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ABSTRACT:

For a variable structure system capable of operating in any of several
modes, suppose a 'switching rule' has been established for the transitioms.
Example: A thermostat is a bimodal system (furnace = ON/OFF) with a
switching rule based on the observed semsor value. We discuss the exist-
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ence of periodic solutioms.
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1. INTRODUCTION
My introduction to these questions came through a model by Glashoff and

Sprekels [3] of a thermostat. Their computational experience with this model
suggested that, for any initial state, one rapidly settled down to a periodic
regime, cycling between the two (on/off) modes. Direct experience with (physical)
thermostats also suggests such periodic behavior. For any physical thermostat
a periodic solution is necessarily nontrivial — a constant solution cannot
occur for either mode. Nevertheless, having shown the existence of periodic
solutions for the model of [ 3], we observed that this model did permit certain
(physically spurious) constant solutions. While it would also be of interest to
obtain theoretical confirmation of the entrainment in nontrivial (almost)
periodic behavior observed computationally for that model, this led to a search
for another model more consistent with actual thermostat behavior.

Another viewpoint came from a paper by Capuzzo-Dolcetta and Evans [2] on
optimal control by mode switching. Using a Hamilton-Jacobi-Bellman formulation,

this problem leads to a function
V(x,j) := optimal cost starting at x in mode j

and the obviously necessary condition that along an optimal solution one would
not stay in mode j if, for some k # j, one were to have V(x,k) < V(x,j) +
(cost of switching from mode j to mode k) nor would one switch if this

inequality were reversed.

These conditions led to the formulation of a switching system as a variable

structure (multimodal) system which permitsmode transitions subject to a suitable

switching rule, We will make this notion more precise in the next section and,

in particular, will discuss the structure of the solution set. The principle



observation is that to preserve the property that '"the limit of solutioms is
a solution' one must accept nonuniqueness of solutions for the initial value

problem. The remainder of the paper discusses some examples and the existence

of periodic solutions for such systems.
The author would like to acknowledge the value of discussions with K.
Glashoff, J. Sprekels, I. Capuzzo—Doicetta and S. Saperstone. In particular,

several lengthy conversations with Capuzzo-Dolcetta were critical in the

development of these ideas.

2. FORMULATION
Consider an indexed family of modes, which we take to be autonomous flows

on an underlying state space X. In general we think of such a mode as given

by a differential equation

(2.1) x = f, (%) jelJ

whose solution‘map is the flow

(2.2) ﬁj(t,g) = [x(t): =x() satisfies (2.1) with =x(0) = £]

for t >0, £ € X. The theory of dynamical systems generalizes (2.1) by

taking

(2.3) wj:nf'xx + X continuous, such that

m (t,TrJ. (s,£)) = Ty (t +s,8).

(Strictly speaking, this is a semi dynamical system as we consider only t > 0.

For brevity we write 'orbit' instead of 'semi-orbit', etc.)



By an (autonomous) switching system we mean an indexed family of such

flows {vj : j ¢ J}, each satisfying (2.3), together with a 'switching rule'

governing admissible transitions between modes. A solution then consists of
+

the pair of functions [x,j] on R with the interpretation that =x(t) € X

is the position at 'time' t and j(t) € J is the (current) mode. We require

that x(-) be continuous, j(+) be piecewise constant with transitions satis-

fying the switching rules and that
(2.4) x(t+s) = ﬂk(s,x(t)) provided j(-) =k on (t,t+s).
We will only consider switching rules of the following form:

(2.5) i. The index function j: Iﬁ'+-J is piecewise constant with isolated
transitions. Thus, at each t both j(t-) and j(t+) are defined;

we assume j(t) = j(t-).

ii. For each k £ J there may be a forbidden region (Rk such that

t >0, x(tr) gazk=a j(t) # k.

iii. For each j,k € J (k # j) there is an admissible switching set

sj,k such that

[t >0, j() =13, () =k=> x(t) ¢ Sj,k'

One may subsume (2.4ii) in (2.41iii) by taking Sk " to be the complement of
L]
Rk.
Some restrictions on the nature of the sets ﬂRj, Sj k} are necessary to
’
make the problem 'reasonable' — meaning, for the moment, only that every initial

state (£,k) € XxJ 1is 'possible'. We will assume that



(2.6) Each 'Sj is closed. Each Rk is open.

»k

(Note that this is consistent with taking & to be the complement of (Rk.)

k,k
We also assume that f\k _R—k is empty so every initial point can proceed in some
mode. We say T enters (Rj at £ ¢ 8Rj if there is some £ ¢ (Rj and some

T, € > 0 such that

ij(t,g) ¢sz for 0<t<T, ﬂj(T,g) =,

ﬂj(t,g)eﬁlj for T <t< T+ g

A~ —

and say T is tangential to (Rj at & e (RJ_ if there is some £ ¢ (Rj and

some T, € > 0 such that
(8 = & m(e,d) &, for 0<t < T+e.

