

Designing for Discovery: Opening the
Hood for Open-Source End User
Tinkering

Abstract
According to the Free Software Movement, the user
ought to have "the freedoms to make changes, and to
publish improved versions" and "to study how the
program works, and adapt it to your needs" [7]. The
Open Source Initiative expects users to access source
code, explaining that "you can't evolve programs
without modifying them. Since our purpose is to make
evolution easy, we require that modification be made
easy" [8]. These philosophies can shape a unique
perspective on software usability that has not been
addressed thoroughly in the open-source domain. That
is: how to design user-interfaces and tools that
facilitate access to source code and encourage the
behaviors envisioned above, namely, to improve the
code, to personalize it, to learn from it, and to share it.
And, as the Open Source Initiative recommends, to
make this easy. In addition to presenting this research
perspective, we suggest some fruitful approaches to
answering these questions and our current and future
steps.

Keywords
Open Source Software, usability, user-centered design,
design rationale, End-user Programming

Copyright is held by the author/owner(s).

CHI 2009, April 4 – 9, 2009, Boston, MA, USA

ACM 978-1-60558-247-4/09/04.

Gifford Cheung

The Information School

DUB Group

University of Washington

Seattle, WA 98195 USA

giffordc@u.washington.edu

Parmit Chilana

The Information School

DUB Group

University of Washington

Seattle, WA 98195 USA

pchilana@u.washington.edu

Shaun Kane

The Information School

DUB Group

University of Washington

Seattle, WA 98195 USA

skane@u.washington.edu

Braden Pellett

The Information School

DUB Group

University of Washington

Seattle, WA 98195 USA

bhp@u.washington.edu

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4321

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g.,
HCI): User Interfaces---Evaluation/methodology,
Theory and methods, User-centered design.

Introduction
Adam is brainstorming a new interface for the next
version of his open-source web application, a content-
management suite. His application is fairly popular, but
he cannot keep up with the many incoming feature
requests, some of which are too narrow to be worth his
time and effort. He has a similar problem with bug-fixes
and is looking for new ways to encourage more people
to get involved in his project. He also notices that he
has a new crop of users – website builders with little to
no programming experience, many of whom are trying
to bend his software to fit their agendas. So much
activity and feedback are encouraging. This kind of
energy is exactly why Adam made his software open-
source in the first place, but now that the demand is
there, is there anything more he can do to meet the
needs of his project and these open-source users?

Three Challenges for Open-source Software
This paper is motivated by our desire to address a few
challenges in open-source development. We’ve entitled
these challenges as code reliability, customizability, and
novice-programmer userbase. Our main goal is to
address these challenges from an HCI perspective that
is distinctly “open-source” in nature.

Code Reliability
Advocates of open-source code applaud it for being
more reliable than closed source because “given

enough eyeballs, all bugs are shallow”1. However, many
open-source projects do not feature the support of a
large group of contributors that make software like the
Apache project reliable. While reporting on the Apache
project, Mockus et al. [4] warn that “Open source
developments that have a strong core of developers but
never achieve large numbers of contributors beyond
that core will be able to create new functionality but will
fail because of a lack of resources devoted to finding
and repairing defects in the released code.” All open-
source projects struggle with code reliability. If Mockus
et al. are right, smaller or younger projects risk having
defects in the code that may never be found or
addressed. Thus, code reliability is a major challenge
for open-source projects.

Customizability
Another challenge that motivates this paper is the
challenge of customizability. If a project is open-source,
one might expect that, if a user wanted to customize
the code, he or she could modify it to meet a desired
goal. We ask how a software project can make
customization easier by using strategies beyond
releasing the source code publicly. We believe that
leaving the source-code open leads to promising
challenges for the design of open-source software. Our
perspective is that opening up the source code is only
the first step for making software more customizable.
The challenge then is to ask how HCI principles can
work hand-in-hand with open-source to promote
customizability.

1 The Cathedral and the Bazaar.

http://catb.org/esr/writings/cathedral-bazaar/cathedral-
bazaar/

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4322

Novice-Programmer Userbases
Open-source software depends on the availability of its
source-code to allow users to debug, customize, and
extend it: presumably to free its users to do what they
want with it. However, for users of open-source
software who are novice programmers, source code can
be as impenetrable as a binary executable2.

