
on (D([0,00),R%), 29). The notation “X" = X” will mean that, as n — o, the se-
quence of probability measures induced on (ID([0,),RY), %9) by {X"} converges
weakly to the probability measure induced on the same space by X. We shall de-
scribe this in words by saying that X" converges weakly (or in distribution) to X
as N — oo. The sequence of processes {X"}n_, is called C-tight if it is tight, and if
each weak limit point, obtained as a weak limit along a subsequence, almost surely
has sample paths in C([0, ), RY).

2. FLOW-LEVEL MODEL.

2.1. Network Structure. We consider a network with finitely many resources
labeled by j € J # 0. A route i is a non-empty subset of J (interpreted as the set
of resources used by route i). We are given a finite, non-empty set I of allowed
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8 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

routes. Let J = |J|, the total number of resources, and | = |I|, the total number of
routes. Let A be the J x | incidence matrix which contains only zeros and ones and
is defined such that Aji = 1 if resource ] is used by route i, and Aji = 0 otherwise.
We assume that A has rank J, so that it has full row rank. We further assume that
resource (bandwidth) capacities (C;j : j € J) are given and that these are all strictly
positive and finite.

2.2. Stochastic Primitives. An active flow on route i corresponds to the con-
tinuous transmission of a document through the resources used by route i. Trans-
mission is assumed to occur simultaneously through all resources on route i. It is
assumed that a new document arrives to route i at each jump time of a Poisson
process that has rate parameter V; > 0 and that each such document has an expo-
nentially distributed size with mean 1 /4 where [ € (0,). These document sizes
are assumed to be independent of one another and to be independent of all arrival
times of documents. The number of documents on route i at time zero is assumed
to be independent of the remaining sizes of those documents and these sizes are
assumed to be independent and exponentially distributed with mean 1/;. Initial
numbers and sizes of documents, arrival times of new documents and their sizes
for different routes i € I are assumed to be mutually independent.

2.3. Bandwidth Sharing Policy. Bandwidth capacity is allocated dynamically
to the routes according to the following bandwidth sharing policy which was first
introduced by Mo and Walrand [35]. The bandwidth for a route is shared equally
amongst all of the documents currently being transmitted over that route. Given a
fixed parameter o € (0, ) and strictly positive weights (k; : i € I), if Ni(t) denotes
the (random) number of flows on route i at time t for each i € I, and N(t) = (N;(t) :
i € I), then the bandwidth allocated to route i at time t is given by Aj(N(t)) and this
bandwidth is shared equally amongst all of the flows on route i, where the function
A(+) = (Ai(+) : 1 €]1) is defined as follows (we define it on all of R, as we shall
later apply it to rescaled versions of N).

LetA: R, — R! be defined such that for each n € R!,, Aj(n) =0 fori € Iy(n) =
{l €I:n =0}, and when I, (n) = {l €1:n; > 0} is non-empty, A" (n) = (Ai(n) :
i € I;(n)) is the unique value of AT = (A; : i € I.(n)) that solves the optimization
problem:

maximize Gn(AT)
1) subject to Z AjiNi <Cj, jel,
i€l (n)
over N >0, ieli(n),
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 9
where forn € B, \ {0} and A* = (A i € L (m) € RL ),

s kMo ifa £l
2) Gn(/\+) — i€l (n) '

> kinjlogAj ifa=1,

i€l (n)
and the value of the right member above is taken to be —oo if a € [1,00) and Aj =0
for some i € I (n). The resulting bandwidth allocation is called a weighted a-fair
allocation.
The properties of the function A are summarized in the following proposition.

This proposition is proved in the Appendix of Kelly and Williams [26].

PROPOSITION 2.1. Foreachne ]RL,

(i) Ai(n) >0foreachiecl,(n),

(i) A(rn) = A(n) for each r > 0,

(iii) A;(+) is continuous at n for those i such that n; > 0, and
(iv) there exists at least one p € R, depending on n, such that

1/a
Ki .

3 Ai(n) =n; , foralliel,(n),
(3) i(n) i S DiA +(n)
jelJ

where
4) Pj <Cj —ZAji/\i(n)> =0 forall jel.
1€l

The (pj : j € J) are Lagrange multipliers (or dual variables) for the optimization
problem, where there is one multiplier for each of the capacity constraints.

2.4. Stochastic Process Description. The flow count process N = (N; : i € I) is
a Markov process with state space ZL. We use the following (equivalent in distri-
bution) representation for N and the cumulative unused capacity process U = (U; :

jeld):

(5) Ni(t) = Ni(0)+Ei(t)-Si(Ti(t)), i€l
(6) Uj(t) = Cjt_ZAjiTi(t)a jel,
el

where E; is a Poisson process with rate v;, Sj is a Poisson process with rate Y, and
Ti(t) is the cumulative amount of bandwidth allocated to route i up to time t and

(7 Ti(t) = /Ot Ai(N(s))ds.
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10 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

We assume that for each i € I, Ej and S; are represented by
n

(8) Ei(t) =sup<n>0: Za(l)gt ,
=1

and
n

) Si(t) =supen=0: 3 G(l)<ts,
=1

where {&i(1)}}2, is a sequence of i.i.d. exponential random variables with mean
1/vi and {i(1)}}2, is a sequence of i.i.d. exponential random variables with mean
1/p;. It is assumed that {& (1) }>,, {<i(1)}}>,, Ni(0), for i € I, are mutually inde-
pendent. We define an (average) workload process by

(10) W(t) =AM~IN(t) forallt>0,
where M = diag () is the | x | diagonal matrix with the entries of U on its diagonal.

3. SEQUENCE OF SYSTEMS AND SCALING. Consider an increasing
sequence of positive scale parameters {r| };>, which converges to infinity. To ease
the notation, we shall simply write I in place of r|, where it is understood that
r increases to infinity through a sequence. We consider a sequence of flow level
models indexed by r where the network structure with parameters A and C and
bandwidth sharing policy with parameters o and {k;, i € I} do not vary with r.
Each member of the sequence is a stochastic system as described in the previous
section. We append a superscript of I to any process, sequence of random variables
or parameter associated with the r'" system that depends on r. Thus, we have pro-
cesses N", W' U" T" E",S", sequences of random variables &' = {&(l)}>, and
¢ ={¢'()}>, foriel, parameters V', and {', and matrices M". Let pf = v /uf
for each i € I. We shall assume henceforth that the following heavy traffic condition
holds.

ASSUMPTION 3.1. (Heavy Traffic) Thereare v, u € }RL and 8 € R such that
vi >0and y >0foralliel,

(11) vVi—v and u"—pu as r— oo,

(12) r(Ap"—C)— 06 as r— oo,

Let M = diag(u) and p; = & for all i € I. We note that (11)—(12) imply that
p"— pasr— o and Ap =C.
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 11

REMARK 3.1. Assumption 3.1 thus implies that all resources are heavily loaded.
We do not consider the case where some resources are underloaded, however, we
conjecture that the diffusion approximation in this case would be as if these under-
loaded resources were deleted from the model.

t>0,let

(13) N'(t) = N'(rt)/r, W'(t) = W'(rt)/r,
(14) U't) = ur(rty/r, T(t)= T'(rt)/r,
(15) E'(t) = E(rt)/r, S(t)= S(rt)/r.

2

We define diffusion scaled processes N, W' U" E" S as follows. For each r and
t>0,let

(16) NT(t) = Nr(rrzt),

(17) wrt) = Wr(rrzt)zA(MWN'(t),
(18) U = Ur(rrzt),

(19) E'(t) = w

(20) Sty = M.

r

As Eir, §{, i € I, are independent Poisson processes with parameters satisfying the
convergence conditions (11), it follows that we have the following well known
functional central limit result [2]:

21) (E,§) = (E,S), asr— o,

where E and S are independent I-dimensional Brownian motions starting from the
origin with zero drift and covariance matrices diag(V) and diag (), respectively.

Finally, we assume that independent of (21), W' (0) converges in distribution as
r — o to a J-dimensional random variable.

4. FLUID MODEL. In this section we recall some definitions and results
established in the prior work [26]. These will be needed for our statement and
proof of multiplicative state space collapse.
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12 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

4.1. Fluid Model Solution. A fluid model solution can be thought of as a for-
mal limit of the sequence {N' } as r — oo, In fact, if one assumes that N' (0) con-
verges in distribution as I — o to a random variable taking values in R'Jr, then one

can show (cf. Appendix to [26]) that {(T',E',S',N',U")} is C-tight and any weak

The following notions are used in the definition of a fluid model solution given
below. A function f = (fy,...,f;): [0,0) — R is absolutely continuous if each
of its components fj: [0,0) — R, i=1,...,1,is absolutely continuous. A regular
point for an absolutely continuous function f : [0,00) — RL is a value of t € (0,0)
at which each component of f is differentiable. (Since f is absolutely continuous,
almost every time t € (0, ) is a regular point for f. Furthermore, f can be recov-
ered by integration from its a.e. defined derivative.)

DEFINITION 4.1. A fluid model solution is an absolutely continuous function
n:[0,0) — R such that at each regular point t > 0 for n(-) we have for each
el

(22) Eni(t)z{ v HA), () >

and for each j € J,

(23) > AN(()+ > Aip <Cj,
iely(n(t)) iely(n(t))

where I (n(t)) ={i€l:ni(t) >0} and Iy(n(t)) ={i € L:ni(t) =0}.

REMARK 4.1. Note that we are not assuming uniqueness of fluid model solu-
tions given the initial state.

4.2. Invariant Manifold.

DEFINITION 4.2. A state ng € ]Ri'+ is called invariant (for the fluid model) if
there is a fluid model solution n(-) such that n(t) = no for all t > 0. Let .#, denote
the set of all invariant states. We call .#, the invariant manifold.

REMARK 4.2. Although a € (0,) is fixed throughout, we indicate the depen-
dence of .# on a explicitly here as it will be useful later on when we explain how
the state space for the proposed workload diffusion approximation varies with a.

Various characterizations of the invariant states were given in [26]. We summa-
rize these in Theorem 4.1 below. For this, we need the following definitions.
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 13
For each n € R, define w(n) = (wj(n) : j € J) to be given by
n; .
(24) win) = Aji—, jel.
1€l !

We call w(n) the workload associated with n.
For each w € Ri, define A(w) to be the unique value of n € RL that solves the
following optimization problem:

minimize F(n)

n; .
(25) subject to ZAji—' >wj, Jelj,
1€l i
over n>0, iel,
where
1 L a+1 |
(26) Fin)=——=Y vikiy®~ <—> , NERL.
a+1 é ! Vi

(This function F was introduced in [3] as a Lyapunov function for the fluid model.
In fact, it is a Lyapunov function for the original flow count process N and can
be used to show positive recurrence of N when the average load on each resource
is less than its capacity.) The function A has the two properties stated in the next
proposition.

PROPOSITION 4.1. The function A: Ri — RLF is continuous. Furthermore, for
eachw € RY and ¢ > 0,

(27) A(cw) = cA(w).

PROOF. The first property is proved in Lemma 6.3 of [26]. For the second prop-
erty, note that forw € R‘J]r and ¢ > 0, cA(w) satisfies the constraints in (25) with cw
in place of w and so

(28) ™R (A(w)) = F(cA(w)) > F(A(cw)).
On the other hand, by writing w/c in place of w in (28), we find that
™ IR (A(w/c)) > F(B(w)),
and then by replacing ¢ by 1/c and rearranging, we obtain
(29) F(A(cw)) > c® TR (AW)).
On combining (28) and (29), we conclude that
F(A(ew)) = F(cA(w))

and by uniqueness of the solution to (25), we obtain the second property. O
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14 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

THEOREM 4.1. The following are equivalent for n € RL.

(i) nis an invariant state (for the fluid model), i.e., n € .#,
(ii)) Ai(n)=pi foralliely(n)={l€l:n >0},
(iii) there is g € RY. such that

. A 1/a
(30) ni = P (%) foralliel,
i

(iv) n=A(w(n)).

PROOF. This follows immediately from Lemma 5.1 and Theorems 5.1, 5.3 of
[26]. O

REMARK 4.3. Note that if the conditions of Theorem 4.1 are satisfied, then
p = q satisfies conditions (3) and (4) and thus (q; : j € J) are dual variables for the
optimization problem (1); note that we use the fact that Ap = C for this. We have
chosen to use q to denote the dual variables associated with the invariant states
to distinguish them from the dual variables p associated with arbitrary states n.
This distinction will be useful in our proof of convergence to a diffusion process
(cf. Lemma 7.5), where we need to distinguish the dual variables associated with
actual system states from the dual variables associated with nearby points on the
invariant manifold. It is important to make this distinction because when a system
state is near an invariant state and some component of the system state is near
zero, it need not follow that the dual variables associated with the two states are
close.

PROPOSITION 4.2. For each w € RY, A(W) € .#4, i.e., A(w) is an invariant
state.

PROOF. Let w € RY. Since A(w) is the unique optimal solution to (25), it fol-
lows from Lemma 6.4 of Kelly and Williams [26] that there is q € Ri such that

gAY .
Aw)i = p <ZJ%?JA“) for all i € II. Then by Theorem 4.1, we have that A(w) is

an invariant state. O

4.3. Asymptotic Properties of Fluid Model Solutions. The next three proposi-
tions note some properties of fluid model solutions that follow from the analysis
in [26] and that are used in our proof of multiplicative state space collapse (cf.
Theorem 5.1 below).

PROPOSITION 4.3.  For each R € (0,), there is a constant D(R) € [R, o) such
that for any fluid model solution n(-) satisfying |[n(0)| <R, we have |n(t)| < D(R)
forallt > 0.
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 15

PROOF. The proof of this proposition is implicit in the proof of Theorem 5.2 in
[26]. O

The next proposition states that fluid model solutions converge uniformly to
the invariant manifold .#,, where the uniformity applies across all fluid model
solutions that start inside a compact subset of ]R'Jr.