(1f '"j is nowhere tangential to (RJ_ we call BRj transverse to -nj.)
Clearly, if £ € B(Rj is reachable along ’ITJ. and “j enters GZJ, at &,

then one can only continue by switching to another mode. Hence we require

(2.7) £ 8,

J,k=——$ £ t(Rk nor does m,  enter (Rk at g,

'nj enters Rj at £ ¢ B(Rj = £ g Uk#j sj,k'

In this paper we will actually consider only switching rules (2.5) for
which J 4is finite, (2.6) holds and (2.7) is replaced by the stronger condi-

tion

Thus, switching from the j-th mode can occur only at the boundary BRj of

the forbidden region, is always possible there, and is mandatory if one arrives



in the j-th mode at any & at which wj enters Rj'

Remark 1: Note that at any tangential point & £ 3R switching is optional:

3
one may continue from & either by “j or, in view of (2.7'), by “k for
some k # j. We shall see that the nonuniqueness of the solution is
unavoidable: see Example 1 in the next section.

+
‘!Tj;n: R XX > X;

: j,keJ] for n=1,2,..., we say the sequence (Zn) converges

Given a sequence of switching systems as above: Zn = [
. 5 8,
jsn’ “j,kin
to the system X, again as above, providing
(2.8) (i) ﬂj.n(t,g) -+ ﬁj(t,g) uniformly on bounded sets in Iﬁ'x)g

3
(ii) EE&.‘:%’ EeR,  for n > n(),
J Jsn
iii) for subsequences: € 8,
(ii1) qu (&, 3.k

m’ Em > E]’@ E € 8j,k.'

We wish to show that our assumptions give a certain degree of continuous depen-
dence (on the initial condition £ := x(0) and on the system) despite the

nonuniqueness noted in the Remark.

THEOREM 1: For n=1,2,.... let Zn be a switching system as above satis-
fying (2.6), (2.7') and let [xn(-), jn(')] be a solution so (2.4), (2.5)
hold. .Assume there is a uniform (at least on bounded t-intervals) separation

for transitions (jumps in jn)=

(2.9) There exists T(T) > 0 for each T > 0 such that

t<T, jn(t+) =k # jn(t) => j.n(s) =k for t< s < t+1(I).

Suppose En + ¥ in the sense of (2.8) and EO;n e xn(O) -+ go with Jn(O) =k

independent of n. Then, for a subsequence,



(2.10) xn(t) > ;(t) uniformly on bounded t-intervals,
jn(t) > B(t) (sense made precise below)
with [x(+), j()] a solution for f, starting at [Eo,k].

Proof: We will repeatedly (recursively) extract subsequences without
indicating the implied re-indexing explicitly, concluding with a Cantorial

diagonal construction. It is convenient to let ty.n = 0 and let
3

£ := time of v-th transition for j_(-) (L<v<y)
vin n - n

where v = ;; = o or, if there are oniy finitely many transitions so jn

is conétant from some point on, v-1 4is the number of transitions and

EU;n = o, (Note: We are assuming, above and in this theorem, that 'solution'
means a global §olution: defined for all t e'mf. It would also be possible

to consider situations in which solutions had a maximal interval of existence

[O,t*).) We also let jv'n be the v-th value of jn(o) so

b

j (t) =] for t <t<t 1<v .
Jn( ) J\);n v-1in — vin 1= vn)

We will similarly obtain {EV,EV} so that

~

-~ - M ~ < ~
j(t) 3y for tv—l t < tv 1l<wv

7
<
S

and define thé sense of jn > 3 in (2.10) as meaning
i - & .
t > t ., Jv;n dy for n n

for v=1,...,v so that

g(t) : for n>n

jn(t) ol

where v(t) nin{v: t < tv} for t not in the discrete set ft .



To extract the desired subsequence we proceed as follows:
Starting with the original sequence, let 31 be the common value of j (0)
n

and let t, be any limit point of {tl'n} — such a limit point, possibly o,
2

1
always exists — and extract a subsequence (if necessary) so tl'n > El' If
2
El = o we set V =1 and are done. Suppose El < ®3; we set
El'n = xn(tl;n) = T . (tl;n'go;n)'

J_sn
1

Since tl;n > tl’ EO;n - go we must have, using (2,81i), El;n -> El ;=

wj(tl,go), again with j = iy Since each tl;n is a transition for jn('),

one must have El'n 8, (=3, k= kn) and, since J is finite, there
b

j.ksn

must be some k € J occurring infinitely often in the sequence (kn). Extract-

ing a subsequence if necessary, we may thus assume gl'n € 8, with j = 3
bl

jsksn 1

and k independent of nj; let 32 be this common value of k.
With the same logic as above we proceed inductively. Suppose we have

(after several stages of extracting sequences).

. $ i 3 .
Since each tv;n is a transition for Jn( )} we must have Ev;n € 8j,k;n

with j = Ev and, as above, can assume a common index k which we take to

~

be j be any limit point (corresponding, of course, to the

VvHL® Letting t\)+1

subsequence already obtained) of tv+1'n we extract a further subsequence and
2

-~

assume tv+l;n - tv+l' If Ev+1 =o we set vV = v+l and are done. Other-

wise we consider

€,..)

= 7. t -t
) ( vl;n  v;n’°v;n

i= x ( .
Jyrpr®

g\)+1;n n t\)+l;n

and note that



= 7 (t

(2.11) - 41
Ju+1

Evtisn ” Bvn -tv’gy)

so the induction can proceed.

t ) > 1(T) whenever t < T so t > T

By (2.9) we have (t\)+1;n- vin Vin — vin =

if v > T/1(T) whence Ev_z T if v > T/t(T). Thus, either t. = for some
: v

Vv or EV + o, Setting v(t) :=min{v: t< Ev} (except that Vv (0) := 1;

note that v(-) 1is well defined on ]R+) we define

-~

(2.12) EICO T NP

T ).
j(t)

x(t) = (t'-tv(t)—l’gv(t)—l

~ o~

Clearly 5(-) satisfies (2.5i) and, using (2.11) inductively, x(tv) = Ev
for each w.