One might ask if such users exist: people who are
motivated to delve into the source code of a program
despite having little to no programming experience.
One example of this is in the field of bioinformatics.
Within the last few years, open source tools have
proliferated in the field of bioinformatics and, in fact,
much of the scientific work in this domain is highly
dependent on the availability of open source data sets
and tools for manipulation and analysis. BioPerl,
BioJava, and BioPython are examples of open source
projects with a wide international user base of
biologists and computer scientists. They offer libraries
of modules and routines that can be used to connect
bioinformatics applications and datasets for rapid
development of an application. Within such scientific
communities, users need to exercise precise control
over these open-source tools but do not have the time
to become expert programmers. Their focus is on the
science, not the tool, and rather than spend time with a

2 Fitzgerald and Agerfalk [2] suggest a similar critique by asking,

“Is 10 million lines of code all that different from a binary
executable?” The population that they refer to is broader than
ours. It includes competent programmers who do not have the
time or motivation to navigate an extremely large codebase.
While an impenetrable codebase certainly is a roadblock for
open-source software, we do not list it as a challenge because
it is sufficiently addressed in the novice-programmer challenge
and is not quite as high-level as the challenges for code
reliability or customization.

complex software tool, they sometimes abandon the
software and resort to manual work instead. In this
domain, complaints about open-source software include
inconsistent method names, unclear interfaces, difficult
documentation, and high requirement of learning a new
programming language. These users recognize the
potential power of open-source tools. They need lower
barriers to customize and use the tools for themselves.
The challenge is in designing software that fulfills its
open-source promises for motivated, but inexperienced
programmers.

An Open-Source Paradigm of Software Use
We have chosen these three challenges for open-source
software as a way to highlight challenges that are
especially relevant to open-source software. We see
open-source software not merely as a policy that
requires public availability of source code, but because
we see it as representative of a paradigm of software
use. We derive this perspective from definitions that
the Free Software Movement and the Open Source
Initiative lay out for their software. The Free Software
Movement’s definition [7] of free software refers to the
following freedoms quoted below:

Freedom 0: The freedom to run the program, for any
purpose; Freedom 1: The freedom to study how the
program works, and adapt it to your needs. Access to
the source code is a precondition for this; Freedom 2:
The freedom to redistribute copies so you can help your
neighbor; Freedom 3: The freedom to improve the
program, and release your improvements to the public,
so that the whole community benefits. Access to the
source code is a precondition for this.

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4323

They are similar to the Open Source Initative’s
definition for open-source software [8] which, for
purposes of space, we do not include. Given by major
organizations in the OSS movement, these definitions
relate the expected use of the software by its users.
Drawing from these texts, we have identified use cases
meant to be common across all open-source software.

An Open-source Paradigm of Software Use

Use case 1: Users can learn how the software
works from the software
Users are expected to study the program. The code
must not be “deliberately obsfuscated”.

Use case 2: Users can improve the software
Open-source endorses a vision of software that evolves
and improves as it is used and reprogrammed.

Use case 3: Users can personalize the software
Open-source philosophy values the free use of
software, “experimental modifications”, and the right
for users to do what they wish with software.

Use case 4: Users can share the software
Open-source philosophy values the free exchange of
code to encourage growth & evolution of projects.

We have omitted use cases that are not emphasized by
the open-source community as a whole (e.g. OSI Def 4.
Integrity of the Author’s Source Code). Also, we have
omitted use cases which do not seem useful for
deriving design recommendations for the software
artifact (e.g. “Users can run the program for any
purpose”, FSM #0). Finally, we recognize that there is
room for debate about the open-source vision for

software use. Further discussion and debate is certainly
welcome – this paper’s primary contribution is to
promote the view that there exists a paradigm of use
for open-source software and that usability research
can be directed by this paradigm.

A Design Approach to support the Open-
source Paradigm
We see a correlation between these use cases and the
challenges that we first introduced in this paper. The
use cases are solutions to the challenges. Traditionally,
these use cases have employed, as techniques:
software licenses, recommended coding practices, and
the public release of source code. In addition to these
solutions, we believe that these challenges can be met
by designing tools, usability specifications, and
features for the software artifacts themselves. In
short, we see a space for usability and design expertise
for meeting these particular challenges for OSS.

Related Work: Usability and Open-source
Software
So far, HCI scholars have been exploring how to inject
usability expertise into the open-source development
process [1,6]. They draw on the social and
organizational aspects of open-source projects to
explore how usability experts can participate in a
development process where programming is a pre-
requisite for participation and "code is currency". It is
important to note that this related research shares a
particular view of what such software is. They view
“open-source” as a method of software development
and as a type of software license. They do not
otherwise appear to regard the software artifact as
different than proprietary software. For example, their
focus on the difference between OpenOffice and

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4324

Microsoft Office would only be the process by which it
was developed or the software license it is copyrighted
under -- these elements aside, the two products could
be interchanged. Our contribution to this area is a
different approach. Our research question is to see how
to make open-source products learnable, improvable,
personalizable, and sharable – these are a different
kind of usability than typical for proprietary software.

Related field: End-user Programming
We would like to encourage researchers in End-user
Programming to consider the challenges and use-cases
above as motivators for future work. End-user
programmers are “people who write programs, but not
as their primary job function. Instead, they must write
programs in support of achieving their main goal, which
is something else, such as accounting, designing a web
page, doing office work, scientific research,
entertainment, etc. [5]” This characterization matches
our view of novice-programmers. There is a close fit
between our challenges and the solutions that the field
of end-user programming (EUP) is exploring. Major
concepts from the EUP field help us to look for ways to
make open-source software more learnable, shareable,
improvable, and customizable.