PROPOSITION 4.4. FixR € (0,o) and € > 0. There is a constant Tr ¢ € [1,)
such that for each fluid model solution n(-) satisfying [n(0)| <R we have

(31) d(n(t), #y) <& forallt>Tge.

PROOF. The content of this proposition is the same as that of Theorem 5.2 in
[26]. O

PROPOSITION 4.5. For each R € (0,%) and & > 0, there is & > 0 such that for
any fluid model solution n(-) satisfying [n(0)| <R and d(n(0),.#4) < &, we have
d(n(t), #4) < € forall t > 0.

PROOF. This proposition follows from the proof of Theorem 5.2 in [26]. For
completeness, we provide a few details. Fix R > 0 and &€ > 0. By Proposition 4.3,
there is a compact set B(R) in R!, such that n(t) € B(R) for all t > 0 for any fluid
model solution n satisfying [n(0)] < R. Let D ={u e B(R) :d(u,.#q) > €}. As
shown in [26], there is a continuous function H : R'Jr — R, that is zero on .# and
strictly positive off .#4 such that H(n(-)) is non-increasing for each fluid model
solution n. Let &; = inf{H(u) : u € D}. Then, &; > 0 and by the properties of H,
there is & > 0 such that whenever n is a fluid model solution satisfying [n(0)| <R
and d(n(0), #4) < d, then H(n(0)) < J;, and since H(n(-)) is a non-increasing
function, it follows that H(n(t)) < &; for all t > 0. The latter implies that n(t) ¢ D
forallt > 0 and so d(n(t),.#y) < € forall t > 0. O

The following corollary shows that fluid model solutions starting on the invariant
manifold stay at their starting points for all time. We note this for the reader’s
interest. We do not use this corollary in our proofs.

COROLLARY 4.1.  Suppose that n(-) is a fluid model solution such that n(0) €
My. Thenn(t) =n(0) € 4, for all t > 0.

PROOF. By Proposition 4.5, since d(n(0),.#y) = 0, then d(n(t), #4) = 0 for
all t > 0 and hence n(t) € .#4 for all t > 0. It follows from Theorem 4.1 that for
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16 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

each t > 0, Aj(n(t)) = pi = vi/ for all i such that nj(t) > 0. Then by the fluid
model dynamics (22), for each regular point t > 0 of n(-), we have

(32) i) = vi—tip =0,
if n(t) > 0, and the last equality also holds if n;j(t) = 0. It follows, since the ab-
solutely continuous function n(-) can be recovered from its almost everywhere de-

fined derivative, that n(t) = n(0) for all t > 0. O

5. MAIN RESULTS. In this section, we describe the main results of this pa-
per. We begin with our result on multiplicative state space collapse. This is estab-
lished using the asymptotic behavior of fluid model solutions described in Section
4.3. Loosely speaking, multiplicative state space collapse shows that an approxi-
mation for N' can be derived from one for W' via the continuous lifting map A
(see (25)—(26) for the definition of this map). This lifting map can be nonlinear
(for o # 1). The multiplicative state space collapse result leads to a natural conjec-
ture for a diffusion approximation to W'. In the case a = 1, assuming a mild local
traffic condition and suitable initial conditions, we prove that the conjectured dif-
fusion approximation is valid. (In Section 5.6, we indicate some of the challenges
associated with establishing this conjecture for a # 1.) When a = 1 and all of
the weights for the bandwidth sharing policy are equal (proportional fair sharing),
we use results of Harrison and Williams [17] and Williams [41] to show that the
diffusion has a product form invariant measure. When this measure has finite total
mass, this result suggests an approximation for the stationary distribution of the
flow count process which we are able to extend to the case where the document
size distributions are finite mixtures of exponential distributions and to some mod-
els with multi-path routing. So as not to disrupt the flow of results and associated
discussion, we defer the longish proofs of multiplicative state space collapse and
of the diffusion approximation to Sections 6 and 7, respectively.

5.1. Multiplicative State Space Collapse.

DEFINITION 5.1. (Multiplicative State Space Collapse) Multiplicative state
space collapse holds (for the sequence of flow level models described in Section 3),
if foreach T > 0,

A

N'(-) —A (W ()
IR (v 1

33) I

in probability as r — oo,
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 17

REMARK 5.1.  We note here that in our form of multiplicative state space col-
lapse, the normalization (in the denominator) is in terms of the flow count process,
whereas in Bramson’s version for multiclass queueing networks [5], it is in terms
of a workload process. Furthermore, the lifting maps in [5] are all linear whereas
here A can be nonlinear (for a # 1).

REMARK 5.2. If (33) holds without the factor in the denominator, then state
space collapse is said to hold. Multiplicative state space collapse is more con-
venient for the purpose of verification and if {N"} (or {W'}) satisfies a compact
containment condition then state space collapse follows from mutiplicative state
space collapse. As was the case for open multiclass HL queueing networks [42],
in establishing our diffusion approximation result for a = 1 under a mild local
traffic condition, we will show for this case that multiplicative state space collapse
implies state space collapse.

The following theorem is one of the main results of this paper. It is proved in
Section 6.

THEOREM 5.1.  Assume that
(34) IN"(0) - (W(0))| 0
in probability as r — oo, Then multiplicative state space collapse holds.

5.2. Conjectured Diffusion Approximation. We are interested in obtaining a
diffusion approximation for the scaled workload process W'. The multiplicative
state space collapse result can then be used to obtain a diffusion approximation for
the scaled flow count process N'.

For each r, define the double fluid scaled bandwidth allocation process

T"(r’t)

(35) L) = 5 120,

Using (5)—(7) and (10) for the rth system, the definitions of rescaled processes, and
(ii) of Proposition 2.1, after some simple manipulations, we obtain for all t > 0:

(36) Wrt) = W)+ X"t)+U0"(t),
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18 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

where
(37) Xrt) = A(Mr)’l(Er(t)—§r(fr(t))>—|—r(Apr—C)t,
38) (ST = ST, iel

U't) = r(Ct—AT"(t))
(39) _ r‘I/OH(C—A/\(Nr(s)))ds

_ r/ot(C—A/\(Nr(s)))ds.

If we postulate that multiplicative state space collapse implies state space col-
lapse, then by formally (non-rigorously) passing to the limit in the expression (36)
for W', we can obtain a natural conjecture for a diffusion approximation to W',
Immediately below, we give an informal description of how one might arrive at
this conjecture. Following that we give a precise mathematical description of the
diffusion process and of the conjecture.

For the following informal description, which is used to motivate the form of
the conjectured diffusion approximation, we postulate that the sequence of pro-
cesses {(W",T",U" E",S")} converges in distribution to a 5-tuple of continuous
processes (W, T*,U,E,S). We also postulate that state space collapse (SSC) holds
(not just multiplicative state space collapse). From the convergence of {W'}, SSC
and continuity of the lifting map A, it follows that N" converges in distribution to
a continuous process N = A(W) that lives on the invariant manifold .#,. The fact
that W' = A(M")~'N" will yield in the limit that W = AM~'N. By the character-
ization of invariant states given in Theorem 4.1, it will then follow that for each
t > 0 and realization w, there is q(t, w) € Ri such that

- iegQi(t, WA l/a
(40) Ni(t, w) = p <M> , foralliel.
i
Consequently, W = AM~!N will live in the space
(41) Yo =AM i,
where

1
'A)i\ @ .
42) My = {n € R'Jr ni=p <y> foralli €1, some g &€ Ri}
i
We call #, the workload cone. This is the state space for the conjectured diffusion
approximation W .
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STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 19

By the assumption made at the end of Section 3, we know that W' (0) converges
in distribution, independently of the primitive arrival and service processes. We
denote the limit distribution of W' (0) by 1. Under the postulated convergence of
wWr, n will be concentrated on #j.

We now turn our attention to the term X' in the expression (36) for W'. Given
the functional central limit theorem result (21) for the diffusion scaled arrival and
service processes (Er,§r), and the heavy traffic Assumption 3.1, if we postulate
that the double fluid scaled allocation processes T' achieve the nominal levels
given by T*(t) = pt in the heavy traffic limit, then X" given by (37) will con-
verge in distribution to the Brownian motion AM ~1(E(-) —S(T*(-))) + 6(-), where
(S(T*()))i =Si(T;*(+)) fori €1, B(t) = 6t for all t > 0 and 6 is defined in the heavy
traffic Assumption 3.1. This Brownian motion starts from the origin, it has drift 6
and covariance matrix AM ~!diag(v + V)M ~!A’, where we have used the facts that
M = diag(u) and pjp; = v; for all i € I to compute the second term in the diagonal
part of the covariance matrix expression.

On examining the representation (36) for W', we see that it remains to conjecture
properties for the postulated limit U of the scaled unused capacity process U" as
r — oo. The limit U will inherit the non-decreasing property from the U". The main
issue is to determine where each of the components of U can increase. For the
prelimit process, U, to determine where its components increase, we see from (39)
that it suffices to identify where each of the components of C — AA(N'(-)) is strictly
positive. From Proposition 2.1, if j € J such thatCj — 5 AjiAi (N' (t, )) > 0, then
there is a Lagrange multiplier p'(t, @) € RY such that pj(t,w) =0and

S key Pi(t, W)A

1/a
) foralliel.
Ki

@) N(tow = /\i(Nr(hw))(

(For this, we note that both sides of (43) are zero if NI (t,w) = 0.) If A(N'(t, w)) is
close to the nominal allocation p, then by (43), N'(t, w) is near

1
. / \ a
(44) My = {neRﬂr:ni:pi<(qKA)'> forall i €1,

some ( € ]R;]r satisfying qj = O},

the subset of .#, obtained by setting ¢; equal to zero in (42), and then Wr =
AM"~IN" will be close to

(45) Wy = {AM"n:ne .z},

which we refer to as the j" face of the workload cone #. Thus one might conjec-
ture that in the limit, U j can increase only when W is on the face 7).
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Putting all of the above musings together leads to the informal conjecture that
W' converges in distribution to a J-dimensional diffusion process W of the form
W (0) + X +U. The state space for W is the workload cone #4 and the initial
distribution of W is given by n. In the interior of #4, the increments of W are
given by the increments of a Brownian motion X with drift 8, covariance matrix

(46) [ =2AM~'diag(v)M A/,

that starts from the origin. The process W is confined to the cone # by instanta-
neous “pushing” at the boundary of #4. The direction of push allowed when W is
on the boundary face # is y!, the unit vector parallel to the positive j" coordinate
axis in ]R;]r, and the cumulative amount of push in that direction is given by the jt
component of the continuous non-decreasing process U. (At the intersections of
boundary faces, the combined effect of pushing on the individual boundary faces is
a push in the direction of a convex combination of the pushing directions available
from the intersecting boundary faces.) The direction of push on a given boundary
face is usually called a direction of reflection, whereas it might be better thought
of as a direction of regulation for the process. (The term reflection comes from the
fact that in one-dimension when the drift is zero, the construction of such a regu-
lated process from a Brownian motion can be done by a mirror reflection; although
this type of construction does not generally apply in higher dimensions, the term
reflection is still used.)

We now introduce a precise definition for the conjectured diffusion approxima-
tion to the workload process W'. (The delicate issue of existence and uniqueness
for this process is discussed further below.) This definition will be used in giving
a precise statement of our conjecture. Here 8 is a vector in RY, I is given by (46),
y} is the unit vector parallel to the positive j™" coordinate axis and N is a Borel
probability measure on #4.

DEFINITION 5.2. A Semimartingale Reflecting Brownian Motion that lives in
the cone #4, has direction of reflection y! on the boundary face %, for each
j € J, has drift 8 and covariance matrix I", and has initial distribution n on #4,
is an adapted, J-dimensional process W defined on some filtered probability space
(Q,.#,{%#},P) such that
(i) P-as.,W(t) =W (0)+X(t)+U(t) for all t >0,

(i) P-a.s., W has continuous paths, W (t) € #4 for all t >0, and W (0) has distri-
bution n,
(iii) under P,

(a) X is a J-dimensional Brownian motion starting from the origin with drift
0 and covariance matrix I',
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(b) {X(t)—6t, F, t >0} isamartingale,
(iv) foreach j € J, Uj is an adapted, one-dimensional process such that P-a.s.,
(@) Uj(0) =0,
(b) Uj is continuous and non-decreasing,
© U;t)= i L (g ergydUj(s) for all t > 0.

REMARK 5.3. We call a process W satisfying the above properties an SRBM
associated with the data (#4,0,I,{y! : j € J},n). Here adapted means adapted
to the filtration {.%}. We note that this filtration need not be the one generated
by X, it can be larger. However, it can always be taken to be the filtration gener-
ated by W, X,U. The martingale condition on X is included here as we are using
a “‘weak’ definition of the process. This martingale property is needed in estab-
lishing uniqueness in law for an SRBM. The term ““semimartingale” refers to the
fact that W is the sum of a continuous martingale and a continuous process that
is locally of bounded variation. Condition (iv)(c) corresponds to the condition that
Uj; can only increase when W is on the boundary face V23

We now give a precise statement of our conjecture.

CONJECTURE 5.1.  Suppose that the limit distribution of W' (0) is 1, a proba-
blity distribution on %, endowed with the Borel g-algebra, and suppose that

IN"(0) — AW (0))] — 0 in probability as r — oo,

Then, W' converges in distribution as r — o to a process W that is an SRBM
associated with the data (#4,0,I,{y' : j€J},n).

We shall prove that Conjecture 5.1 holds when o = 1, provided a mild local
traffic condition holds. We state this result in the next subsection. In the remainder
of the current subsection, we indicate some of the challenges associated with giving
a rigorous proof of the conjecture.