By the construction, if t ¢ {Ev} S0 Ev-l <t< Ev for some V we have

~

+ t and t >t

v-1 vip T Bt <t<t for large enough n
s

as
( t v-1;:n vin

v-1;n
and so jn(t) = jv;n = jv =: j(t) giving convergence jn -+ j in the sense

desired for (2.10). We already know from (2.11) that

~

xn(tv;n) = gv;n > i(Ev) = Ev'

We also know, using Ev_l = i(Ev_l) together with (2.3) in (2.12), that x
is continuous and satisfies (2.4). To show the convergence X, X with local
uniformity in t is slightly messy near the switching times. It is sufficient

to do this on intervals t < t < t Assuming V > 1 (The modification for

V=" = "W’

0<t<t, is simple.), we set j := jv’ k = 5v+l and for each t and

1
n=1,2,... let

& T &g T %, (tyo1,n)?
r, = rn(t) = mln{tv;n-tv-l;n’ t'-tv-l;n}’
s, = sn(t) = max{0, t-tv_l;n}»



and similarly define &, T = r(t), s = s(t). Clearly,

rn(t) + r(t), sn(t) + s(t) uniformly in t,
xn(t) = ﬂk;n(sn’nj;n(rn’gn))
x(t) = T (T, (,0)

for Ev,g t < EV+1. From (2.8i) and the known convergence En + £ it follows

that xn(t) + X(t) uniformly in t.

To complete the proof we need only verify that [i;i] satisfies (2.5ii)

and (2.5iii). The only switches for 5(-) occur at Ev (v=1,...,v-1) and

=3 . By constructi j = j
JV+1 y uction Jv;n j and

gv;n B xn(tv;n) € Sj,k;n' siaee Ev;n M3

t =13 d = 3(t +
we set j j, en k J(tv )
Jv+1;n = k for large n) so v?
this implies x(t O =E, € éj by (2.81{1). Thus (2.5iii) holds. To verify

2 b
(2.5ii) we suppose, to the contrary, that X(t) € &k with j(t) = k. If
t ¢ {tv} one has Jn(t) = k for large n. By (2.81i) one then has x(t) s(Rk;n
for large n. Since each [xn,jn] is a solution for Zn, (2.5ii) gives
xn(t) ttRk;n' As xn(t) + x(t) with xn(t) ¢ ak;n and x(t) € Rk;n’ there
must be points n € aRk;n with n, > x(t). (If X 4is a linear space one can
find nn on the straight segment joining xn(t) to =x(t); for X a manifold
this can be done in local coordinates for n large so xn(t) is close to
%(t). Rather than introduce an extraneous topological condition, we simply

' . s =

assume X has such a form.) By (2.7') this gives n, € sk,m;n (m = m but,

as earlier, finiteness of J permits us to extract a subsequence and take a

cormon m, independent of n) so applying (2.8ii) again,
x(t) = limn N, E‘sk,m'

P P> [} o : . . .
Since S%Gm.C:BRk by (2.7') and @k is open, this contradicts the assumption

that x(t) € &k' Hence (2.5ii) holds for [§,5] at t ¢ {Ev}' Since ‘ﬁk is



10

open, continuity of X at Ev ensures also that i(EV) d(?k o k o= E(Ev)
= Jv‘
Hence we have shown that the pair [x,j], constructed as the limit of a

~

subsequence, is a solution, starting at EO’ of the switching system . B

Remark 2: Note that if the original sequence converges as in (2.10) then no
extraction of subsequences is needed in the proof above. Thus, the argument

shows the continuity result:

The limit of solutions is a solution

whenever such a limit exists — as well as ensuring existence of such a limit
for a subsequence whenever xn(O) - EO and Zn + I, subject to (2,9). Veri-
fication of (2.9) is of a nature rather different from that of the other
hypotheses but we note, e.g., the argument for a lower bound on interswit;hing

intervals obtained from (3.8) in the proof of Theorem 2,

Remark 3: Observe that the finiteness of the index set J was not really used
in the proof above except to show that with £ €S8, with k =%k and
vin ~ j,ksn n

-~

gv;n - gv one can select a subsequence with a single k. For this it would
be sufficient to aésume only that for each j one has finiteness of Jj :=
{(kelJ :‘8j,k # ¢} (with each Jj independent of n in the theorem) or even
a local finiteness condition for neighborhoods of BRj.

The condition (2.7) was strengthened to (2.7') but (with an attendant

simplification of the proof!) this change is unnecessary if instead (2.8ii) is

strengthened to

(2.8i1") £ ¢ &j => [for some neighborhcod N of & one has N CCRj'n
b

for all n > n(N)].
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Finally, we remark again that instead of insisting on global solutions one
could permit solutions to have a (natural) interval of existence [O,t*)
shorter than ]§+. The considerations involved in treating intervals with t*
depending not only on the initial point but on the particular branch are of
some interest. If the individual modes “j always give global solutions this
could still occur (see Example 2 below) but then only in connection with the
possibility of finite limit points of switches. It is the set of technical
difficulties attendant on the possibility that the set of switching times not
be discrete — involving modification of the basic notion of 'solution' —

which we avoid here at the expense of having to verify (2.51i), (2.9).

