Computer Architecture Brings Together:

Device physics
Device circuits
Digital design
Mask layout
Processing

Programming languages
Assembly (machine) language
Instruction set architecture
Automata theory
How to do tradeoffs
How to handle complex problems
How to use interfaces
Business and economics
e.g. of consumer price:
$1 / 3$ is parts and labor
$1 / 3$ advertizing, marketing, ship
$1 / 3$ overhead and profit

Requirements - everyone contributes:

Customer

Computer Architect
Digital Logic Designer
IC Circuit Designer - circuits - cell family
IC Mask - layout and route
IC Process and Fabrication

Packaging Designer - IC - PWB - connectors

Operating System Designer
Compiler Designer
It takes a large team to create a new CPU

Units, dimensions, size and scale

10^{-12} pico- picosecond ps
10^{-9} nano- nanosecond ns , nanometer nm
10^{-6} micro- microsecond us, micrometer=micron
10^{-3} milli- millisecond ms

10^{3}	2^{10}	kilo-	kilobit Kb , kilobyte KB
10^{6}	2^{20}	mega-	
10^{9}	2^{20}	giga-	gigabyyte MB , megahertz MHz
10^{12}	2^{20}	tera-	terabyte TB
10^{15}	2^{50}	peta-	petabyahertz GHz

speed of light
$300,000,000$ meters per second
300,000 meters per millisecond
300 meters per microsecond
0.3
meters per nanosecond (about 1 foot)
1 Ghz clock has a 1 ns period: 0.5 ns ' 1 ' 0.5 ns ' 0 ' electrons can travel about 4 inches in an integrated circuit in 0.5 ns with 130 nm features

DVD's use a laser with a wavelength 650 nm a bit length of 133 nm with a track pitch of 740 nm

Some Steps a CPU May Perform:

- increment/set Program Counter, PC
- send (PC) to Memory Controller, as address
- send read request to MC
- wait for MC to return instruction
- decode instruction
- compute operand memory address, EAR
- send (EAR) to MC with read request
- wait for MC to return operand
- perform instruction operation
- update registers) and condition status
- send result and (EAR) to MC, write request

Some or all steps may be used by a single instruction.
Some or all steps may be performed in parallel.
the r.s.a. defines the REGISTERS, INSTRUCTIONS, etc.

CHEAICAL LAB ON A CNIP MICRO PIGFES OF AIR MIETO MIRING AMAEYSIS

The goal of designing a nanoliter DNA analysin device was to replace conventional hardware and tramed tichmicians," said Burns. "DN'A analysis methods have mproved over the last decade. However, the cost for redgents and labor remain high. And if high throughput is needed, the cost of supporting equipment becomes prohibitive."

Preliminary estimates by Burns suggest that the cost of producing the DNA-testing chip in research-sized quantities may be approximately $\$ 6$ per device. Mass production would lower that amount considerably.
"We can do things so cheaply by relying on the principles that currently make computers so cheap,"

The invention is the product of tive years of work by Protessors Burns. Mastrangelo, and Burke and their colleagues. In a short time, these three professors were able to construct a trial microfabricated system, perform preliminary experiments, and write several successful Natronal Institutes of Health (NIH) proposals. Their work was funded by NIH grants totaling nearly $\$ 3$ million. Also, the team received the inaugural Team Excellence Award in 1998 from the College of Engineering.

Their method of microfabricating a fluid and electronic chip capable of complex chemical analysis was detailed in the October 16. 1998, issue of the journal Science, in an article by Dr. Burns et.al. titled "An Integrated Nanoliter DNA Analysis Device" (pages 484-487).

Dual-Core Duel: A梱 Beats Intel

FIRST LOOK: TWO PROCESSORS IN ONE ATHLON CHIP GIVE PERFORMANCE EXTRA OOMPH.