When a =1 (corresponding to weighted proportional fair sharing), we can ex-
press the cone #4 in the following simple form:

47) #i = {ABAq:q R} },

where B is an | x | diagonal matrix with the it" diagonal entry being H‘z’—'K > 0.
Thus, #} is a polyhedral cone. Since A has full row rank and B is a diagonal
matrix with strictly positive diagonal entries, ABA’ is a linear bijection between R‘J]r

and 7. It follows from this that 7] is a simple polyhedral cone. Necessary and

imsart-aap ver. 2006/03/07 file: revcongestion.tex date: August 4, 2008



22 W.N.KANG, F. P. KELLY, N. H. LEE AND R. J. WILLIAMS

sufficient conditions for the existence and uniqueness in law of SRBMs living in
simple polyhedral domains have been given by Dai and Williams [10]. Under these
conditions, the SRBM is a diffusion, i.e., a continuous strong Markov process.
It will turn out that the conditions of [10] are satisfied by our data when a =
1. For a # 1 and J = 2, the workload cone is a wedge which is still a simple
polyhedral cone. However, in general, for a # 1 and J > 2, the workload cone #4
is not a polyhedral cone (it has curved boundaries). In this case, we have some
partial (unpublished) results on existence and uniqueness for SRBMs. The main
impediment to obtaining a general result is that boundary faces can meet in cusp-
like singularities making it challenging to even determine whether the process can
escape from the cusp and whether it can do so in a unique manner (see Section 5.6
for an example).

Even if one has existence and uniqueness of the SRBM, for any proof of the
conjecture, there are a number of other challenges to overcome. Firstly, one needs
to establish C-tightness of the sequence of triples {(W",X",U")}. This is largely an
issue of the C-tightness of {U"}. One also needs to show that multiplicative state
space collapse implies state space collapse. One of the most challenging aspects
is to show that for any possible limit (W,X,U) of the sequence {(W",X",U")},
for each j € J, the process Uj can only increase when W is on the boundary face
#, . Indeed, in our informal use of (43) to arrive at our conjecture, we neglected
the fact that Aj (N (t, )) need not be near p; when some component of N (t, w) is
near zero (recall that Aj(n) need not be continuous when n; is zero), and also the
notions of “nearness” and “closeness” used loosely in our informal description are
not necessarily uniform. However, if N (t, ) is at or near zero when pi(t,w)=0
for an i such that Aji > 0, then we can show that W' (t, @) is near the boundary
face 7. To take advantage of this observation, in the case when we prove the
conjecture (0 = 1), we will assume that a mild local traffic condition holds.

In summary, the main reasons that we are able to treat the case a = 1 are that
the existence and uniqueness theory for the limit diffusion process is in place [10],
and there is an associated invariance principle [20] which loosely speaking is a per-
turbation result telling us that processes such as W', that satisfy perturbed versions
of the defining conditions for an SRBM, are close in distribution to an SRBM. In
particular, for a = 1, the invariance principle of [20] takes care of establishing the
C-tightness of {(W",X",U")} and, in the presence of the uniqueness in law of the
SRBM [10], it implies convergence in distribution of W' to an SRBM. In the case
a # 1and J =2, #4 is a wedge (a polyhedral cone) and our proof for a = 1 can be
extended to this case. In as yet unpublished work, we have been able to establish
uniqueness in law of the SRBM and to establish an invariance principle for some
cases where a0 # 1 and J > 2. However, some cases, especially when boundary
faces meet in cusp-like singularities, are as yet unresolved. We summarize the situ-
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ation for o # 1 in Section 5.6. However, because of the partial nature of our results
so far, we leave description of these further developments to future work.

5.3. Diffusion Approximation for Weighted Proportional Fair Sharing (a = 1).
The following condition is used in the next theorem. This condition can be inter-
preted as a local traffic assumption under which each resource has at least one route
that only uses that resource.

ASSUMPTION 5.1. (Local Traffic) For each j € J, there is at least one i € T
such that Aji > 0 and A = 0 for all k # j.

The following theorem is proved in Section 7.

THEOREM 5.2. Assume that o = 1 and the local traffic Assumption 5.1 holds.
Suppose that the limit distribution of W'(0) as r — o« is n (a probability measure
on #1), and that [N"(0) — A (W"(0))| — 0 in probability as r — co. Then (W",N")
converges in distribution as r — oo to a continuous process (W,N), where W is an
SRBM with data (#4,6,T,{y! : j€ J},n) and N = AW).

In the case o = 1, the lifting map A is in fact a linear map on %/, given by
(48) A(w) = diag(p)diag(k) 'A'(ABA)"'w, we 7.

Indeed, for o = 1 and w € #4, if g = (ABA')~'w and n is given by the right hand
side of (48), then w(n) = AM~'n = w by the definition of B =M ~!diag(v)diag(k)~'M~,
and n = diag(p)diag(k)~!A’q so that (30) holds, and then by Theorem 4.1 we con-
clude that
n = Aw(n)) = A(w),

and hence (48) holds. By the remark following Theorem 4.1, the (¢ : j € J) defined
above are dual variables for the optimization problem (1). It follows that we can
associate a process of dual random variables Q with the SRBM W of Theorem 5.2
as follows. Given W as in Theorem 5.2, define

(49) G — (ABA') VW

This process Q inherits an SRBM structure from W. In fact, Q is a semimartingale
reflecting Brownian motion living in Ri having the form:

(50) Q(t) = Q(0) + (ABA") !X (t) 4 (ABA) U (1), t >0,

where the Brownian motion (ABA’)~!X has drift (ABA’)~!8 and covariance ma-
trix (ABA')~!I'(ABA’)~!, and Uj can increase only when Qj is zero, j € J. The
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V1 9]

V3 @ @ > 13

M1 2

F1G 1. A linear network with two resources and three routes.

direction of reflection on the boundary face of R;]r is defined by the j™ column
of the matrix (ABA’)~!. The initial distribution of Q is obtained by applying the
linear transformation (ABA’)~! to the distribution 1. (For the formal definition of
such an SRBM, where reflection directions are not in general parallel to coordinate
directions, see [43].)

As an illustration of Theorem 5.2, consider a two resource linear network op-
erating under a weighted proportional fair sharing policy (0 = 1). This network is
depicted in Figure 1. It has two resources and three routes. Each resource has a
route that passes only through that resource and then there is a route that passes
through both resources.

The workload cone in this case is a wedge in Ri that has the following repre-
sentation:

Vi V3 V3
! W) V2o V3 4+ ) +
uzsz 1132K3 q2 “32‘(3 ql
Let

2 2
B, = <1+V2“3K3> and B, = <1+ V1“3K3>.

V33 K V3H7K)

It can be easily computed that the two boundary faces of the wedge #7 have the
following expressions:

Wll:{WERilwlzo, W2:B1W1}

and
WE={WeR :w, >0, w; =Bow,}
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Wa

Wy = Biw

w1 = Bowa

0 Wy

F1G 2. The workload cone #; for a linear network with two resources and three routes is an infinite
wedge in the positive quadrant of R2. A finite portion of the wedge is shown above (between the two
shaded regions). Under the lifting map A, points (wy,w,) on the boundary w, = B;w; of the wedge
are mapped to points (ny,ny,n3) where n; =0 (and the corresponding q € Ri has q; = 0); similarly,
points (wy,w,) on the boundary w; = 3w, are mapped to points (ny,nz,n3) where n, =0 (and the
corresponding g € Ri has g, = 0).

The wedge is depicted in Figure 2. For a linear network, the local traffic condition
holds automatically. Thus, the conclusion of Theorem 5.2 applies provided W (0)
converges in distribution to a random variable with distribution 1 concentrated
on # and [N"(0) —A(W'(0))| — 0 in probability as r — co. For example, this
holds if each of the systems indexed by r starts empty and 1 is the point mass at
the origin in R%r. The limiting SRBM W lives in the wedge #; and is confined
there by reflection (or pushing) at the boundary. Reflection occurs in the horizontal
direction (corresponding to resource 1 underutilizing capacity) on the bounding
face where wy = ;wy. The interpretation of this is that although there is no work
for resource 1 on route 1, there is work for this resource on route 3. However,
congestion at resource 2, through the nature of the bandwidth sharing policy, is
preventing resource 1 from working at its full capacity. Similarly, vertical reflection
(corresponding to resource 2 underutilizing capacity) on the bounding face w| =
Bow, is interpreted to mean that congestion at resource 1 is preventing resource 2
from working at its full capacity. Thus, the shape of the workload space indicates
the entrainment of resources, whereby congestion at some resources may prevent
other resources from working at their full capacity. We note that when K3 — oo the
upper boundary of ] tends to the vertical axis and the lower boundary tends to
the horizontal axis, hence the wedge expands to the whole quadrant, approaching
the situation with full utilization of the resources.
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5.4. Product Form Stationary Distribution for Proportional Fair Sharing. In
this subsection we prove a result which shows that when a = 1 and k; = 1 for
all i € I (proportional fair sharing), an SRBM W with the properties described in
Theorem 5.2 has a product form invariant measure. (This is a result for SRBMs
and so does not require the local traffic condition a priori.)

THEOREM 5.3. Suppose that a = 1 and kj = 1 for all i € I. Let T be the
measure on % that is absolutely continuous with respect to Lebesgue measure
with density given by

(52) p(w) =exp(V-w), WEeW,
where
(53) v=2r-'e.

The product form measure 1T is an invariant measure for the SRBM having state
space 74, directions of reflection {y : j € J}, drift 8, and covariance matrix I
This measure is integrable over % if and only if 8; < 0 for all j € J, and then after
normalization it defines the unique stationary distribution for the SRBM.

PROOF. Sufficient conditions for a reflecting Brownian motion in a simple poly-
hedral domain to have a product form invariant measure were determined by Williams
in [41], building on solutions of a related analytic problem obtained by Harrison
and Williams in [17]. In these works, the covariance matrix for the process is the
identity matrix. In order to apply these results, we need to perform a linear transfor-
mation to transform an SRBM with covariance matrix " into one whose covariance
matrix is the identity matrix. We perform this transformation below; the computa-
tions are straightforward, though a little tedious, as we need to normalize the re-
sulting directions of reflection to have inward normal components of unit length,
to facilitate use of the results in [41]. Similar manipulations were carried out in the
proof of Theorem 23 in [18] where the reflection directions had a special form.

Before introducing the transformation, we obtain an alternative representation
for the simple convex polyhedron 7. By (47),

# ={ABAq:qc R} = {weR’: (ABA)'we R }.

Here, since k; = 1 for all i, we have that B = M~!diag(v)M~! and by (46), ABA’ =
ir. Thus
2! ’

(54) W = {weR:T'weRl},
where we have used the fact that q € ]R;]r if and only if 2q € Ri.

imsart-aap ver. 2006/03/07 file: revcongestion.tex date: August 4, 2008



STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION 27

Now we define the linear transformation to be applied to the SRBM. Let Y de-
note the diagonal matrix that has the same diagonal entries as ' ~!. Let L be the ro-
tation matrix whose rows are the orthonormal eigenvectors of the covariance matrix
I" and D be the corresponding diagonal matrix of eigenvalues such that I = L'DL
where L’ = L1, Let W be an SRBM with state space #1, drift 8, covariance matrix
I" and directions of reflection given by {yi : j € J}, with a decomposition as in (i)
of Definition 5.2. Let V = DL and define Z = VW. Then Z is an SRBM in the
simple convex polyhedron

2% = Vwiwe#y={zcR :Vlze 7}
= {zeR’: F.‘IV‘lzeRi}
= {zeR):nl.z>0forall j € J}

where for each j € J, fil is given by the j row of the matrix
(55) o=y :rlvl=y:riUps,

and fil is the unit inward normal to the jth face of 27. (The matrix Y2 is used
to normalize the fi! to be of unit length.) The process Z inherits the following
decomposition from W :

(56) Z(t)=Z(0)+VX(t)+RY(t), t>0, as.

where R=VH~! =D~ 3LH “LH= Y? is the diagonal matrix with the same diag-
onal entries as ©V, and Y = HU is a continuous, non-decreasing process that starts
from zero and can increase only when Z is on the ji" face of 2. The columns of
the matrix R are the directions of reflection for Z on the faces of 2, normalized so
that the inward normal component of each direction of reflection has unit length.
(The matrix H ! is used to achieve the normalization.) The matrix R has the form

(57) R=0+Z

where O is the matrix specified in (55) (whose rows are the inward unit normals
to the faces of 27) and = is the matrix whose rows consist of the components of
the (normalized) directions of reflection that are tangent to each of the faces of Z7.
In particular, the diagonal entries of @=' are all zero. In this context, the sufficient
condition given in [41] for existence of a product form invariant measure for Z is
the so-called “skew symmetry condition’:

(58) = +zZ0' =0.
The vector form of (58) is

(59) n-s+s.al =0 foralli,jel,
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where for each i € J, il is the inward unit normal to the it" face of 2] and § is
the tangential component of the (normalized) direction of reflection on that face. A
geometric interpretation of the skew symmetry condition is provided in [17]. We
refer the reader to that paper, especially Section 9, for a full discussion. Briefly,
for a simple convex polyhedron as we have here, the skew symmetry condition
can be shown to be equivalent to a local condition. This local condition can be
stated in words as requiring that near the intersection of any two distinct faces of
%1, the component of the reflection vector on one face that is directed towards
the intersection of the faces is balanced on the other face by the component of
the direction of reflection for that second face which is of the same magnitude as
the component on the first face, but it is directed away from the intersection of
the faces. Indeed, under the skew symmetry condition, with probability one, the
SRBM Z will not hit the intersection of any two faces when started away from that
set, as is proved in [41].
The left hand side of condition (58) is equal to

OR-0)+(R-0)0 = -200+6GR+RE
— oy rrlUDEIDILroly s
LY i IUDIDILH!
+H™ILD DLy
— 2y irlys
LY T H T I
= ()7

where we have used the facts that T = L'DL, L'L=1and H = Y:.