3. SOME EXAMPLES (INCLUDING THERMOSTATS)AND EXISTENCE

A thermostat is a device, consisting of a sensor (thermometer) and a switch,
whose operation, slightly simplified, can be described as follows. One has a
pair of (possibly adjustable) set points: 61_< 62. Supposing the thermostat to
control a furnace, the switch would be OFF for'high thermometer readings 6 but
when 6 dropped below el it would become ON. Rising temperature would not
turn the switch OFF until 6 reached the higher level 62 while later falling
temperatures would turn the switch ON only when € had dropped as far as 91
again.

This 'dead zone' between 61 and 62 is introduced to avoid the undesirable
effects on the furnace (or air conditioner or fan or ...) of too frequent switch-
ing in the event of temperature oscillations crossing and re-crossing a single
switching point. These effects might correspond to the switching costs treated
in [ 2] — although physically they may relate to the interruption of start-up

transients, etc., and so would depend on the length of time since the previous

transition. Some devices have, instead of a 'dead zone' (61,62), a single set
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point § and a timer rendering the device insensitive for an interval =
following any transition; such devices are not modeled by the present treatment
although their mathematical formulation might be of future interest.

The operation of such a thermostat is modeled here by a switching system
with two modes: T and ﬂ2, corresponding to ON and OFF positions of the
switch., Without considering, at the moment, the nature of the state space X
or the dynamics described by Tys Ty (see Example 5, below), we view the

temperature 6 at the thermostat sensor as a functional on the state: 8(t) :=

6[x(t)]. Then

(3.1) &

1’2 {g : e[g] = 92}’ @1 : {E : e[g] > ez}’

$,1

{£: olg] =0}, ®, = {£: 8lE] <0},

corresponding to (2.5ii, iii), (2.6), (2.7'). DNote that verification of (2.5i)
(and even the existence of global solutions — compare Example 2, below)
depends on the particular dynamics Tys Toe

.For the remainder of this paper we restrict our attention to switching
systems with only 2 modes (J = {1,2}) as above and with switching rules (2.5)

satisfying (2.6), (2.7'). We present, next, two 'cautionary' sets of examples.

EXAMPLE 1: Consider, first, a thermostat as in (3.1) beginning at t = 0 with
a state [EO,I] so the furnace is initially ON (say 6[50] < 61 < 92).
Suppose B(t) := 6[nl(t,£o)] looks as in Figure 1, tangent to 6 = 92 at

t=t, so T, is tangential to lRl (in the sense of the definition given in

* 1

Section 2) at £, := ﬂl(t*,EO). The continuation along T is shown as giving

) crossing © = 62 at t,, so ™ enters <R1 at E** := ﬂl(t**,EO). The

moment of decision, then, is t =t, at x(t*) = E* : as we have formulated

the switching rule (2.5) one has the option of switching to , at t,
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Pa)

(giving 8 = 8[x(*)] continuing along ©,) or continuing with 7. and then,

1

necessarily, switching to Ty at t,, (giving 8= 8[x(+)] continuing along
B )
Could one (reasonably!) modify the switching rule so as to enforce a

particular choice at times such as ¢t ? Such an additional 'selection rule'

would, of course, make the orbit x(+) uniquely determined by its initial
value 50 = x(0). We see, however, that the continuity property of Remark 2
would be lost if this were done. Consider a perturbation of 62 to Gé =

62-8 (or equivalently, a perturbation of EO to 56 > EO). In such a case

8 would cross the set point eé at ti and one would unquestionably switch

to T continuing along 8'. As eé - 62 (equivalently, as 56 - EO) one

22
would have ti + t, and 8" » 6*. _The continuity property would require that
switching at t_ (i.e., at x(t*) = E*) must be permitted. On the other hand,
a perturbation of 62 to 6; = 62-+e (or equivalently, a perturbation of EO
to 58 < go) would mean that the function © would stay bounded away from the
set point eg near t, and unquestionably oné would wait until the crossing

at t!" to switch to m continuing along 8". Now as 6; - 62 (or 58 > 50)

1 2’

A A .
one has tI > t,, and 8" + 6,,. The continuity property would require that
it must be permitted to remain on L until t,, (i.e., not to switch at &,).

To preserve the continuity property we are forced to accept the nonuniqueness!

Remark 4: The thermostat model in [3 ] is quite different in that. switching
depends not only on © but on ® as well: the heavy line in Figure 2 (segments
A, B, C) is the boundary between the regions in the phase plane for which the
switch is ON (lower right) and OFF (upper left). (Actually the model in [ ]

introduces a function o(e,é) with values 0, 1 in the ON, OFF regionms,
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respectively and, convexifying, with o = [0,1], set-valued, on this boundary.
The advantage of this model mathematically is that the initial-value problem
is well-posed: x(t) is unique and continuously dependent on x(0).) The
switching behavior is here exactly as desired — except at the segment B !

The loop drawn in Figure 2 represents the same 8(+) as in Figure 1; by a
slight abuse of 'nmotation' it may also be taken to represent 6[x(t)] which
here has essentially the same shape. Note that in this model omne necessarily
switches OFF at t, = t, — but one then switches ON at t2 =t and again OFF

1 *

at t3 = tex ! Perturbing 62 no longer changes t1 much (one still crosses

B at Ct* if 92 is increased slightly and crosses C at a nearby point if

62 is decreased slightly.) so the subsequent evolution of the system is per-
turbed only slightly. Indeed, any transitions which can be eliminated or intro-
duced by a perturbation occur in pairs close together and so the perturbation
has little effect. The less satisfactory aspect of this model is that it does
not describe in any realistic sense the operation of actual thermostats: one
should not, in fact, have transitions on crossiné the segment B and the ON/OFF

state cannot really be determined in a historyless fashion as a function on the

phase plane.