READY FOR THE era of dualcore? You now have a choice of dual-core processors; and based on PC World tests, the winner is clearly AMD's new Athlon 64 X 2 , which handily outdistanced a duaj-core Intel system we tested last month (see find.peworld.com/48040).
Our tests indicate that with both AMD's and Intel's dualcore chips you'll obtain the biggest performance benefit when you work with multiple applications at once or when you use multithreaded software, designed to recognize more than one processor.
Dual-core chips build in two processing cores, in effect giving you two CPUs in a single piece of silicon. You also get two L2 memory caches, one for each core; the $2.4-\mathrm{GHz}$ Athlon 64 X2 4800+ chip that we tested, for example, had 1MB of L 2 cache per core. The 64 -
bit Athlon 64 X 2 chips ship in June, joining currently available dual-core Opteron serv. er and workstation CPUs. PCs with the new chips, which will come in several variations, should be available now. Also, you should be able to upgrade your existing Athlon 64 PC to the new chips with just a BIOS change, whereas to convert an Inte] unit to dual-core you'll need to purchase a new motherboard.

SPEED BOOST

WE TESTED A reference system provided by AMD that ran Windows XP Pro. It came configured with 1GB of 400 MHz DDR memory; a 10,000 rpm, 74GB hard disk; and an NVidia GeForce 6800 Ultra graphics card with 256 MB of DDR3 RAM. (The Intel system we previously tested came with comparable hardware.)

The AMD machine was the second-fastest we've ever tested, with a 116 mark on WorldBench 5 , easily surpassing the 95 posted by the $3.2-\mathrm{GHz}$ dualcore Pentium Extreme Edition 840 reference system that we looked at earlier (see the chart below; and go to find.pcworkc. com/48046 for more results).
The unit showed its prowess on the multitasking portion of WorldBench 5 . Its time of 6 minutes, 44 seconds was an impressive 3 minutes, 42 sec -
onds faster than the average of two Athlon 64 FX- 55 systems, and about 3 minutes faster than the dual-core Pentium EE 840 reference PC's time.
If you want one of these powerful beasts, you'll have to pay dearly for it: AMD's $4800+$ chips alone are priced at $\$ 1001$ each in quantities of 1000 , while Intel's $3.2-\mathrm{GHz}$ Pentium EE 840 chips currently sell for $\$ 995$. Entry-level Athlon X2 chips will cost only about half that much, howev. er, so you can still get the benefits of 64-bit technology and dual-core processing without breaking the bank.
Intel devotees should also observe dual-core Pentium Dbased systems arriving about the time you read this, and such PCs should be considerably less expensive than those with the Pentium EE 840.
-Anush Yegjazarian

TESTREPORT

PC WITH AMD'S DUAL-CORE CHIP BESTS INTEL'S SYSTEM

COMPARED WITH THE PENTIUM dual-core PC, the Athlon unit scored very well in the multitasking and Windows Media Encoder tests.

PROCESSOR	WorldBench 5 score Faster	Whidows Media Encoder 9	Roxio VideoWave 1.5	WTME (NS SECONDS) TORIUN		Adobe Photoshop 1.0 .1	Adobe Premiere 6.5
				Multitasking test'	$\begin{aligned} & \text { Ahee } \quad 0 \\ & \text { Express } 6.0 \end{aligned}$		
2.4-GHz Athlon 64×2 4800+		256	246	404	437	301	344
3.2-GHz Pentium EE 840 (duol-core)	95	340	274	590	457	357	479
3.73-GHz Pentium 4 EE		338	269	581	477	331	441
Averoge of two 2.6-GHz Athion $64 \mathrm{FX}-55^{2}$	107	355	297	626	494	299	367

[^0] CS systems were tested with WordiBench 5 and ran Windows XP; 在 test details see www. worIdbench.cor. Application tests are part of WorldBench 5 . All rights reserved. We used refer-

[^0]: IST FOOTMOIES: 'In the multitasking test, systems load various Web pages while encoding video with Windows Media Encoder. ${ }^{2}$ Average of previously tested systems. HOW WE: TEST: Al