Thus, the skew symmetry condition (58) holds and it follows from Theorem
1.2 of [41] that the SRBM Z has a product form invariant measure with a density
relative to Lebesgue measure that is proportional to exp(f -z), z € 27, where 3 =
2(1 —©7 1)~V 8 =2V 6. Note for this that

O !'= = D ILIY:(H'UD 2 -Y :r'LU'D2)
= DILFYI(Y:iU'D 2 —Y LD 'LL'D?)
— DALY (Y LD 2 —Y :L'D7?)
= 0,
where we have used the facts that [ ~! = L'D~!L and L’L = I. Furthermore, by

Corollary 1.1 of [41], if the exponential density is integrable over %7, then after
normalization it yields the unique stationary distribution for Z.
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By inverting the linear transformation V, we can transform this result back to
one for W. Noting that for z =Vw,

(60) B-z=pB-Vw=20VVw=20T"w,

we conclude that (52) is an invariant density for the original SRBM W and if this
is integrable over %/, then after normalization it yields the unique stationary distri-
bution for W. Using the representation (54) for #7, we see that this density will be
integrable over # if and only if exp(6-q), q € Ri is integrable over R?, which
occurs if and only if 8; < 0 for each j € J. O

REMARK 5.4. The product form invariant measure of Theorem 5.3 is remark-
able, yet the proof of the result gives little insight into why the reflection directions
and covariance matrix in the particular case a = 1,k; =1 fori=1,...,1, should
allow the result to hold. We simply note here that the authors first suspected that a
product form result might be found after observing that it is possible to describe a
network of queues with a product form stationary distribution whose conjectured
Brownian model approximation has the same directions of reflection and covari-
ance matrix as the Brownian model approximation under study in this paper, pro-
videda=1and ki =1fori=1,...,1, i.e., the case of proportional fair sharing.
Earlier connections between product form queueing networks and proportional
fairness have been explored by [4, 34], and the relationship between these several
connections seems a rich area for further study.

The product form of the density (52) does not imply that, when 8; < 0 for all
j € J, the components of the SRBM W are independent under the stationary distri-
bution for the SRBM, since in general the cone %] is not an orthant. Independence
can, however, be deduced for the components of the SRBM Q of dual variables.

COROLLARY 5.1. Suppose that the assumptions of Theorem 5.2 hold, that
ki =1foralli €1, and that 6; <O forall j € J. Let (W,N) be the process identified
in Theorem 5.2. Then the SRBM Q = 2I' ~!'W of dual variables has a unique station-
ary distribution, and this distribution has a density relative to Lebesgue measure
that is proportional to exp(6-q), q € }Ri. Under this stationary distribution the
components of Q are independent and Q j Is exponentially distributed with param-
eter —0; for each j € J.

PROOF. This result is immediate from Theorem 5.3 upon applying the linear
transformation (ABA’)~! = 2" ~! to transform W into Q. O

Under the assumptions of Corollary 5.1, from Theorem 5.2, (48) and the defini-
tion of Q we have that

(61) N = diag(p)A'Q,
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and it follows that the stationary distribution of N can be expressed as a linear
combination of independent exponential random variables. Thus resource j has
associated with it a dual random variable ~J$, for j € J (here the superscript of S
signals that the random variable is associated with the stationary distribution); these
dual variables are independent and exponentially distributed with parameters — 6
for j € J; and under its stationary distribution the i'" component of N is proportional
to the sum of the dual variables associated with the resources used by route I.
This suggests the following simple approximation for the stationary distribution
of the unscaled network, that is the flow level model of Section 2. The stationary
approximation is

(62) NP~ p 5 QA;i
J€J

where Q?, j € J, are independent and Q? is exponentially distributed with parameter
Cj — YicrAjipi- We want to emphasize that (62) above is merely a formal approx-
imation involving various implicit assumptions such as existence of a stationary
distribution for N and formal unraveling of the heavy traffic scaling and limit pro-
cedure. In particular, this involves an interchange of limits and the approximation in
(62) involves errors that may be substantial, e.g., of order r. However, the following
observation of Massoulié and Roberts [33], which yields an exact stationary dis-
tribution for an unscaled linear network, suggests that there is cause for optimism
regarding the approximation (62).

EXAMPLE 5.1. Consider a linear network with J resources where the set of
resources is J = {1,2,...,J}. Let the set of routes be labelled I = {0,1,2,...,J}
where we use the symbol i = 0 for the route {1,2,...,J} through every resource, and
fori=1,2,...,J we use the symbol i for the route {i} through the single resource
i. The local traffic Assumption 5.1 thus holds, and we assume a =1 and Kj = 1
for alli € I. Suppose thatC; =1, j =1,2,...,J, and that pp +p; < 1,] =1,2,...,J.
Then the stationary distribution for (No,Nj,...,Ny) is given by [33]:

(1—po)I!

where ng, ..., ny each run through the non-negative integers. Summing this formula
over ny, and using the negative binomial expansion, gives the marginal distribution
for (N1,Na,...,Ny) as

o H‘;:l(l_po_pl) z;lzoni J n
(63) T[(n(),nl,...,nj) - < No ) igpi ’

J

_{U-m-p) ("
(64) N, = [ == 55 (1—po>'
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Thus, under the stationary distribution, N;,N,, ..., N; are independent, and N; is ge-
ometrically distributed with mean p;/(1 — py — pi). This accords remarkably well
with the approximation (62), under which N; would be approximated by an expo-
nentially distributed random variable with the same mean.

For this particular example, as observed by [33], the Markov chain N is re-
versible and consequently the stationary distribution 77 for N is insensitive to the
document size distributions, depending only on their means. (For a description of
general system structures to which such insensitivity results apply, see [37] and
references therein.)

As a complement to the insensitivity result mentioned in the above example,
we note that the stationary distribution result of Corollary 5.1 can be extended
to the situation where the document sizes are finite mixtures of exponentials. In-
deed, such a flow level model may be realized by collapsing an extended (exponen-
tial) model. The extended model is obtained by splitting each route in the original
model into finitely many “copies”, so that each copy uses the same set of resources
and has the same weights as the original route but where each copy has its own
Poisson arrival process and distinct exponential document size distribution. The
relative arrival rates for the copies determine the proportions for the mixture of ex-
ponential distributions associated with the original route. More precisely, consider
an extended (exponential) flow level model in which, for each i = 1,... 1, routes
i(1),i(2),...,i(K;) identify finitely many identical routes (subsets of the resources
in J) whose associated weights are also identical. In the following, parameters and
processes associated with this extended model will have a superscript of T ap-
pended. In particular, N* denotes the flow count process.

Under the assumptions of Theorem 5.2 (heavy traffic, @ = 1, local traffic con-
dition and initial state space collapse) for the extended flow level model, there
is an SRBM approximation W' for the workload and an attendant approximation
N = A(W) for the flow count process. Furthermore, there is an SRBM process
Q' of dual random variables. Under the additional assumptions of Corollary 5.1
(all of the weights are one and QJ-T < 0 for each j € J), the stationary distribution of

Q' is such that the components are independent and Q]f is exponentially distributed

with parameter —61-T for each j € J. Thus, under the assumptions of Corollary 5.1,
the stationary distribution of

(65) N' = diag(p")(A")'Q,

can be expressed as a linear combination of exponential random variables.
For the extended model, the Poisson arrival rate for route i(k) is ViJEk) and the

exponential service time parameter for this route is u&k). Then, the I-dimensional
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collapsed process N defined by
(66) Ni= S N

has the same distribution as the flow count process in a flow level model with |

routes where the Poisson arrival rate for route i = 1,...,1 is
Ki +
(67) Vi= D Vigg
k=1
and the document size distribution for route i = 1,..., | is a mixture of K; exponen-

tials with parameters u;{k) and proportions ViJEk) /vi for k =1,...,K;. The mean of
this document size distribution is 1/ where L is defined by

AR
Hi k=1 Vi ”i(k)
fori=1,....1. Let oy = v;/pj, fori=1,...,1.

Now consider the exponential analogue of the collapsed flow level model where
the finite mixture of exponential distributions for route i is replaced by a single
exponential distribution with parameter Wi fori=1,..., 1. The nominal load placed
on resource j in the extended model is (ATp") j and this is the same as the nominal
load (Ap); placed on j in the exponential analogue. It follows that a sequence of
extended flow level models satisfying the assumptions of Corollary 5.1, where the
limiting value in (12) of the heavy traffic Assumption 3.1 is denoted by 87, will
have a parallel sequence of exponential analogues whose limiting value 8 in (12)
will be precisely the same as 8. Consequently, the stationary distribution of QF
is the same as that for the process Q of dual random variables associated with the
sequence of exponential analogues.

Then, combining (65) and (66), we obtain the following as an approximation for
the collapsed flow count process:

Ki
Ni=$ pﬁ(k) > AJTi(k)QJT =ny AjiQj, fori=1,...,1,

k=1 J€J I
that is, N = diag(p)A’Q". Since the stationary distributions for Q" and Q are the
same, it follows that the stationary distribution for N is the same whether one con-
siders the collapsed flow level model (where document sizes are distributed as finite
mixtures of exponentials) or the associated exponential analogue (where document
sizes are distributed as exponentials). The formal approximation (62) for the un-
scaled network is similarly the same for both. Note, however, that the stochastic
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processes W7, N, and QT, and in particular their covariance matrices, are in general
different from those associated with the exponential analogue.

It is natural to conjecture an extension of the above insensitivity results to gen-
eral document size distributions. However, even an extension to phase-type distri-
butions would require generalization of the diffusion approximation results to flow
level models with feedback, and treatment of more general distributions would ap-
pear to require a significantly more elaborate stochastic model (cf. [14]) to keep
track of residual document sizes.

5.5. Multi-Path Routing. In this subsection we describe a generalization of
the earlier model that allows multi-path routing. In our initial description of the
model we shall use a different notation for the sets of routes and resources: this
will allow our eventual results to be expressed in a notation consistent with that
used elsewhere in the paper.

Suppose that now we interpret i € I as a source-destination pair, and let K be
the set of routes. Let | = |I|, and let K = |K|. We suppose that K is partitioned
into | non-empty subsets, each associated with a single source-destination pair.
Let Hix = 1 if route k € K is associated with source-destination pair i € I, and let
Hik = 0 otherwise. Thus H is a | x K matrix containing only zeros and ones, and
Yier Hik =1 for each k € K.

There remain finitely many resources, but now labeled by | € L, with capacities
(Ci : 1 € L) that are all strictly positive and finite. A route K is a non-empty subset
of IL (interpreted as the set of resources used by route k). We assume that I and
K are both non-empty and finite. Let L = |LL|, the total number of resources. Let
A be the L x K matrix containing only zeros and ones, defined such that Ay, = 1
if resource | is used by route k, and Ajx = 0 otherwise. Our assumption that each
route K identifies a non-empty subset of I implies that no column of A is identically
Zero.

It is assumed that a new document arrives to source-destination pair i at each
jump time of a Poisson process that has rate parameter V; > 0 and that each such
document has an exponentially distributed size with mean 1/4; where L € (0, 0).
These document sizes are assumed to be independent of one another and to be
independent of all arrival times of documents. Let pj = v; /4,1 € L.

Given a fixed parameter o € (0,0) and strictly positive weights (K; : i € I),
if Ni(t) denotes the (random) number of documents being transferred between
source-destination pair i at time t for each i € I and N(t) = (N;(t) : i € I), then
the bandwidth allocated to source-destination pair i at time t is given by Aj(N(t))
and this bandwidth is shared equally amongst the N;(t) transfers in progress be-
tween source-destination pair i. The function A = (A :i €1): RL — R is defined
such that for each n € R, Aj(n) =0 for i € Iy(n) = {m € I : ny, = 0}, and when
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I.(n)={meTl:ny,>0}isnon-empty, AT (n) = (Aij(n) :i € I.(n)) is the unique
value of AT = (A :i € I, (n)) that solves the optimization problem:

maximize Gn(AT)
subject to ZAlkYk <G, lel,

ZHikYk:/\h ieli(n),
over Yk >0, kek, A >0, ieli(n),

(69)

where Gp(A™) is again given by the definition (2).

Without loss, we may assume that in the solution of (69), yx = 0 for those k
such that Hjx = O for all i € I, (n). With this convention, allocations Yi,k € K as-
sociated with the unique optimal value A" (n) can be interpreted as bandwidth
allocations for the routes which sum up to give the bandwidth allocations to the
source-destination pairs.

The above optimization problem reduces to the earlier problem (1) in the case
where | = K and H is the identity matrix, that is, the case of a single route for each
source-destination pair. More generally, the following proposition allows us to re-
duce to the optimization problem (1) even in the multi-path case. This observation
was previously made in [24], Section 3.3.

Let

% ={ycR:Ay<C}.

PROPOSITION 5.1. There exists a representation

(70) HZ ={(A, iel): N>0, i€l ZAji/\i§Cj, jel}
1€l

where J, A and C can be chosen so that C has positive elements and A has non-
negative elements and no column of A is identically zero.

PROOF. The set % is the intersection of the half-spaces {y € RK : (Ay); <C,},
| € L, and the non-negative orthant, ]R_Klr. Since no column of A is identically zero,
the set % is bounded and is thus the convex hull of a finite number of extreme
points. Hence H% is the convex hull of a finite number of extreme points, or,
equivalently, the bounded intersection of a finite set of half-spaces.