EXAMPLE 2: Suppose each of the modeé Tys Ty is asymptotically stable with a
strong global attractbr. It is tempting to conjecture that any switching rule
will give a stable system, Figure 3 provides a counterexample in the plane:

As drawn, two flows each spiral in to the respective stable points but the solu-
tion of the switching system, represented by the zigzagging curve going off to
the upper right, is here unbounded. While not entirely clear on a finite
diagram, this example can obviously be such that gzg;z_orbif of the switching

system remaining between the lines 31 2 and 82 1 (possibly after an initial
bl s
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arc — say, starting in Rz along LY until it hits '81’2) and if the speeds
along mys W, are taken to increase suitably as one goes 'out', zigzags to «
at the upper right in finite time. In the sense of our definition, requiring
‘global solutions, this switching system would have no solutions at all! Note

that a diagram much like this can still be obtained with linear modes

3.2 t X = A,x+u, = 1,2
(3.2) " X 5 u, (3 )

in ]Rz, although in that case one would not obtain blowup in finite time (and
the diagram also changes in that one would have unbounded selutions both going

to the upper right and to the lower left as well as a periodic solution}.

EXAMPLE 3: To see the variety of possible 'behaviors' on BRj consider Figure
4. The points gl in (a), (b) give m entering CRl. The points 52 in (b)
and gl in (e) are tangential points. The point 53 in (b), 51 in (c), and

the points of the interval (51,52] in (e) do mnot count as tangential points

for 'rrl — and have not been classified at all — since one cannot be there

in the mode M- Foxr (d), my

are tangential. For (e) one has Ty entering le at points of (52,53]

enters (Rl at Ez but the points of [El,Ez)

although these can be reached along ™ only if one were to start in the region
bounded by [g1,52,£3,gl]; similarly, points of (gl,gzj are tangential in (c).
EXAMPLE 4: (The 'linear' case) Consider a switching system with

(3.3) 'nj: X = Ax+uj (G=1,2)

on a (finite-or infinite-dimensional) Banach space X. We have u,s u2 e X

and assume
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(3.4) (i) A generates a C0 semigroup S on X with

i) |Isw < Mt (&> 0).

We take the switching rule (2.5) to be given by (3.1) with 0 # 6 ¢ x* so

921, 022 are disjoint open half spaces bounded by the parallel hyperplanes

!81’2 = aozl’ 82’1 = Mzz'

THEOREM 2: Let I be a 'linear' switching system as above (i.e., (2.4),
(2.5), (3.1) with 0 # 6 ¢ X*, and (3.3) with (3.4)). Then there are global
solutions for all initial states [£,k], each equicontinuous (over =x(*) for
all solutions with the same initial £) uniformly on bounded t-intervals. If
w< 0 in (3.4ii) then for each £ € X the set of orbits starting at & is
bounded and equicontinuous uniformly on ]R+. Further, there is then a bounded
invariant set (8 such that every solution for I eventually enters and then

stays in (8.

Proof: We begin with the observation that (3.3) gives

(3.5) ‘ x = Ax+u x(0) = &

j(e)?

so, from semigroup theory, (cf., e.g., [4]), one has the representation

t
(3.6) x(t) = S(t)E + [0 S(t-s)u:j (s) ds
t t
= xo(t) + Jo Ol(s)[S(t-s)ul] ds + JO Oz(s)[S(t-s)uz] ds

where xo(t) = 'no(t;g) := §(t)¢{ is the solution of

xo(O) = g
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and ol(s) = 2-3(s), o'z(s) = j(s) -1. Note that TTO satisfies (2.3) and
that each o. is {0,1}-valued and piecewise constant. It follows from (3.6)

that for 0_5t<?_<_T one has

— t —
3.7) Hx(t) —x(t)“ < on(t) —xo(t)” + Jt HS(t-s) uj(s)” ds

A

nxo(’t‘) - %, (t) | + MT(?— t)

A

vhere M, :i= M max{1,e"T} ma.x{”ul]I,Huzl[}, using (3.411). Since x, is
continuous in t, hence uniformly continuous on [0,T], this shows equiconti-
nuity, uniform on [0,T], for the set of all possible solutions of (3.5) using
'arbitrary' MO

We now wish to show that we can take j(+) to satisfy (2.5) — in particu-
lar, (2.5i). Suppose at any time t > 0 one were to have the state [x(t)=: El,l]
with ¢ éﬁl so 6[51] = @1 < 62. By continuity there is an interval [t,t+h)
on which =x(*) stays out of ilz either one never gets to (-R'l or there is a
'next time' t for which x(t) € 821 and one (possibly) switches to oo

Then x(t) = 5_,2 € 3421 gives 6[62] = 62 so, clearly,

(3.8) 0 < 8,-8 = olg,]-elg] < |lell llg,-¢,ll,
e, g 1l = llx® -x@] < lIx & -x ) + M;(?-t)-

Thus one obtains a lower M on (t-t) in terms of (62-61) and a bound
on t, using the uniform continuity of X, omn bounded t-intervals. A
similar argument holds if the state considered is [x(t) =: £1,2] with El E@-Z.
In particular, one obtains a lower bound on interswitching intervals (1engths.

of intervals of constancy for j(+)) within any [O,T].
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An explicit construction of the solution [x,j] proceeds as follows:

(i) If =, enters <Rk at &, =x(t,) or if t, =0 with x(0) e(Rk,

k
then switch j (from k to k' :=3-k if j is {1,2}-valued). If

7, 1s tangential at £,, choose: either continue with j(:) = k or

k
switch j to k'; if wk(s,t’,*)ﬂ"e B(Rk for 0< s< s then a transition
(from j(+) =k to k') can be chosen at any time t,<tx< t*+—s_ — or

not at all (then) if T leaves (Rk at t*+—s~.

