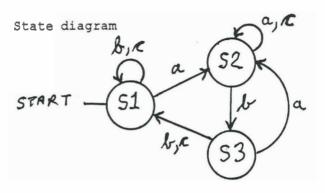

Combinational logic accepts inputs and produces output after some delay. Truth table = circuit diagram = VHDL code inputs | outputs ABC S Co unoptimized VHDL from truth table 0 0 0 0 0 1 0 S <= (not A and not B and C) or 0 0 1 1 0 (not A and В and not C) or 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 (A and not B and Not C) or A and B and (C) after 1 ns; 101 0 1 0 1 C_o <= (not A and B and (A and not B and C) or 1 1 0 1 1 1 C) or 11 A and B and not C) or (A and B and C) after 1 ns;

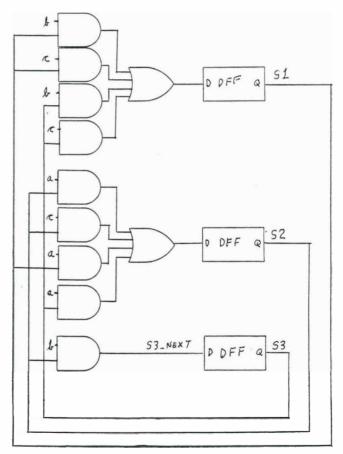
unoptimized circuit diagram from truth table

3-10

Sequential circuits have storage elements (registers of flip flops)


Combinational circuits MUST NOT HAVE LOOPS !

Any feedback loop must have a clocked storage element otherwise is may become locked in one state or may become an oscillator.


State transition_table = State diagram = Circuit diagram = VHDL code

State transition table

state	1	inputs		
	1	a	b	С
	+			
S1	1	S2	S1	S1
S2	1	S2	S3	S2
S3	1	S2	S1	S1

Circuit diagram (unoptimized)

unoptimized VHDL code

S1_next <= (S1 and b) or (S1 and c) or (S3 and b) or (S3 and c) after 1 ns; S2_next <= (S2 and a) or (S2 and c) or (S1 and a) or (S3 and a) after 1 ns; S3_next <= (S2 and b) after 1 ns; S1_dff: entity work.dff port map(S1_next, clk, '1', start, S1); S2_dff: entity work.dff port map(S2_next, clk, start, '1', S2); S3_dff: entity work.dff port map(S3_next, clk, start, '1', S3);