
TrueKeys: Identifying and Correcting Typing Errors for
People with Motor Impairments

Shaun K. Kane,1 Jacob O. Wobbrock,1 Mark Harniss,2 Kurt L. Johnson2
1The Information School
University of Washington

Box 352840
Seattle, WA 98195 USA

{skane, wobbrock}@u.washington.edu

2Department of Rehabilitation Medicine
University of Washington

Box 357920
Seattle, WA 98195 USA

{mharniss, kjohnson}@u.washington.edu

ABSTRACT
People with motor impairments often have difficulty typing
using desktop keyboards. We developed TrueKeys, a
system that combines models of word frequency, keyboard
layout, and typing error patterns to automatically identify
and correct typing mistakes. In this paper, we describe the
TrueKeys algorithm, compare its performance to existing
correction algorithms, and report on a study of TrueKeys
with 9 motor-impaired and 9 non-impaired participants.
Running in non-interactive mode, TrueKeys performed
more corrections than popular commercial and open source
spell checkers. Used interactively, both motor-impaired and
non-impaired users performed typing tasks significantly
more accurately with TrueKeys than without. However,
typing speed was reduced while TrueKeys was enabled.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
interfaces — Input devices and strategies.

Author Keywords
Computer access, motor impairments, typing errors,
minimum string distance, spell checking, error correction.

INTRODUCTION
Correcting typing errors is one of the most common
activities performed by computer users. However, users
with motor impairments may produce significantly more
typing errors than other users, and may require more time to
correct these errors [10]. Assistive technologies such as
keyguards and word prediction software may reduce typing
errors, but may also decrease typing speed [4,7], and are
often expensive or difficult to learn. For these reasons,

Figure 1. The TrueKeys user interface performing a

correction from “quicxc” to “quick”.

many users with motor impairments avoid specialized input
devices and instead use standard keyboards [10].

To address these issues, we developed TrueKeys, a system
that automatically corrects typing errors. TrueKeys employs
models of word frequency, keyboard layout, and typing
error patterns to identify and correct typing mistakes. Used
non-interactively, the TrueKeys algorithm performs better
than several common spell checkers. Used interactively,
TrueKeys significantly increases typing accuracy for both
motor-impaired and non-impaired users, although it can
slow users down somewhat.

RELATED WORK
Some prior systems have attempted to reduce typing errors
produced by users with motor impairments. Trewin [10]
introduced a typing filter called OverlapKeys that
automatically corrects errors in which the user strikes two
keys at once. VITIPI [1] is a word prediction system that
can correct errors as the user types. TrueKeys goes beyond
systems such as OverlapKeys in that it can correct many
error types. However, TrueKeys is not a word prediction
system like VITIPI. Instead, TrueKeys allows users to type
normally, while automatically correcting errors in-place.

THE DESIGN OF TRUEKEYS
TrueKeys consists of two components: (1) a word
correction algorithm; and (2) a user interface that allows
users to interactively correct text while typing.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

Correction Algorithm
The TrueKeys correction algorithm identifies mistyped
words and suggests potential corrections. A word is first
checked against a large word list to determine whether it is
known. If it is unknown, TrueKeys creates a list of likely
correction candidates and ranks them using a word distance
score. The candidate with the lowest distance score replaces
the original input.

A minimum string distance (MSD) score, derived from the
Levenshtein string distance [5], is used to calculate the
distance between the user’s input and a correction
candidate. This score is based on four edit operations:
substitution, insertion, deletion and transposition [2]. These
edit operations correspond to common typing errors.
Substitution errors occur when the user presses an incorrect
key instead of the intended key. Insertion errors occur when
the user presses an incorrect key in addition to the intended
key. Deletion errors occur when the user fails to press a
key. Transposition errors occur when the user types two
keys in reverse order. The MSD score is the number of
operations needed to transform one string into the other [8].

TrueKeys extends MSD with information about the
physical layout of the keyboard to produce a weighted
MSD score we call wMSD. As suggested by Deorowicz and
Ciura [3], physical distance between keys is used as a
weighting factor for edit operations. Table 1 describes how
distance weights are used. wMSD is combined with two
frequency scores: the frequency of the word alone (fword),
and the frequency of the word given the previous word
(fbigram), to produce the final distance score, scoreTK (Eq. 1).