(ii) Proceed with j(:) = k = constant ('new' value of k) until one hits BRk
at t =t, (new value of t,; if this never occurs one keeps j(:) = k

on the 'rest' of ]R+). Go back to step (i).

The preceding paragraph ensures that the resulting transitién times are
isolated as required by (2.5i) while the estimate (3.7) with t = 0 shows one
cannot have blowup in finite time since Xq is well-behaved. Thus solutions
exist. (It is not difficult to see that all possible solutions are obtainable
by the procedure above, making appropriate choices at step (ii) when/if one
encounters tangential points.)

Now suppose w < 0 in (3.4ii) so Tgs Mys T, axe asymptotically stable.
As ||x (0] < Mewt||glﬁ+0 one has continuity of x, uniformly on R and,
noting that MT is now independent of T, (3.7) gives equicontinuity of x

uniférmly on ]R+. From (3.6)
(3.9) Ixe)|| < me®f|jg]] + X

with M := Mmax{”ul”,“uzll} /Iw] so for all initial £ € X and all j(-) —

satisfying (2.5) or not, i.e., for all solutions of (3.5) — one has

x(t) ECBO :=  [ball of radius(ﬁ+ 1)] for large enough t.
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As @0 need not itself be invariant, we consider

B := {x(t) given by (3.6): t> 0, j as in (2.51), ¢ ECBO}.

Note that (8 is bounded by (3.9) with |[£]|< M+1 and is clearly a strong

attractor as $OC B. Any Eec® has, by definition, the form

t ~ A
£ = s<’£)g0+j s(t -s)u ds (G on [0,t], E,eBy.
0

~

J(s)

Thus, for any solution [x,j] starting at 2 one has

t

x(t) S(t-—s)uj(s) ds

S()E + j
0
R t . t+t R
[S(t-!-t)go + J S(t+t=-s)u, ds] + J S(t+t=-s)u ~ ds
0 j(s) t j(s-t)

which is again in (B. Thus B is invariant under I in the sense that all

orbits starting at & € B8 stay in B. W

THEOREM 3: Under the hypotheses of Theorem 2 with w < 0 in (3.4ii), there
is a compact set KE — depending continuously on the initial & € X — such
that all orbits starting at £ remain in Kg. If, in addition, the operator

A is such that

(3.44i1) S(e) is compact for some € > 0, hence for all t 2> ¢,
then there is a compact convex invariant set (B.

(Compare this result with the situation given in Example 2 using (3.2) in

X = ]R2. The only difference in the hypotheses is the requirement here that

Al = A2 = A, leading to the representation (3.6).)



20

Proof of Theorem 3: We begin by adapting a compactness argument from [ 5].

As X, is continuous with xo(t) + 0 one has

’l\(g = 0 U [range of S(-)&]

compact. Now, for ue X (e.g., for  u = u, or u2) let

t
Moo= M@u) := {J o(s)S(t-s)uds: t> 0, o: [0,T] > {0,1} measurable}.
0

It is convenient to re-write

t o A
(3.10) J o(s)[S(t -s)u] ds = J 0(s)S(s) de™¥®
v 0 ‘ 0

where ® := —w/2 > 0 and

(3.11) S(s) := €“%s(s)ufw,

o(s) := {o(t-8) on [0,T], O for s > t}.

Since |]§(s)!|_5 M||ul] e ¥ /4y » 0, we have (as for RE above) that
Kl := [closed convex hull of the range of %] is compact in X. Since 8 is

{0,1}-valued and 0 ¢ M, the integrand on the right hand side of (3.10) is

always in ﬁl; since de “° gives total measure 1 to [0,®), this is an
(integral) convex combination in M and so gives values in M. Thus M@u) <
M= M(u) = compact. We then have compactness in X of K,é := RE + x{(ul) + ;{(uz)
which, by (3.6), contains all orbits starting at £. It is clear that /kg

depends continuously on £ — say, in the sense of Hausdorf metric — uniformly on

bounded sets whence K_ is also continuously dependent on £. (Somewhat more

€
generally, it follows from this that for compact 7 €X one again has Kﬁ 1=
u {KE: £ ¢%} compact in X with & Elj continuous in Hausdorf metric.)

Now add the hypothesis (3.4iii). Starting with 030 as in the proof of

Theorem 2, define



co = {s(£)¢: t2>0, EECBO},

¢ := [closed convex hull of S(E)GO].

Note that CO is bounded so S(s)@0 is precompact and C is compact. Note
that Co and so S(e)CO is invariant under S(t) for every t > 0 so its

convex hull is also invariant under S(t) and so is C. Now let
B := C+ M(ul) + M(uz).