Next we explore further the geometry of H% . First, H% C R!,, since the ele-
ments of H are non-negative; also 0 € H#/, since 0 € #'. Indeed for & positive and
small enough, (Aj = &,i €) e HZ for all 0 < & < J, i € I, since for € positive
and small enough, (Ykx = &,k € K) € & for all 0 < & < &, k € K, and no row
of H is identically zero. Thus H% is bounded by the hyperplanes bounding the
non-negative orthant, plus finitely many other hyperplanes, none of which contains
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the origin. Thus there exists a representation of the form (70), for some choice of
J, Aand C. Since 0 € H#, the elements of C are non-negative. Choose a minimal
representation, where the set J is of minimal cardinality; then the intersection of
the hyperplane
71) {(N;, T€D): ZAji/\i:Cj}

1€l
with H% must have a non-empty interior relative to the hyperplane, for each j € J.

Next we show that if A€ H#, and 0 <A\ <A, then N' e H% . Lety € % be
such that A = Hy, and for each k € K let i(k) be the unique index i such that Hjx = 1.
Letyy, = (/\i’(k)//\i(k))yk fork e K. Theny € % and Hy =N, and so ' e HZ'.

We have seen that the intersection of the hyperplane (71) with H#  has a non-
empty interior relative to the hyperplane; choose a point A in this relative interior.
Then A; > 0 for i € I. Fix i € T and choose A’ so that 0 < A} < Aj, with A}, = Ay
fori’ € I\ {i}. Then 0 <A\ <A, and so A" € H% . Hence the hyperplane (71) must
have Aji > 0.

Finally note that Cj > 0, for j € J, since the hyperplane (71) does not contain
the origin, and no column of A is identically zero, since H# is bounded. O

The represention (70) of H#  allows us to elide the variables y from the opti-
mization definition of A" (n), and to deduce that the unique solution (A; :i €T, (n))
to the optimization problem (69) is also the unique solution to the optimization
problem (1). With this generalization to multi-path routing, the matrix A may no
longer only contain zeros and ones. However, the proofs of Theorem 5.2 and Corol-
lary 5.1 still go through in this enhanced generality provided the local traffic con-
dition is satisfied.

As an illustration consider the network depicted in Figure 3, operating under the
proportional fair sharing policy (o = 1, k; = 1 for all i), where the labelled resource
capacities satisfy C3 < Cy,C,. It has three source-destination pairs, four resources
and five routes. Then A and C can be chosen as

110 C +c‘:2>
A = C = = .
(or) (%
The matrices A and C may be viewed as expressing the generalized cut constraints
(72) p+p< Ci+GC
1 -
(73) SPItess Cs

apparent from Figure 3. In the first of these constraints, the capacities of the first
and second resources are pooled. Resource pooling subject to generalized cut con-
straints is a common phenomenon in stochastic processing networks with rout-
ing [29]. Theorem 3.1 of [29] provides an alternative form of the representation (70),
and provides references to algorithms to calculate matrices A and C.
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V2
V3

Vi

T 2]

F1G 3. A network with three source-destination pairs, four resources and five routes. Each of the first
two source-destination pairs has two routes available to it.

In the above example we have been able to construct the matrix A so that a subset
of its columns forms the identity matrix: thus the local traffic Assumption 5.1 holds.
However, in general, it is more difficult to verify the local traffic condition for
networks with multi-path routing than for networks without routing choices.

Suppose that the local traffic Assumption 5.1 holds for the matrix A. Define
heavy traffic as in Assumption 3.1, and assume that 8; < 0 for j € J. Then Corol-
lary 5.1 applies directly. We can illustrate the formal approximation (62) for the
example shown in Figure 3: under the approximation, QS and Q3, the random dual
variables associated with constraints (72)—(73) respectively, are independent and
exponentially distributed, Q} with parameter C; +C, — p; — p> and Q5 with pa-
rameter Cz — % p1 — Ps.

5.6. Discussion of Conjecture for a # 1.  Consider the two resource linear net-
work depicted in Figure 1 operating under a weighted a-fair bandwidth sharing
policy for o # 1. Then the workload cone # is still a wedge in R%r that has the
following representation:
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w a a
T4 Ha= [Wl}z ST | aer?
? Ll (At g)e
KKy Hz K3

The two boundary faces of this wedge have the following expressions:
- - -2 1/a
Vv K
Ha = 0w >0,w = 1+“222<—3> Wi o,
| W2 | My v \ K2
- - -2 l/a
% K
Waz: Wi TWp >0, w = 1—|-“172 ! <—3> Wy ».
| W2 | s “v3 \ K1

In this case, since the two-dimensional wedge #/ is still a polyhedral cone, the
proof of Theorem 5.2 can be easily modified to apply for a # 1, with # used
in place of #) there. When the weights kj,i = 1,2,3, are all equal, the wedge #4
does not depend on o. However, when the K;’s are not all equal, the wedge # does
depend on a. However, as 0 goes to infinity, the quotients involving the weights
Ki in the expressions for #,j = 1,2, tend to one and there is a limiting wedge
which is the same as that obtained when the K; are all equal. On the other hand,
as o tends to zero, the limit of the upper boundary depends on whether K3 > K;
(tends to the vertical axis) or K3 < K; (tends to the 45 degree ray from the origin)
and similarly for the lower boundary: if K3 > Kj, it tends to the horizontal axis
and if K3 < K, it tends to the 45 degree ray from the origin. Hence, as o tends
to zero, if K3 > max{Kj,K,}, the wedge expands to the whole quadrant, and if
K3 < min{Kj, K>}, the wedge contracts to the 45 degree ray from the origin. Note
that even when the wedge expands to the whole quadrant, the components of the
diffusion workload do not become independent as the covariance matrix [, which
does not depend on K or a, is not diagonal.

In general, for a # 1 with higher dimensional workloads, i.e., J > 2, the shape of
the workload cone #, depends on a, as well as on A, v, i and K. This relationship
appears to be quite complicated. We are investigating Conjecture 5.1 in this case.
At this time we only have some partial results. The main difficulty in establishing
the validity of the conjecture concerns proving C-tightness of {W"} and establish-
ing uniqueness in law for any weak limit point. To illustrate some of the difficulties
involved, we consider a linear network with three resources and four routes. Al-
though this is a particular example, it exemplifies the challenges presented by the
geometric data in establishing existence, uniqueness and an invariance principle for
the SRBM. For this example, each of the three resources has a route that only goes

and
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FIG 4. A portion of the workload cone #] is shown for a
linear network with three resources and four routes with o =
landvi=p=kj=1foralliel

2

FIG 5. A cross-section of the workload cone 7 depicted in

Figure 4 taken at W_} :f 1.|
ile:
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FIG 6. A portion of the workload cone %5 is shown for a
linear network with three resources and four routes with a =
2andvi=pi=kj=1foralliel

FI1G 7. A cross-section of the workload cone %, depicted in
Figure 6 taken at w3 = 1.
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FI1G 8. A portion of the workload cone #4 5 is shown for
a linear network with three resources and four routes with
a=05andvi=pi=kj=1foralliecl

2

F1G 9. A cross-section of the workload cone % 5 depicted in
Figure 8 taken at w3 = 1.
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through that resource and there is one additional route that goes through all three
resources. Here the workload cone is contained in the three dimensional positive
orthant. When v; = L = k; = 1, for all i € I, we depict the associated workload
cone, and one of its cross-sections, for @ =2, a = 1 and a = 0.5 in Figures 4-9.

For the case depicted in Figures 4-5, o = 1 and Theorem 5.2 applies to justify
the diffusion approximation. The proof of this theorem uses the uniqueness of the
diffusion process [10] and the invariance principle developed in [20]. For the case
depicted in Figure 67, o = 2 and the workload cone has boundary faces that curve
outwards. Away from the origin, the boundary and directions of reflection for the
proposed diffusion approximation locally satisfy conditions required by the invari-
ance principle given in [20]. However, the workload cone has a “singular point”
at the origin where the conditions in [20] fail to be satisfied. However, since this
is an isolated point, the invariance principle in [20] and the proof of uniqueness
starting in [10] can be adapted to establish the SRBM diffusion approximation in
this case. For higher dimensional analogues of this case, we anticipate that a valid
diffusion approximation can be established. However, as the dimension increases,
it becomes more difficult to compute the inward normals to all boundary faces, and
as yet we do not have a systematic way to verify geometric sufficient conditions for
uniqueness in law and a valid invariance principle. For the case depicted in Figures
8-9, where a = 0.5, the situation is more complex. Here the workload cone has
boundary faces that curve inward and any two faces meet in a cusp, i.e., the inward
normals to any two boundary faces point towards one another at the intersection
of the faces. At present we do not have an existence and uniqueness result, nor an
invariance principle, to treat this case because of the singular geometry at intersec-
tions of faces. In particular, it has not been established that the diffusion process
can escape from the tip of a cusp or that there is uniqueness in law for a diffusion
process starting there.

In a recent work, Shah and Wischik [38] have proved multiplicative state space
collapse for a class of “switched” networks operating under a family of schedul-
ing policies related to the maximum weight algorithm introduced by Tassiulas and
Ephremides [40]. Based on this, Shah and Wischik have conjectured natural diffu-
sion approximations for the workload processes in these models. These diffusions
are SRBMs living in cones with piecewise smooth boundaries. While these cones
have some characteristics in common with those found for the bandwidth sharing
model considered here, there are also some new features. Depending on a param-
eter associated with the family of scheduling policies, the cones of [38] include
non-simple convex polyhedrons as well as cones with curved boundaries where
boundary faces can meet smoothly. The validity of these conjectured diffusion ap-
proximations for input queued packet switches operating under a maximum weight
algorithm is being explored in [21].
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6. PROOF OF MULTIPLICATIVE STATE SPACE COLLAPSE. In this
section we prove the multiplicative state space collapse result, Theorem 5.1. Our
proof follows a general line of argument pioneered by Bramson in [5], where open
multiclass queueing networks operating under certain head-of-the-line (HL) ser-
vice disciplines are treated. However, there are some differences from [5]. Here
we have the more general structure of a stochastic processing network with simul-
taneous resource possession, and our service discipline is not work conserving.
On the other hand, we have exponential interarrival and document size distribu-
tions (rather than general distributions), which lead to some simplifications in our
proofs. A particularly interesting aspect here is that in contrast to prior results on
state space collapse for open multiclass queueing networks, our lifting map can be
nonlinear (for a # 1). In addition, unlike Assumption 3.1 in [5], we do not require
an exponential rate of convergence of fluid model solutions towards points on the
invariant manifold; we only use uniform convergence of fluid model solutions to-
wards the invariant manifold (starting in a compact set). Despite these differences,
our main line of argument follows that of Bramson [5].

We first provide some preliminary results in Section 6.1. Our proof of multi-
plicative state space collapse is then given in Section 6.2.

We note (for the extension to multi-path routing described in Section 5.5) that
the proofs in this and the next section use that the entries in the matrix A are non-
negative, rather than the stronger condition that they are zeros or ones.

6.1. Crucial Estimates for Fluid Scaled Processes. Recall the definition of the
fluid scaled processes from Section 3. Foreachr >0and me Z_, let

(75) M = [N'(m)v1,

and define shifted and scaled processes E™, S, T'™, U™, N"™, W"™ as fol-
lows. Foriel, jeJ,andt >0,

(76) EMt) = Eir(m”ﬁﬁf)—ﬁ{(m)’
) Sty = §ir<Tir<m>+mﬁ¥§§>—§{<Tf<m>>7
(78) M) = Tir(m+ﬁ¥§;n)—n%{(m)7
(79) UMt = Ug(m”?ﬁw:—Uﬁ(m)’
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_ NI (m+nft
(80) Nr7m(t) — I( nr m )7
m
_ W (m+t) .
@81 Wit = e =y A TN ().
m 1€l

The additional scaling by Ny, used here is to ensure that the starting values of N“™
all lie in a single compact set, namely the unit ball in R'Jr. This facilitates use of
the properties of fluid model solutions described in Section 4. It is easy to check
using (5)—(6), (13)—(15), and the scaling property of A, that for each i €1, j € J,
andt >0,

(82) N = NT(0)+ET() - ST (),
(83) Ui") = Cit—Y AT (),
o
(84) Tt = / Ai(N"™(s))ds.
0

The following theorem summarizes essential properties of the above processes
needed for our proof of multiplicative state space collapse. The proof of this uses
very similar arguments to those in Sections 4, 5 and 6 of Bramson [5].

THEOREM 6.1. Let

(85) K = (14 [V [V])(1 +maxC;).

Fix T > 0. For each L > 1 there is a sequence of measurable sets {¢4/ : r > 0} and
a family of positive constants {r¢ : € € (0,1)} such that for each € € (0,1) and r >
FelL,

()P > 1-¢,

(i) foreach w e ¢ and m=0,1,...,[rT |,

(86) IN"™(t, ) —N""(s, )| < K|t —s|+¢ foralls,t e o,L],
and there is a fluid model solution f( - ) satisfying
(87) IN""(- ) =)l <&

Note that we have not indicated explicit dependence on T in the above as T will
always be fixed in the application of this result. Also, to simplify notation, we have
omitted explicit indication of the dependence of fi(-) onr, m, ¢, L and €.

Before proving this theorem, we establish the following preliminary lemma. For
this lemma and the proof of Theorem 6.1, let C = max iesCj.
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LEMMA 6.1. Fix T > 0. For each L > 1 there exists a sequence of measurable
sets {4 : r > 0} and a family of positive constants {r¢ : € € (0,1)} such that for
each € € (0,1) and r > rg | we have

(88) P(4')>1—c¢,
andon¢/, form=0,1,...,[rT|,

(89) IE™™() = v ()l < &/4,
(90) ISP(TOMC)) — (TP L < €/4,

where v' (t) = v't, §""(T""(t)))i =S"(T{™ (1)) and (0" (T"™(1)))i = & T;™ (1),
forallt>0andiel.