()
bigramwordwordtypedTK ffSSwMSDscore !+!+!= "#$, (1)

A lower scoreTK indicates a better match. The terms α, β,
and γ are weighting factors derived from pilot data. The β
and γ factors are negative so that common words produce a
lower score. For the pilot study we used the following
empirically determined weights: α = 0.4, β = -0.00001 and
γ = -0.0001. We used a weight of ε = 1.5 for deletion errors.

Substitution Weighted by the distance between the
entered and intended key
(cost = distance * α).

Insertion Weighted by the distance between the
entered key and the previous or next key,
whichever is closer (cost = distance * α).

Deletion Deletions are less common than other
errors and are weighted more (cost = ε).

Transposition Not weighted (cost = 1).

Table 1. Distance weights used in the wMSD score.

Finally, TrueKeys contains two typing filters to correct
common errors. A run-on error filter detects errors in
which two words are entered without a space in between,
such as “quickbrown”, and separates them. An additional

simultaneous key press filter detects simultaneous key
presses and considers both possible candidate words. For
example, if the user presses the “q” and “w” keys together
and then types “as”, the system will attempt to recognize
both “qas” and “was”, choosing the latter.

TrueKeys User Interface
The TrueKeys interface provides: (1) visual feedback of
word corrections; and (2) a simple keyboard-based interface
for choosing among correction alternatives. Correction
begins when the user presses a delimiter key such as ENTER
or SPACE. If the entered word is not known, the system
chooses the best correction candidate and automatically
replaces the original string with the corrected word. The
system then underlines the word to show that it has been
replaced. Figure 1 shows the TrueKeys interface.

If the user is satisfied with the correction, he or she may
continue to enter text. If the system makes an incorrect
replacement, the user may delete the word using the
BACKSPACE key, or may use the arrow keys to select from a
6-item N-best list of alternative correction candidates,
including the original unadjusted word (Figure 1).
TrueKeys records users’ corrections, and will not repeat a
correction that the user has overridden.

PERFORMANCE OF THE TRUEKEYS ALGORITHM
To evaluate the TrueKeys correction algorithm, we ran
TrueKeys on a set of 360 phrases collected from our pilot
study. BACKSPACE was disabled in order to capture all
errors in the input stream. We identified and tagged 171
mistyped words from this data set that were not valid
English words and were thus correctable by TrueKeys.

Of the 171 invalid words, TrueKeys successfully corrected
99 (57.9%). An additional 31 (18.1%) words were not
changed correctly, but contained the correct word in the 6-
item list of correction candidates. The remaining 41
(24.0%) words were not corrected by TrueKeys. Seventeen
words were typed correctly but were identified by
TrueKeys as mistyped and were incorrectly changed. Thus,
despite some false positives, TrueKeys had an overall
positive effect (48.0%) on text accuracy.

We also compared the performance of the TrueKeys
correction algorithm to Microsoft Word 2004 and the open
source spell checkers ispell and aspell. Comparing
TrueKeys to these systems allows us to judge the
effectiveness of each algorithm at correcting typing errors.
Figure 2 shows the number of words corrected by each
algorithm from the list of 171 words. TrueKeys corrected
more total words than each of the other algorithms.

USER EVALUATION
We performed a pilot user evaluation of TrueKeys with 9
motor-impaired and 9 non-impaired participants. All
participants performed two tasks: a series of phrase
transcription trials using phrases chosen randomly from a
standard set [6], and a short paragraph transcription (~500

characters). Participants performed both tasks with
correction enabled and correction disabled.

Figure 2. Mistyped words corrected by various spell checkers.

TrueKeys corrected the most words. These are single
measures and do not reflect an average or distribution.

Tasks were performed using an Apple MacBook laptop
computer with a full-sized Dell USB keyboard. Two
participants were unable to use the USB keyboard and
instead used the smaller laptop keyboard, while another
participant required StickyKeys. All other participants used
standard keyboard settings. The TextTest application [12]
was used to administer and log transcription tasks.