Clearly (B is convex and every orbit enters (Bo < CO C € C@B; we need only
show invariance. Since (3.12) gives S(t)%(s) = e—mtg(t+s), one has

s(t)I ¢ e M for T e M. Thus, with Ie M and I given by (3.10), ome
has

__~ t — - -
[S(E)I+1] € [e M + (f de S = M.
0

Much as in Theorem 2, we now note that for [x,j] starting at E € B one has

£ =f+1,+I, with £€C and I

e M. =M , £ 3.6),
1 9 3 (u,) so, from (3.6)

3 3

S(t)t + Il + 12

x(t)
with ij as in (3.10) with u = uj

= S(t)E + [su:)11+il] + [s(t)12+32]

e C+ Ml +M = B

which proves the invariance of B. M
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4, MORE EXAMPLES
EXAMPLE 5: We consider a mildly realistic heat control problem involving a
thermostat. In Figure 5, the sketch (a) gives a floor plan of a room while
(b) shows the 'rear' wall. The heat loss is through the window glass (W in
(b)). The radiator (R in (b)) is controlled by the thermostat mounted as

indicated by P, in (a).

We treat this as a boundary control problem. Thus, we have the heat

equation
, 3
(4.1) % = Ax in QCcR
with boundary conditions
(4.2) on W: -3x/0n = ax (radiative heat loss),
on R: x = 53 for j = 1,2, (heating if j = 1),
on T: -3x/on = 0 (insulation)

(T := 3 N[WUR]). The choice of j(t) din (3.13R) is to be governed by the
thermostat — as in (3.1) with the thermometer reading as ©0: for a tempera-

ture distribution E(*) on Q we let

(4.3) BlE] := E(®).
The condition 'furnace ON' = 'radiator hot' is the mode x| = Ei while
’ R
x| =6, corresponds to 'radiator cold'; thus, 61 > 6,. On the other hand, the
R 2

set points 61 < 62 are, as in (3.1), the thresholds for ‘turn ON', 'turn OFF',
Let El be the steady state solution if one were in the l-st (ON) state and Ez

the steady state for OFF: thus
(4.4) —AEj =0 on £, (3.13) holds for gj with Ej used.

We obviously have El > Ez on 9 (by the strong maximum principle for (3.15)).

For a reasonable situation we must suppose

’
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olg,] = &) > 8, > 8 > E£,(R) =: B[E].

To complete the mathematical description of the model we must specify
the space X. For the present problem, the smoothing properties of (4.1) are
such that this specification — so long as it does not impose regularity incon=-
sistent with consideration of nontrivial solutions satisfying (4.2) —
primarily specifies the sense of our notions of convergence. We will choose
to take X = LZ(Q) and to interpret (%4.1), (4.2) in the sense of semigroup

theory. Thus, we consider A: DcC X + X given by

(4.5) AE = AL e X for £ e D,

D = {EeB@: E +oB)| =0, § =0, g] =0}
W R

This is closed, densely defined, negative definite, self adjoint and so is the
infinitesimal generator of an analytic semigroup .S(+) of compact operators.

The situation is much as in Example 4 (We have (3.4i,ii,iii) with w < 0.)
with two technical differences: (a) 6[°] is'not continuous on X and (b)
the control, i.e., the distinction between the ON/OFF modes Tys TMos does not
appear in the equation but enters the dynamics through the boundary conditions
— a possibility not envisioned in the abstract formulation of Example 4.

The difficulty (a) is only a minor annoyance. Since S(+) is an analytic
semigroup one has S(t)§ ¢ P(A™) for arbitrary n so 6 should cause no
problem. More cogently, the nature of (4.2T') permits one to treat P, as if
it were an interior point (say for an enlarged Q with everything reflected as
even across that 'front' wall containing P*) and interior regularity for (4.1)

makes x(t) spatially analytic near P, for t > 0 and ¢ in t. The
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sensor value is undefined at t = 0, which causes no problems, or one could
modify X slightly to require continuity near P, initially without otherwise
affecting the dynamics for t > 0.

The consideration of (b) requires a modification of the representation (3.6)

following Balakrishman [1] and Washburn [6]. Let e be the solution of the elliptic

problem

(3.18) Ae = 03 (e +e) =0, el =1, e =0
» W R Vip

and let

(3 19) S(t) = (=A%) [-a)1 %]

with 1 > a > 3/4, noting that e € H°(Q) for s < 1/2 and, by [ 1, this

s/2

gives e £ D((-A) ). Note that

t

(3.20) Ise)|| < mt™%® for t >0

with ® < 0. Then the solution of (4.1) and (4.2) is given by

t -
4.7) x{(t) = S(t) x(0) + Jo ej(s) S(t-s) ds
— — t -~
= xo(t) + (el-ez)J o(t -s)S(s) ds
0
where xo(t) 3= gz + S(t)x(0) is the solution of (4.1), (4.2) with x| = 52

R
using the given initial data and 0o(s) := 2-j(s); this replaces (3.6).