PROOF. Fix L > 1. Note that since the bandwidth allocations given by A(-) are
bounded by C, foreachr >0 and i €1, T,"(+) is Lipschitz continuous with Lipschitz
constant C. Since this property is unchanged by the (fluid) scaling in (78), we have
that Tlrm() is also Lipschitz continuous with the same Lipschitz constant. It follows
from this that ||T""(-)||. < ICL. On combining this with Assumption 3.1, the fact
that the interarrival times and document sizes are exponential, and the memoryless
property of the associated Poisson processes, by a similar argument to that used in
verifying (5.19) of Proposition 5.1 in Bramson [5], we have that as r — oo,

1) ok ([STT) (TP v B -V () =0

It follows that there exists a sequence {a,};_, satisfying ap =0, a € (/Vay_,)
for each integer £ > 1, such that for each r > ay,

[rT] =M ,==r,m —=rm —rm 1 1
P[m {”S’ )~ @IV [ET <->—vf<->HLém}] SR

m=0

For r > 0, define

1
r= /Z()?l[abaul)(r)

and
) [rT) shm =rm ¢ =rm —rm ; 5(r)
4= {HS T = TV ETC) — v (')HLST}-
m=0

Then, since d(r) — 0 as r — oo, for each € € (0,1), there is rg > 0 such that
O(r) < eforall r >rg . Combining the above we conclude that for all r > rg,

(92) P4 )>1-5(r)>1—¢. O
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Proof of Theorem 6.1. Fix T > 0 and L > 1. Also, fix a sequence of measurable
sets {¢" : r > 0} and a family of positive constants {r¢ : £ € (0,1)} as in Lemma
6.1. Without loss of generality, by Assumption 3.1, we may further assume (by
choosing r¢ | a bit larger if necessary) that forall r > r |,

VI <1+[v] and |p'| <1+l

By Lemma 6.1, the uniform Lipschitz continuity of Tr’m(-), and (82), for each € €
(0,1) and r > rg we have that on ¢, for each s,t € [0,L] and m=0,1,...,[rT |,

— — £
©3) E0)-E"6)| < 5 HIVIIt=s,

95) N0 -N"(s)] < e+ (V|vIu) (1+C) ft—s].

Oh  FT0)-ST TG < S+ KICT s,

Then part (i) of Theorem 6.1 follows directly from Lemma 6.1. Inequality (86)
follows from Lemma 6.1, (95) and the choice of r¢ | and K. As for the last part (87)
of Theorem 6.1, for a proof by contradiction, suppose that there is an & € (0,1)
such that for each integer ¢ > rg, |, there exists a value ry of r such that r, > ¢, and
my € {0,1,...,|r/T |}, and wy € 4", such that for any fluid model solution 1T we
have

(96) INT™ (., ar) — () ||L > &o.

For the contradiction, we will show that there is a subsequence of {N'""" (-, coy) Yoy
that converges uniformly on [0,L] to a fluid model solution. For this, note that
{N""™(0,ar)}%_, is bounded by one, and {T""™ (-, ay)}%_, is uniformly bounded
and equicontinuous on [0, L], by the uniform Lipschitz continuity of T"™ Thus, us-
ing the Ascoli-Arzela theorem, we have that along a subsequence, {N""™ (0, awy)}%_,
converges to a finite value and {T """ (., wy)}y_, converges uniformly on [0,L]. Fix
such a convergent subsequence and denote the respective limits by m(0) and 7(-).
Then, using the convergence of {(E""™ (-, c),S " (T""™ (-, ax))) }_, implied by
(89) and (90), we have that along the same subsequence, {Wr/’m‘(-, wy)}y, con-
verges uniformly on [0,L] to N(-) defined by

o7 ni(t) =m(0)+vit—p7i(t), telo,L],iel

Furthermore, by following the pathwise argument in Appendix B of Kelly and
Williams [26], one can show that at each t € (0,L] where the derivative of N(-)
exists (this means the left hand derivative at t = L), we have that (22) and (23)
hold with A in place of n there. It follows that N(-) has the same properties as a
fluid model solution on [0,L]. We can easily extend N to be a fluid model solution
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on [0,) by defining it on (L,) to equal f(- —L), where f:[0,00) — R isa
fluid model solution satisfying f(0) = n(L); the existence of such a fluid model
solution follows from Theorem B.1 in [26]. This yields the desired contradiction
of (96). U

6.2. Proof of Multiplicative State Space Collapse. We will use Theorem 6.1
to show that for T > 0 fixed, for each L > 1, there is L > L such that for each

€ (0,1), for all r sufficiently large, with probability at least 1 — € the left member
of (33) is dominated by

98) HNr’O(-)—A(V_Vr’O(-)>H +Lr§'l:li%1 HNr,m(‘)_A(V—Vr,m(‘))H[EL]‘

[0.T]
where the quantities {N"",m =0,1,...,|rT| — 1} can be approximated by fluid
model solutions over [0, L]. The results of Section 4 on the behavior of fluid model
solutions, especially Proposition 4.4, can then be combined with a suitable choice
of L and the assumptions of Theorem 5.1 on the initial conditions, to prove multi-
plicative state space collapse. We now give the detailed proof.

Proof of Theorem 5.1. Fix T > 0. For each r > 0, let .77 denote the left member
of (33). Since for each r > 0 and t > 0, we have

(99) Nf(t) = N(rt), W' (t) =W (rt) = A(M")"'N'(rt),
it follows that

roo_ HNr()_A(V_Vr())Hr
o ST ROL

For L > 1 fixed, intervals of the form [m,m+Ln% ], m=0,1,...,[rT | cover [0,rT]
since Ty, > 1 for each m € Z... Hence, for each r > 0 and t € [0,rT], the following
is well defined as a random variable taking values in {0, 1,...,[rT |}:

(101) m'(t) =inf{m: m <t <m-+Ln}.
For any r > 0 and t € [0,rT] such that t > LM, we have m'(t) > 1 and then
(102) t—(m"(t) = 1) > Lhgy )y

for otherwise m'(t) could be replaced by a value of m strictly less then m'(t). Thus,
foreachr >0 andt € [0,rT] such that t > LM, we have

(103) M (t) = 1+LMy, <t <m"(t)+Lny g,
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where m'(t) € {1,2,...,[rT | }. From (100) and (103) we have that .77 is domi-
nated by

INC) =A@ ()l ey NG =AW ()]
+ sup

— —
Ny m=1 Nm—1

7
+
|
o |
‘3 =
il
3
37

= HNr7O(') _A (V_Vr’o(')> H[OI] n ggj H—nm—l

m=1 L,

00T 0)]

m—1

where we have used the scaling property of A(-) in obtaining the equality (cf.
Proposition 4.1).

Recall the definition of the constant K > 1 from (85). Given L > 1, let L = 4KL.
Below we refer to the sequence of measurable sets {4 : r > 0} introduced in
Theorem 6.1. Focusing on the right endpoints of the time intervals appearing in
the last term of (104), we next show that, for all r sufficiently large, on ¥/, for
m=1,...,[rT |, we have

Tnl
L+

r =
ﬁm7 1

(105)

For this, note that by (80), we have form=1,2,...,

N'm NmM-1+1) —mi/ 1
(106) (m) _N{m- +)zN”'”<r >
n —1 nmfl nm 1

On the other hand, by (75), form=1,2,...,
(107) (N“”H )| = ‘

It follows from (106), (107) and Theorem 6.1 that for each € € (0,1), for each
r>repandm=1,...,[rT ], on % we have

M _ N(m), 1
Mo Mo Mo
()l
ﬁm71
e 1
(108) < (yN”“ 1(0)!+K<r >+s>v1
n
m—1
< (1+K-1+1)Vv1
< 3K,
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and hence (105) holds. On combining (104) with (105), we have that for each
€ (0,1), for all r > rg , the following inequality holds on ¢/,

A< NO-a@ )]

(109)

Tt i
+sup [N =A@ ) ey
m=0

We will now estimate the two terms on the right hand side of (109). In brief,
the idea is to use Theorem 6.1 to show that for all r sufficiently large, for each
weY' ,m=0,1,...,|rT |, there is a fluid model solution fi that is uniformly close
to N""(-, w) over the time interval [0,L]. For the first term in (109), we then use
the assumptions on the initial conditions and Proposition 4.5 to show that for all r
sufficiently large, with high probability, 1 is uniformly close to the invariant man-
ifold .#y on [0,) and use this to control the first term in (109). For the last term
in (109), we use Proposition 4.4 to choose L (independent of r,w or m), so that f is
uniformly close to the invariant manifold .#, on [L, ), and so for all r sufficiently
large, @ € 4, and m = 0,1,...,[rT] — 1, for each t € [L,L], there is a point i}
(depending on r, @, m,t) in .# that is uniformly close to Nr’m(t, ). Then,

IN""(t, ) — AW (t, )]
< [N"(t, @) — A+ [y — AAM 1)
+HAAMT') —AA M) TN W),

where each of the last three terms can be made small (uniformly for w € 4", m =
0,1,...,[rT | —1,t € [L,L], for all r sufficiently large), by the choice of i}, the fact
that n = A(w(n)) for a point n on the invariant manifold .#, the continuity of A,
and the convergence of (M")~! to M~! as r — c0. We now give the full details of
the argument. In the first paragraph below we develop estimates that will be used
for both the first and the second term on the right hand side of (109). (Accordingly,
we consider values of m that include [rT |, as this value may be zero.)

Fix n € (0,1). (In this proof only, we locally reuse the symbol 1 for a positive
constant in (0,1). This is distinct from the use of n elsewhere as a probability
measure.) By Proposition 4.3, there is a constant D(9/8) > 9/8 such that any fluid
model solution n(-) satisfying |n(0)| < 9/8 satisfies |n(t)| < D(9/8) forallt > 0.
By the uniform continuity of A(-) on compact sets in ]Ri (cf. Proposition 4.1) and
the fact that (M")~! — M~! as r — oo (cf. Assumption 3.1), there are constants
rp >0and y € (0,n/4) such that forall r > rp,

(110) a(AmM~"n) —a (AM) ')

n
=3
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whenever n,n’ € R!, |n| Vv |n’| < 1+D(9/8) and |n—n’| < 2y. By Proposition 4.5,
there is € € (0,y/2) such that if n(-) is a fluid model solution satisfying |n(0)| <
9/8 and d(n(0), #y) < 2¢, then

(111) d(n(t), . #y) <y forallt>0.

LetL = T%E, where Trg is defined in Proposition 4.4. Set L = 4KL as above.
Then, by Theorem 6.1, foreachr >rg ., m=0,1,...,|rT],and w € ¢4/, there is a
fluid model solution fi( - ) such that

(112) IN""(- @) —A()|L < &.

We fix such r, m, and @ for the remainder of this paragraph. Since [N""(0, w)| < 1
and € < 1/8, we have |fi(0)| < 9/8. It then follows from Proposition 4.4 and the
choice of L that

(113) d(n(t), #4) < € forallt > L.
For each t € [L,L], let A} € .#4 such that

(114) |A(t) —ny| < €.

On combining this with (112), we obtain for each t € [L,L],

—r,m(

(115) IN"(t, ) — 0| <2e <.

By Proposition 4.3 and the fact that |(0)| < 9/8, we have |fi(t)| < D(9/8) for all
t > 0. So, by (114) and (112), foreacht € [L,L],

In?| < e+D(9/8) < 1+D(9/8)

and
IN"™(t,0)| < £+ D(9/8) < 1+D(9/8).

On combining the above and using the fact that W™ = A (Mr)_1 N"™ we have

foreachr >re VIy,m=0,1,...,[rT] -1, we ¥ andt € [L,L],

N""(t, ) — AW""(t, )|
(116) < [N""(t, ) — [+ |y — AAM ')

+HIAAM™) — AA M) TNt )|
n_n
<2640+ - < —.
<2e+0+ 2 < >

For the second inequality, we have used (115), part (iv) of Theorem 4.1, and (110).
This takes care of estimating the last term in (109).
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To estimate the first term on the right hand side of (109), we need to use the
initial behavior of N By the assumption in the theorem,

(117) ‘N“O(o)—A(v_v“O(o)ﬂ = [R7(0) — A (W' (0)) | — 0

in probability as r — . By Proposition 4.2 we have A <V_Vr’0(0)> € My, and so it
follows that

(118) d(N"(0),.#4) — 0 in probability as r — .
Let re > 0 such that

(119) P (d(N“O(o),//za) > s) <& forallr>re.

For each r > rg Vg and w € ¢ satisfying d(Nr’O(O7 W), H#y) < €, by (112) we
have

(120) |ﬁ(0)|§1+s§§ and d(f(0), #y) < £+ €=2¢.

For such r, w, it follows from (111), that for each t € [0, ) there is i € .#y such
that |fi(t) — nf| < y. Hence by (112), fort € [0,L] C [0,L], we have

_ 3
(121) IN"(t,0) —nf| < e+y< 7"

Then, in a similar manner to that used in showing (116), we have for all t € [0, L],
r>reVre Ve, and w € 4 satisfying d(Nr’O(O, W), HAqy) <E,

(122) IN"(t, ) — AW"(t, w))| < (e+y)+0+% < %

By combining Theorem 6.1, (109), (116), (119) and (122), we have that for all
r 2 rg\/rEJ_\/rr’,

P =n) < P14 =nndg n{dN0),4) <e})
(123) +P((H)) +P (d(N"(0), #a) > ¢)

< 0+et+e=2e< %.