Phrase Transcription Task
Each participant performed 20 trials with TrueKeys enabled
and 20 trials with TrueKeys disabled. A single trial
involved the transcription of a single phrase (~30
characters). Phrases contained only letters. Participants
were instructed to transcribe the phrase presented on the
screen and to strive for both speed and accuracy.

Use of the BACKSPACE key was disabled for the phrase
transcription task for two reasons. First, disabling
BACKSPACE provided us with a stream of uncorrected
typing data that enabled us to evaluate the correction
algorithm without the influence of user correction. Second,
disabling BACKSPACE encouraged participants to use
TrueKeys rather than correct everything manually.

The order of the TrueKeys Correction (on, off) treatments
was counterbalanced. There was neither a significant effect
of Order on words per minute (WPM) (F1,16=0.01, n.s.) nor
a significant Order*Correction interaction (F1,16=0.01, n.s.),
indicating adequate counterbalancing.

Design and Analysis
The experiment was a mixed between- and within-subjects
factorial design with the following factors and levels: (1)
Impairment (motor-impaired, non-impaired); and (2)
TrueKeys Correction (on, off). Our dependent measures are
participants’ average speeds (WPM) and uncorrected error
rates [9] over trials.

The TrueKeys prototype allowed users to type over text
while correcting. Because BACKSPACE was disabled for the
phrase typing trials, this feature could provide an unfair

advantage to TrueKeys. Therefore, we excluded from
analysis all 30 trials in which a participant used this feature.

Error Rate
Uncorrected error rates are used to measure the accuracy of
the final transcribed text [9]. Average values are shown in
Figure 3a. Our data showed a significant main effect of
Impairment (F1,16=4.90, p<.05) and Correction (F1,16=4.82,
p<.05) on uncorrected errors, but no significant
Impairment*Correction interaction (F1,16=0.31, n.s.). Thus,
TrueKeys correction does indeed reduce errors, and it does
so about evenly for each subject group.

Speed
Words per minute (WPM) is used to measure speed.
Average values are shown in Figure 3b. There were
significant effects of Impairment (F1,16=77.95, p<.0001) and
Correction (F1,16=17.27, p<.001) on speed, but no
significant Impairment*Correction interaction (F1,16=0.78,
n.s.). Thus, correction reduced overall errors, but reduced
entry speed similarly for both participant groups. We revisit
this tradeoff in the discussion section.

Figure 3. (a) TrueKeys significantly reduces error rate for

both participant groups, but (b) also reduces speed.

Paragraph Transcription Task
Participants transcribed a 100-word passage that included
capital letters and punctuation. However, the use of
TrueKeys correction did not significantly affect speed or
error rates for paragraph transcription. These statistics are
therefore omitted from the current work. It is possible that
the short length of the transcription paragraph prevented us
from observing statistically significant differences in speed
and accuracy.

User Acceptance of Corrections
During the paragraph task, TrueKeys corrected 46 words
typed by the participants. Of these, 29 (63.0%) corrections
were accepted by the user. An additional 7 (15.2%)
corrections were changed by the user using the correction
menu. The remaining 10 (21.7%) corrections were
overwritten by the user. This indicates that participants
generally accepted the corrections provided by TrueKeys.

Analysis of Typing Errors
In order to inform the further design of the TrueKeys
correction algorithm, we examined the word-level errors

produced during the study. Overall, users with motor
impairments averaged a higher MSD per word (1.48,
SD=0.89) than non-impaired users (1.10, SD=0.34). A
Wilcoxon rank-sum test showed that this difference is
significant (χ2

(1,N=176)=11.90, p<.001). Motor-impaired
users also mistyped more words overall (11.67, SD=9.49)
than non-impaired users (7.89, SD=4.40), but this
difference is non-significant (χ2

(1,N=18)=0.64, n.s.).

The distribution of error types also varied across participant
groups. Most notably, motor-impaired users performed
more insertion errors than non-impaired users. Table 2
shows the distribution of errors for each participant group.

 Motor-impaired Non-impaired

Insertions 113 (76.4%) 45 (60.0%)

Deletions 8 (5.4%) 12 (16.0%)

Substitutions 21 (14.2%) 13 (17.3%)

Transpositions 6 (4.1%) 5 (6.6%)

Table 2. Number of word-level errors for each participant
group. Numbers in parentheses indicate the relative

percentage of each error and sum to 100% for each group.