For example, Brad Myers [5] uses a difficulty vs.
program complexity and sophistication model to
illustrate the way that programmers encounter barriers
or walls that they must overcome in mastering a
programming language. He identifies the goal of End-
user Programming to be systems where learning occurs
on a “gentle slope” instead of large walls of difficulty
where complexity increases. We can use the same
concept of “difficulty walls” to identify opportunities to
make open-source software easier to study and to

customize. One example of this can be found in
Wordpress, an open-source web application for building
public blogs.

Mastering Wordpress
The Wordpress web application is widely adopted; there
exist over three million blogs that are built on this
software. Although these different pages are built over
the same Wordpress codebase, they are capable of a
wide variety of functionality: custom accounts,
calendars, visitor statistics, and more. Wordpress
succeeds in providing a flexible framework through
support for theme packages and plugin packages. This
is necessary to fit the diverse needs of its users.
Additionally, the amount of energy that is devoted to
plugin-development and theme-development generate
a community of contribution to the code-base that
appears healthy for the main branch of Wordpress
itself. Wordpress has a built-in interface for editing
theme files and plugins from a web-browser. An
administrator can use a web-browser to log into the
administrator layer of his Wordpress blog and access a
user-interface for changing themes, installing and
uninstalling plugins, and even editing the PHP source-
code for themes and plugins.

Following simple instructions, a user who is familiar
with some HTML can use Wordpress to administer a
blog. To leverage its powerful plug-in and theme
support, he will need both a better understanding of
Wordpress and more programming skills. Applying the
graph in Fig. 1 to this situation, we might find “walls” of
difficulty where our user needs to grasp the API, code
architecture, and coding styles to master Wordpress.

Figure 1. Difficulty vs. Program
complexity & Sophistication

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4325

A graph of these hurdles might look something like
Figure 2. Suppose a user wanted to tweak a Wordpress
template: change how a timestamp is formatted. This
user would need to learn the template tags, a
Wordpress construct for displaying dynamic information
such as a post title, its author, or its timestamp. This is
the first wall. If he wanted to do something more
complex, like reordering the presentation of a post to
show comments first, he would have to learn how
Wordpress displays posts via a construct named “The
Loop.” This is another hurdle. While this mapping is a
bit speculative (we haven’t interviewed programmers),
it demonstrates an analysis tool for recognizing
opportunities to make an open-source project easier to
study or to learn. End-user Programming offers
solutions to these walls, many of which suggest new
design directions for open-source software. The range
is vast, from external debugging tools (e.g. the Why-
line3 [3]), better programming environments, to new
programming languages. We appeal to EUP researchers
to situate their research within the open-source
contexts and use-cases that distinguish it as open-
source software.

Summary
We described challenges for open-source software
today: code reliability, customization, and novice-
programmer userbases. We extracted a philosophy of
software use from definitions of open-source software
to show that “open-source” means more than publicly
available source code. This philosophy is encapsulated
in use cases: users studying the code, improving it,
customizing it, and sharing it. These use cases are the
solutions to our challenges. Solutions exist in usability,

3 Incidentally, Why-line was tested on open-source projects.

external tools and the architecture of the software
itself. By addressing each use case in these respects,
we can help tackle the larger challenges.

Current and Next Steps
We are exploring more related fields and areas that will
promote the design and development of truly learnable,
improvable, customizable, and shareable software –
made easier. We have deployed an online survey to
open-source communities to better substantiate our
understanding of challenges to open-source projects.

References
[1] Bach, P. M., Kirschner, B., and Carroll, J. M.
Usability and free/libre/open source software SIG: HCI
expertise and design rationale. Ext. Abstracts CHI
2007, ACM Press (2007), 2097-2100.

[2] Fitzgerald, B. and Ågerfalk, P.J. The Mysteries of
Open Source Software: Black and White and Red All
Over? HICSS (2005).

[3] Ko, A. J. and Myers, B. A. Designing the whyline: a
debugging interface for asking questions about program
behavior. Proc. CHI 2004, ACM Press (2004), 151-158.

[4] Mockus, A., Fielding, R.T., and Herbsleb, J.D. A
case study of open source software development: the
Apache server. ICSE (2000), 263-272.

[5] Myers, B. A., Ko, A. J., and Burnett, M. M. Invited
research overview: end-user programming. In Ext.
Abstracts CHI 2006, ACM Press (2006), 75-80.

[6] Nichols, D.M. and Twidale, M. The Usability of Open
Source Software. First Monday 8,1 (2003).

[7] The Free Software Definition – GNU Project – Free
Software Foundation (FSF).
http://www.gnu.org/philosophy/free-sw.html.

[8] The Open Source Definition (Annotated) | Open
Source Initiative.
http://opensource.org/docs/definition.php.

Figure 2. Potential learning slopes
and walls for mastering Wordpress

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2 April 4-9, 2009 ~ Boston, MA, USA

4326