Since n € (0, 1) was arbitrary, it follows that .77 — 0 in probability as r — co. [J
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7. PROOF OF DIFFUSION APPROXIMATIONWHEN a =1. Through-
out this section we assume that a = 1 and that the local traffic condition, Assump-
tion 5.1, holds. To prove the diffusion approximation result, Theorem 5.2, we shall
use the invariance principle in [20]. A key assumption for that theory to yield con-
vergence (rather than just C-tightness) is that there is existence and uniqueness in
law for the limit diffusion process W, which follows in the case a = 1 from work of
Dai and Williams [10]. We first verify that the basic assumptions of [20] and [10]
are satisfied by the state space #) (cf. (47)) and directions of reflection {yj cjel).
For this we need the following definition. Also, recall the definition of the matrix
B following (47).

DEFINITION 7.1. A d x d matrix D is completely-S if and only if for each
principal submatrix D of D there is a vector X > 0 such that DX > 0. (Here a
principal submatrix of D is a matrix obtained by deleting all rows and columns of
D with indices in some strict subset of {1,2,...,d}.)

LEMMA 7.1. The J x J symmetric matrix ABA' is positive definite and invert-
ible. The inverse matrix (ABA’)~! is positive definite and completely-S.

PROOF. Since A has full row rank and B is strictly positive definite, then the
symmetric matrix ABA' is also strictly positive definite. Indeed, for a nonzero vec-
tor X € RY, X ABA’x = (A'x)'B(A’X). Since A has full row rank, A’X is also nonzero
and then since B is strictly positive definite we have that (A’x)’'B(A’x) > 0. Since
ABA' is strictly positive definite, it is invertible and the inverse matrix (ABA’)~!
is also strictly positive definite. It then follows that (ABA’)~! is a P-matrix, i.e.,
all principal minors are positive, and hence (ABA’)~! is completely-S (see [9], es-
pecially Theorems 3.3.7, 3.9.11 and Corollary 3.9.13 for the relationship between
P-matrices and completely-S matrices). O

The results we need to apply from [20] to prove Theorem 5.2 require that As-
sumptions (A1)—(Ab) and 5.1 of [20] hold. We shall not fully describe these gen-
eral conditions. However, we shall now indicate the meaning of these assumptions
for the context treated here. Assumptions (A1)—-(A3) are restrictions on the state
space and Assumptions (A4)—(Ab) pertain to the directions of reflection, all for the
limit diffusion. As noted in [20], Assumptions (A1)—(A3) are satisfied by a convex
polyhedron with non-empty interior that is described as the intersection of a min-
imal set of half-spaces. As we shall see in the next lemma, the state space #] has
this convex polyhedral form. Assumption (A4) requires that the reflection vector
field on each boundary face be uniformly Lipschitz continuous and of unit length.
Since our reflection vectors are constant unit vectors on each boundary face, this
condition is trivially satisfied in our context. Assumption (A5) imposes geometric
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conditions on the directions of reflection. These conditions are generalizations for
domains with piecewise smooth boundaries of conditions identified earlier by Dai
and Williams [10] for existence and uniqueness of SRBMs living in convex poly-
hedral domains with a constant direction of reflection on each boundary face. The
conditions of [10] are labelled as Assumption 1.1 in [10] and as Assumption 5.1 in
[20]. (We shall use the latter label here.) For simple convex polyhedral cones (as
we have here with ), this assumption can be expressed as a completely-S condi-
tion on a suitable matrix formed using the directions of reflection and the normals
to the boundary faces. We will show that this condition is satisfied in our context,
and as a consequence Assumption (A5) of [20] will follow immediately. We now
formally verify that the aforementioned assumptions all hold in our context.

LEMMA 7.2. Assumptions (A1)-(A5) and Assumption 5.1 of [20] are all sat-
isfied by #1 and {y! : j € J}.

PROOF. For j € ], let nj be the vector given by the j" row of (ABA’)~!. Since
(ABA")~! is symmetric, nJ is also the j'" column of (ABA')~!. By (47) and (45),
we have

(124) # ={weR’:nl.w>0forall jeJ},
and
(125) 7/1] ={ABA'q:qc R}, q; =0} ={we# nl.w=0}, jel.

Since the nl, j € J, are linearly independent, it follows that #] is a simple con-
vex polyhedral cone with minimal representation given by the intersection of the
half-spaces {w € R : ni.w> 0}, j € J. It is easy to see that # has non-empty
interior. As noted in [20], it follows that Assumptions (A1)—(A3) of [20] are sat-
isfied. Since the {yj, j € J} are constant vectors, they are trivially uniformly Lip-
schitz continuous and so Assumption (A4) of [20] holds. As noted in Section 5.2
of [20], Assumption (A5) will hold if Assumption 5.1 of [20] holds. For this, since
#1 is a simple convex polyhedron, it is equivalent to verify that the matrix NR is
completely-S, where N is the J x J matrix whose rows are given by the normals
n,j e J, and R is the matrix whose columns are given by the vectors yl,jel.
(In fact, N is normalized so that the rows have unit length in [20], but one may
equivalently use the unnormalized matrix N.) Now, N = (ABA’)~! and R = I, the
J x J identity matrix, and so NR = (ABA’)~! which we know is completely-S by
Lemma 7.1. U

Throughout this section, we shall need various constants in inequalities. Some of
these constants are denoted by ¢ j, for j =0,1,2,.... The hat has been added to the
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notation here simply to distinguish these constants from the bandwidth capacities
Cj. The next two lemmas provide basic ingredients for the proof of Theorem 5.2.

LEMMA 7.3. There exist constants C; > 0, C, > 1 and F > 0 such that for each
T >0,

) W < ROl <6

Wr()||; forallr>r.

PROOF. By Assumption 3.1, there is F > 0 such that |[A(M")~!|| <2 ||AM~!||
and |u"| < 2|u| forallr > F. For each t > 0, by (17), we have that

(127) Wi (t)| < [|AMY) 7!

N"(t)] .

Now, ||AM~! ‘ | > 0 and so by letting C; = (2 | ‘AM_1 ‘ ‘)71 we see that the left hand
inequality in (126) holds for any T > 0, for all r > . On the other hand, for each
I € I, there is at least one j; € J such that Aj;; > 0, and then using (17) again we
obtain that for eacht > 0,

Aji ()TN (1) < W ().

By letting C, = max(1,2|u|Imaxicy(Aj;i)~"), we have that the right hand inequality
in (126) holds forany T >0 and r > T. O

LEMMA 7.4. The sequence of processes {W'(0) 4 X"(-),r > 0} is C-tight.

PROOF. Recall that for eacht > 0,

(128) XT(t) =AM~ (Er(t) —§f(ff(t))) +r(Ap" —O)t.

Since each route must use at least one resource, for each n € RL and i € I, the
bandwidth allocation Aj(n) must be bounded by C = max jegCj. It follows that
for each r > 0, 'IEr() is uniformly Lipschitz continuous with Lipschitz constant C,
and hence {T"(-)} is C-tight. On combining this with the functional central limit
assumption (21), the convergence of {r (Ap" —C)t,r >0} and {M",r > 0}, and the
convergence assumption on W' (0) made at the end of Section 3, the desired result
follows. O

With the above preliminaries in place, we are now ready to address the main
part of the proof of Theorem 5.2. In the following, we shall reuse some notation
for local proof purposes. In particular, £ and  are used for different purposes here
than earlier in the paper.
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Recall from (36) that foreachr >0 andt > 0,

(129) W' (t) =W"(0)+X"(t)+U0"(1),

and that by (17),

(130) Wit = AM)TIRTQ) =W (t)+ (),
where

(131 W'(t) = AM'AW'(1)),
(132) &) = AMTI(NT(0) — AWM (1) +A(MT) T = MTHR ().

By Proposition 4.2 and the definition of #) from .#, we have that
(133) W' (t) € #; forallt >0 and forall r> 0.

Returning to (129), for 6 > 0 fixed and each r > 0,t >0, j € ],

t
N N 5 ’6
(134) 070) = [ 1 quar 9.2 90 9) + &2 1)
where
t
51,8 1\ _ .

A main step in establishing the diffusion approximation result, Theorem 5.2, is
to show that for each j € J, with probability tending to one as I — oo, the process
U" increases only when W' (or W") is near the boundary portion #,'. The local
traffic condition (Assumption 5.1) is used in verifying this in the following lemma,
which also shows that state space collapse holds and that for fixed T > 0, with high
probability we can obtain a uniform bound on ||[W"(-)||t and on |JU"(-)]|t.

LEMMA 7.5. Suppose, in addition to the assumptions that a = 1 and that As-
sumption 5.1 holds, we have that

(136) INT(0) —A (W' (0))| — 0

in probability as r — 0. Then foreach T > 0, > 0, there exist constants K(T,d) >
0and r(T,d) > 0 such that for each r > r(T,9),

P(IN"() =B () <8, 1Ol <8, 1890y =0
(137) ()l < K(T,8), 07()llr <K(T,8) = 1-8.
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A main aspect of the proof of Lemma 7.5 is to show that for fixed T > 0, with
high probability, we can obtain a suitable uniform bound on ||K" ()|t (or equiv-
alently, on |W'(-)||7) for all r sufficiently large. We shall use an oscillation in-
equality for the proof of this. A local version of this inequality was established in
Theorem 4.1 of Kang and Williams [20]. For a # 1, one would need to use that
local version. However, for the case a = 1 treated here, one can choose p in The-
orem 4.1 of [20] to be arbitrarily large and consequently obtain a global version of
the oscillation inequality. Here, for the case of o = 1 only, rather than using Theo-
rem 4.1 of [20], we shall give an alternative proof of a global oscillation inequality
by first invoking a linear transformation to transform % to the orthant and then
applying an oscillation inequality developed earlier by Williams [43] for that state
space. This inequality has a slightly simpler form than that which would follow
from [20].

For the statement of the oscillation inequality, we need the following notation.
For any 0 <'s <t < o, let D([s,t],R7) denote the set of functions X : [s,t] — R’
that are right continuous on [S,t) and have finite left limits on (S,t], and for x €
D([s,t],RY), let

(138) Osc(x, [s,t]) = sup{|x(v) = x(u)| :s<u<v<t}.

PROPOSITION 7.1. (Oscillation Inequality) There exists a constant Cy > 0
such that forany & >0 and any 0 <s <t < oo, w, X, y € D([s,t],RY) satisfying

(i) W(U) = X(U) + 3 jes¥j (W)Y for all u € [s,t],
(i) w(u) € #; for all u € [s,t],
(iii) foreach je ],

@) yj(s) >0,

(b) yj is non-decreasing,

(©) YW =Yi(8) + fisu L aqwiv), w5 Vi (V) for all u € [s,t],
then the following hold:
Co(Osc(x, [s,1]) +B),
Co(Osc(x, [s,t]) + ).

(139) Osc(w, [s,t])

<
(140) Osc(y,[s;t]) <

PROOF. For W, X,y satisfying (i)—(iii) above, let W = (ABA’)~'w, X = (ABA') !X,
y =y, and let R = (ABA')~!. Since ABA' is a bijection from R, onto %, the matrix
with columns given by the vectors {yj, j € J} is the J x J identity matrix, and for
z € # the distance d(z,%,') =nl-z/|n}| for each j € J (where nJ is the vector
given by the j row of (ABA')~1), it follows that W, X, ¥ satisfy

(i) W(u) =X(u)+Ry(u) for all u € [s,t],
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(i) W(u) € R} forallu € [s,t],
(iii) foreach jeJ,
(@) ¥i(s) >0,
(b) ¥; is non-decreasing,
(C) yj (U) = )71 (S) +f(&,“] l{Wj (V)ch‘nj‘}dyj (V) forallu e [S,t].

Since R is completely-S, by Lemma 7.1, and W,X,¥ satisfy (i)—(iii) above, it is
immediate from Theorem 5.1 of [43] that there is a constant ¢; > 0 depending only
on R such that

(141) Osc(W,[s,t]) < c1(Osc(%[s,t]) + Smax Inl)),
je

(142) Osc(¥,[s,t]) < c¢1(Osc(X,[s,t]) + 5maj( Ini)).
je

Applying the reverse linear transformation ABA’ and making C, sufficiently large
to absorb the factor max ¢y [n!|, it follows that (139)—(140) hold where the constant
(fo can be chosen to depend only on ABA’ (and its inverse). ]

Proof of Lemma 7.5. Fix T > 0 and 0 > 0. By the convergence assumed for the
initial random variables {W'(0),r > 0}, the C-tightness of {W'(0) 4+ X"(-),r > 0}
established in Lemma 7.4, the multiplicative state space collapse established in
Theorem 5.1, and the fact that (M")~! — M~! as r — oo, we have that for each
€ > 0 there are constants Ko > 1 (not depending on €) and ry(€) > 0 such that for
all r > ro(¢€),

. ., )
(143) P (IWT(0)] <Ko, [|X"(")||; <Ko) > 1—5,

. . . 1)
(144) P(IN"(:) =AW ()llr <e(IN"()[[r V1) >1- 5
and
(145) (M)~ =M1 <e.

The constants Ky and ry(€) will depend on T and & as well, but since these param-
eters are fixed throughout this proof, we do not explicitly indicate that dependence
here.

In the following, £ > 0 will be fixed. A specific, suitably small value of & will
be chosen later (as a function of 0, T) to ensure that various inequalities hold (cf.
(158)). Forr > 0, let

( )HT < Ko,

o = {|W"(0)| <Ky, ||X"(:
INT(:) =AW ()T < e(IN"()[lT v 1)}
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From (143)—(144) we have that for all r > r((¢€),

(146) P(O") > 1 4.

Now, for r > ry(€), on O"¢, by (130)—(132) and (145) we have
(147) 1€ ) < Csel| (R ()l v 1),
where C3 = [|[AM~!|| +||A]| V 1 and

(148) E"(t) =W'(t)-W'(t) forall t>0.