DISCUSSION
In the phrase transcription task, use of TrueKeys correction
reduced entry speed somewhat. It is unclear whether these
effects would diminish over time as users become more
accustomed to the system. Several participants commented
that using TrueKeys effectively would require them to
unlearn established typing habits and develop new habits.
One user stated, “It’s hard to reprogram my brain and my
typing. To use [TrueKeys] is to change decades of habit.”
Although TrueKeys provided significantly increased
accuracy for both motor-impaired and non-impaired users,
users with motor impairments seemed more interested in
and more willing to use the system than non-impaired users.
It is possible that inaccurate typists would be more willing
to accept TrueKeys’ current speed-accuracy tradeoff.

CONCLUSION AND FUTURE WORK
We have presented TrueKeys, a system that accurately
detects and corrects typing errors. Our experiments show
that the TrueKeys correction algorithm is more effective
than other commonly used spell checkers at correcting
physical typing errors. Used interactively for typing
phrases, TrueKeys significantly reduces typing errors for
both motor-impaired and non-impaired users. Use of
TrueKeys also reduced speed somewhat, although this
effect might change over time. A longitudinal study is
needed to determine how users will adapt to TrueKeys and
incorporate it into their everyday typing behavior.

Performance of TrueKeys could be improved further
through changes to both the correction algorithm and the
user interface. During the user study, we observed that
users repeatedly made similar errors. For example, one

participant frequently struck the semicolon key when
attempting to use the right side of the keyboard. Including a
personalized model of a user’s typing errors might enable
TrueKeys to more accurately correct these errors. The user
interface might also be redesigned to be less intrusive. This
might reduce the speed hit observed in the present study.
One possibility is to explore different user interfaces for
motor-impaired and non-impaired users, while using the
same underlying algorithm for both groups.

Finally, while we have focused on desktop keyboards for
this study, we believe that TrueKeys may be useful for
correcting typing errors made on mobile device keyboards,
and for typing when users are on the move.

ACKNOWLEDGMENTS
The authors thank Sheryl Burgstahler, Dan Comden and
Curt Johnson for recruitment assistance, and Shari Trewin
for providing the paragraph text used in the experiment.

REFERENCES
1. Boissiere, P. and Dours, D. (1996). VITIPI: Versatile

interpretation of text input by persons with impairments.
In Proc. ICCHP '05, R. Oldenbourg Verlag, 165-172.

2. Damerau, F.J. (1964). A technique for computer
detection and correction of spelling errors.
Communications of the ACM, 7 (3), 171-176.

3. Deorowicz, S. and Ciura, M.G. (2005). Correcting
spelling errors by modelling their causes. International
Journal of Applied Mathematics and Computer Science,
15 (2), 275-285.

4. Koester, H.H. and Levine, S.P. (1996). Effect of a word
prediction feature on user performance. Augmentative &
Alternative Communication, 12 (3), 155-168.

5. Levenshtein, V.I. (1966). Binary codes capable of
correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10, 707-710.

6. MacKenzie, I.S. and Soukoreff, R.W. (2003). Phrase
sets for evaluating text entry techniques. In Proc. CHI
'03, ACM Press, 754-755.

7. McCormack, D. (1990). The effects of keyguard use and
pelvic positioning on typing speed and accuracy in a boy
with cerebral palsy. American Journal of Occupational
Therapy, 44 (4), 312-315.

8. Soukoreff, R.W. and MacKenzie, I.S. (2001). Measuring
errors in text entry tasks: an application of the
Levenshtein string distance statistic. In Proc. CHI '01,
ACM Press, 319-320.

9. Soukoreff, R.W. and MacKenzie, I.S. (2003). Metrics
for text entry research: an evaluation of MSD and
KSPC, and a new unified error metric. In Proc. CHI '03,
ACM Press, 113-120.

10. Trewin, S. (2002). An invisible keyguard. In Proc.
Assets '02, ACM Press, 143-149.

11. Wobbrock, J.O. and Myers, B.A. (2006). Analyzing the
input stream for character-level errors in unconstrained
text entry evaluations. ACM Transactions on Computer-
Human Interaction, 13 (4), 458-489.