Since, by Proposition 4.2, A(W'(t,)) is an invariant state, it follows from the
characterization of invariant states in Theorem 4.1 that for r > ro(€),t € [0,T] and
w € O, there is ' (t, ) € RY. such that

(149) A (W' (t,w)) = diag(p)diag(k) 'A'd"(t, w),
and so by the definitions of W' and the matrix B we have
(150) W'(t, w) = ABA']' (t, w).
We now turn to the behavior of U". By (39), for each r > ry(€), t € [0,T], and
jeld,
(1s1) 0/ = r [ (€ (MNE)) s

We are interested in where U | increases. Fix r > ro(€), j € Jand w € O". Since the
integrand in (151) is non-negative, we concentrate on determining where the inte-
grand is strictly positive. At an instant s € [0, T] such that Cj — (AA (N'(s, w))) >

0, by Proposition 2.1(iv) there is p' (s, ) € RY. such that pj(s,w) =0 and

Y kel P(S, W) Ak

(152 Ki(s,0) =Ai (N'(s,0)) ( K

> foralliel.

By the local traffic Assumption 5.1, there is an index ij € I such that Ajj; > 0 and
Aw; = 0 for all k # j. Using the fact that pj(s,w) = 0 in (152), it follows that
Nirj (s,w) = 0. Then, since w € O"¢, we have

(153) (AW (s,0)))i; < e(IN"(-,w)[Ir V1)
and so by (149) and the local traffic condition,

(154) di(s,@) <e(IN"(-, w)[lr vV 1)p; ki
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Thus, letting nl denote the vector given by the j row of (ABA')~! (cf. the proof
of Lemma 7.2), using (150) we have that

dW'(s,w), 7)) = nl-W'(s,w)/|n|
= n!-ABAQ(s,w)/|n’|
= qf(s,w)/|n}|
< &(IN(, @)t v 1)p; ki /It

Let C; = maxcy pij_lKi i/ Ini|. It follows from the reasoning above that for each
r>ro(€), j €J, on O" we have for all t € [0,T],

t
(155) Ut = /0 e (9.0 <o vy 997 (9):

ie., Ujr() can increase only when d(VVr('),Vﬂlj) < C4e(INT()|IT V 1). Further-
more,

W) = Wity - &'

= WO +X'(t)—&®+U0"(),

where W' (t) € #4. It then follows from the oscillation inequality in Proposition
7.1 that for r > ry(€), on O"¢,

Osc(W',[0.T]) < Co (OscW'(0)+X"(-)~&"(),[0,T])
+Cae(INT ()]l v 1)

Co (2Ko+ (2C3 4+ Ca)e([IN"(+)[lr v 1))

é() (2K0 + (2@3 +é4)£éz(||wr()||T V 1)) .

(156) <
<

where we have used the definition of O"¢ and (147) for the second inequality, and
we have used Lemma 7.3 plus the fact that C, > 1 for the third inequality. Similarly,
we obtain an oscillation bound for U" for r > ro(&) on O":

(157)  0sc(U",[0,T]) <Cp (2Ko + (263 +Ca)eCo (W () [+ V 1)).

On combining (156) with (148), (147) and Lemma 7.3, we have that for r > ro(€),
on O"¢,

M)V < WT0)[V1+0se(W'(-),[0,T]) A
< WT(0)| Vv 1+0sc(W'(-),[0,T])+Osc(é"(-),[0,T])
< +C4

Ko—l—(éo—l—l) (2K0+(2é3 )Séz(”wr()HT\/l))

.)7
.)7
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Now, choose

(158) £:min< ~ lA —, ~ 5A ~ ~ >
2(Co+1)(2C;5 +C4)Cy 2KoCa (3 + 2Co) (Cs + Ca)

Then from the above we conclude that for r > ry(€), on O"%,

(159) IMIT ()l v T < 2Ko(3+2C0),

and, using the fact that C3 > 1, we have

(N v1) < eCal W () v )
o

é3 +é4

0.

(160)

IN

IN

Further, by (157), (159) and the definition of &, we have
(161) Osc(U",[0,T]) < 2Co (Ko + &).

Note that since U" is non-decreasing and starts from zero, the above also provides
a bound for ||U"(-)||t. Now, by (160), for r > ro(£), on O"¢, we have

IN"C) =AW ()llr < e(IN"C)llr V)
< 9

and using (147), we have
17O Ir < Cae(IN()llr v 1)

< 9,

and using (155), we have for each j € J andt € [0, T],

t
(162) i) = /Ol{d(v”vr(aw),%")sé}

and so by (134)—(135),
(163) IE2()llr = 0.
Now, set K(T,8) = max(2Ko(3 +2Cy),2Co (Ko + 8)) and r(T, 8) = ro(€) where
€ > 01is given by (158). Then, for all r > r(T,d), by the above and (146) we have
P(IN() =2 (W () r <8, 1 C)llr <8, 189C)Ir =0,
(164 V)l < K(T.8), 07 ()T <K(T.8) = P(O") = 1 -6,

der(S),

O
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Proof of Theorem 5.2. Assume that the hypotheses of Theorem 5.2 hold. We will
show that the conditions of Theorem 5.4 of [20] hold, from which it will follow
immediately that W' converges in distribution as r — oo to an SRBM with data
(#1,08,T,{y} : j € I},n). The joint convergence of N" with W' will then follow
by the state space collapse established in Lemma 7.5.

The conditions of Theorem 5.4 fall into four groups. We treat each of these
groups separately below.

Firstly, the diffusion state space ] must be a convex polyhedron having non-
empty interior described as the intersection of a minimal set of half-spaces, and
the directions of reflection {y/ : j € J} must satisfy Assumption 5.1 of [20]. These
properties were verified in the proof of Lemma 7.2.

Secondly, one must verify that Assumption 4.1 of [20] holds. This condition
amounts to verifying that W', X",U" satisfy conditions similar to (i), (ii), (iv) on
W, X,U in the definition of an SRBM, except that the prelimit processes are al-
lowed to have r.c.Ll. rather than continuous paths and small perturbations in the
conditions (i), (ii) and (iv) are allowed. Furthermore, the sequence {W" (0)+X"(-)}
is required to be C-tight. The latter follows from Lemma 7.4 and the former fol-
lows from the properties in (129)—(135) once we show that f " - 0and 2 0
in probability as r — oo for a suitable sequence {J'} satisfying 6" — 0 as r — co.
We verify the latter properties in the next paragraph.

Recall the constants K(T,0) and r(T,d) from Lemma 7.5. Choose strictly in-
creasing sequences of positive constants {Ky,k > 1} and {rx,k > 1} such that for
each k, K > K(k, ¢) and r > r(k, 1), and so that r, — oo as k — co. Define " such
that " =1 whenr <r; and &' = % when r € (I, 1] fork > 1. Then, 8" — 0 as
r — oo and by Lemma 7.5, for each k > 1, for ry <r <ry,q,

P (INC) 800" (Dl < g IO o I7FOlk=0.

N 1

(165) M)l < Kies 107 ()l < Ki) 2 1=
It follows from this that & — 0 and "% — 0 in probability as r — co. Then the
conditions of Assumption 4.1 in [20] are satisfied with %] in place of G, I in place
of n, jin place of i, W" in place of W", W" in place of W", V_Vr(O) + X" in place of
X", U" in place of Y", Y['(t) = I Vg duj(s), "=y, a"=¢", and
B =10

Thirdly, one must show that {W"(0) +X"(-)} converges in distribution as r — oo
to a Brownian motion with drift 8, covariance matrix [ given by (46) and initial
distribution 1. [This amounts to verifying condition (vi)’ of Theorem 4.3 in [20]
(with 8 in place of U and n in place of v there). This condition is needed so that
weak limit points of {(W", X", U")} will satisfy property (iii)(a) and the last part of

9.#,)<8}
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(i) in the Definition 5.2 of an SRBM.] To verify this condition, we first show that
{T"(-)} converges in distribution to the deterministic process {p(t),t > 0} where
p(t) = pt. Indeed, by the fact that T"(-) is uniformly Lipschitz continuous with
a Lipschitz constant which does not depend on r, we have that {T'(-),r > 0} is
C-tight. Let T*(-) be a weak limit point of this sequence, obtained as a limit in
distribution along a suitable subsequence. We will prove below that almost surely,

(166) T*(t)=pt forall t>0,

from which the desired convergence in distribution of {T"(-)} to T*(-) follows.

For the proof of (166), by passing to a subsequence, we may assume that {T"(-)}
converges in distribution to T *(-) as r — co. Now, by (16) and (5), on dividing by
r, we have for each i € I,

(167) S = S E O ST ),
where

- Er(r’t . S(rt
(168) E'(t) = g ), S'(t) = (rrz )

From (165) we can conclude using the continuity of A(+) that

N"()

T:>O as r — oo,

and from (21) it follows that

(E'(),S"()) = (v(),H()) as T — o,

where V(t) = vt and p(t) = pt for all t > 0. Thus, on letting r — oo in (167), we
obtain that almost surely, for each i € I,

0=wvt— T "(t) forall t>0.

The desired result (166) follows immediately.

It now follows from (21) and the assumption on the convergence in distribution
of W' (0) made at the end of Section 3, that (W'(0),E"(-),5"(:),T"(-)) converges
in distribution to (W (0),E(-),S(-),p(-)) as r — o where W (0) is independent of
the Brownian motion (E(-),S(-)) and W (0) has distribution n on #]. On combin-
ing this with a random time change theorem and Assumption 3.1, we conclude
using (128) that {W"(0) + X"(-),r > 0} converges in distribution to a Brownian
motion with drift 8, covariance matrix I" given by (46), and initial distribution 1,

as desired.
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Fourthly, and finally, we must verify condition (vii) of Theorem 4.3 of [20]
(with 8 in place of U there). This condition requires that for any weak limit point
(W, X,U) of (W', X",U"), {X(t) — 6t,t >0} is a martingale relative to the filtration
generated by (W, X,U). (This condition is needed so that property (iii)(b) in Defini-
tion 5.2 of an SRBM will be satisfied by weak limit points of {(W",X",U")}.) Let
6" = r(Ap" —C). Then, by Proposition 4.1 of [20], to show that this final condition
holds, it suffices to verify the following properties for the prelimit processes:

(a) for each r, {X'(t) — 8t,t > 0} is a martingale with respect to the filtration
generated by (W', X",U"),

(b) 6" — Basr — oo,

() {X"(t),r > 0} is uniformly integrable for each fixed t > 0.

We now verify these three properties.
It is well known (cf. Theorem 4.1, Chapter 6 of [12]) that for the continuous
time Markov chain N', foreach r >0 and i €I,

X0 = NI ~NF0) — [ 0 ~ AN 5)ds, t20

defines a martingale with respect to the filtration generated by N', i.e., with respect
to {Z#,t >0} where % = g{N'(s) : 0 <s <t}. Setting

Xr(t): ) '9?':9;2“

we have that for each r > 0, {{"(t),.%{,t > 0} is a multi-dimensional martingale.
Now, using the expressions (17) and (36) for W', and the expression (39) for Jr,
we see that

AMNDTIZ (1) = W'(t) —W"(0) —Aprt +Crt —U"(t)
X"(t) 4 r(C—Apit.

Since W' and U" are adapted to the filtration {ﬁ‘{,t > 0}, so is X', and then it
follows that
X"(t)—8t=AM""'"(t), t >0,

is a martingale with respect to the filtration generated by (W', X", U"). By (12),
0" — 0 asr — oo Finally, since the mean of a Poisson random variable is the
same as its variance, and the rate of increase of T' is uniformly bounded, it is
straightforward to verify using Assumption 3.1 that {X"(t),r > 0} is uniformly
integrable for each t > 0. Thus we have verified conditions (a)-(c) above and so
condition (vii) of Theorem 4.3 in [20] holds.
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We have now verified all of the hypotheses of Theorem 5.4 of [20] and so it
follows that W' converges in distribution as r — o to an SRBM W associated with
the data (#1,0,T,{y! : j € J},n). From (165) we have that N" — A(W") converges
in distribution to the zero process as r — 0. Since A(+) is continuous, it follows that
we have the joint convergence of (W', N") in distribution as r — oo to (W,A(W)).

O

8. CONCLUSION. A bandwidth sharing policy corresponds to a generaliza-
tion of the notion of a processor sharing discipline from a single resource to a
network with several shared resources. In particular, weighted o -fair policies pro-
vide a tractable theoretical abstraction of the bandwidth sharing effected by decen-
tralized packet-based end-to-end congestion control algorithms such as TCP. It is
known [3, 11] that, for flow-level models with exponentially distributed file sizes,
weighted a-fair policies are stable when the average load on each resource is less
than its capacity.

Weighted a-fair policies can nevertheless suffer from entrainment of resources,
whereby congestion at some resources may prevent others from working at full
capacity: this is manifested under diffusion scaling, where a Brownian model for
the workload process lives in a cone which may be a strict subset of the positive
orthant.

Under weighted proportional fair sharing (o = 1) and a mild local traffic con-
dition, this paper has shown how multiplicative state space collapse can be com-
bined with an invariance principle to establish a diffusion approximation for the
flow-level model. For proportional fair sharing (equal weights), this diffusion has a
product form invariant measure which when integrable can be normalized to yield
the unique stationary distribution for the diffusion. This result extends to the case
where file sizes are distributed as finite mixtures of exponentials. Thus, in the dif-
fusion limit more networks can have product form stationary distributions than are
known in the prelimit (cf. Bonald and Proutiere [4]). We also indicated some open
problems for a # 1 and an extension to models with routing.

Bandwidth sharing policies outside the class of weighted o-fair policies may
avoid entrainment, although such policies may not be easy to effect via decentral-
ized packet-based end-to-end congestion control algorithms.
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