We wish to show that: (i) 6[x(*)] 1is equicontinuous (over functions
x(+) given by (4.7) with £ := x(0) fixed in X and 0(*) ranging over
the set C of measurable {0,1}-valued functions) uniformly on ]R+ as in
Theorem 2 and that (ii) the set

t .
M, = {1 := J[ o(t-s)S(s) ds: o e C}
0
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is precompact so the existence of a compact, invariant, global attractor for
the switching system can be proved as in Theorem 3. It happens that (i) need
not hold quite as in Theorem 2: for arbitrary & € X = LZ(Q) one could have
8[x(+)] oscillating rapidly as t = O+, since 06 is not continuous on X, so
that 0 could be necessarily a limit of transition times, violating (2.5i).
This could be avoided by modifying Ky by assuming the initial & is continu-
ous near P, or by showing uniformity on [e,») for arbitrary € >0 so a
system which has been in operation for even a brief interval thereafter behaves
properly; we adopt this last approach.

Consider separately the terms &2, S(*)€ =: x,, and the integral giving

t ~
xo(t) 1= IO o(t -s)S(s) ds
(Note that (4.6) ensures convergencé of this integral.) which sum to x(-).
The trick of even reflection across the wall on which the thermostat is mounted
shows that P, may be treated as an interior point. Interior regularity shows
6[52] is well-defined. The function X satisfies
x =M, xG(O) = 0, (3.13) with x . = og(-).

One can treat O, x, as existing on all of R, vanishing for t < 0, so
interior regularity shows e[xo(')] := x0(~.P*) is not just continuous but is
in CmOR). In particular, for o(s) :={1 on IR%; 0 for s < 0} one has
this so & := 6[38]° is again in CmGR). One easily sees that ¢ is the

impulse response function for the input/output map: o I— S[Xc] so that

(4.8) Bccc) = Blx_(£)] = [o%¢](t)

t t
1= J o(t-s)®(s) ds = J o(s)®(t -s) ds,
0 0

"~

)iy _ (k)
Bc (t) = IO g(s)o'™ (¢t -g) ds for k = 0,1,... .
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The exponential decay of S(+) as t + o gives Q(k)(t) = O(Jnt) for each

k and the maximum principle gives ¢ > 0O:

A

(4.9) @ [Je® @] < met  for t20, k=0,1,...,

(ii) gék)(t) = O(ewt) uniformly in o ¢ C,

and, of course, (4.9ii) for k = 1 gives equicontinuity (over o ¢ C) for
@ uniformly on Ifk. Finally, the function S(*)£ 1s continuous on [g,»)
to D((-A)k) for every £ € X, every € > 0, and each k so 6[S(t)f] is
continuous (indeed dw) on [e,») and is O(ewt) so uniformly continuous on
each [g,») — with continuity at 0 for, e.g., & continuous near P,. We
have just shown that the argument employed in the proof of Theorem 2 can also
be used here to show that the transition times determined by (2.5ii,iii) with
(3.1) are isolated except possibly at t = 0+. For initial data £ continuous
near P, — so [S(t)E](P,) is continuuous in t at O+ — or for any initial
data with a slight relaxation of (2.5i) at start-up, we have shown that solu-
tions of the switching system exist as in Theorem 2. A maximum principle
argument shows that the.bounded set {£ e X: 52_5 £ < El pointwise a.e. on 0}
is globally attractive and invariant. Alternatively, the existence of a
bounded invariant global attractor follows from (3.4ii) much as in Theorem 2.
To show the existence of a compact invariant global attractor one need

only show precompactness of

> 0}

M0 1= {xc(t) : 0 e'C, t

and proceed as in the proof of Theorem 3. Adapting an argument of [ ], we

note that
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é - t A
(4.10) x (t) = J o(t-s8)S(s) ds + J o(t -s)S(s) ds
g 0 8
8 - t=6 ~
= I o(t-8)S(s) ds + s(6) J o(t-86-s)S(s) ds
0 0

£ Bs + S(G)M0

where Be is the ball of radius € (with € +0 as & -+ 0 by (4.6)).
Clearly MO is bounded by (3.4ii) so S((S)M0 is precompact and so totally
bounded. Thus, using a finite number of centers one can cover S(6)MO

by e-balls and, by (4.8), each xG € Mo is in one of the corresponding
2¢-balls. As ¢ > 0 is arbitrary, this shows MO is itself totally bounded
and so precompact.

Thus, although the present example involves some technical difficulties
associated with point observation and boundary control so Theorems 2.3 cannot
be applied directly, nevertheless the discussion above shows that the arguments
for those theorems, with some minor modifications, can still be used to obtain

the same results.

THEOREM 4: Let I be the switching system defined by (2.5), (3.1), (4.1),
(4.2) with underlying space X := {€ e LZ(Q) : £ continuous near P,}. Then

all the conclusions of Theorems 2.3 are valid here. W

One could, of course, consider other variants.of this example. E.g., one
could use (4.2) for j =1 but include R in T (i.e., impose: X, . = Q)
for j = 2. Since one now has different semigroups for the two modes, it is
not immediately clear that this might not resemble (3.2) more than Example 4.

It turns out, however, that (with still more modification which we do not pre-

sent here) one can show that the same results can still be obtained.
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EXAMPLE 6: We consider the state space

X := {piecewise constant, {0,1}-valued functions on IR+}
and two flows defined for j = 1,2 and £ € X by

Ig(sﬂ- t) for s>t
(4.11) [m,(t,8)]1(s) :=
J Lj—l for 0<s<t,.
Assume one has given a function ©o: If+-+]R such that
<0

(6.12) (i) ¢(0) = 0, J ¢(s) ds = 1,
0

(i1) sup{|®(s)] : s > t} < 3(t) for t > 0 with ) nonincreasing

(o]
and integrable: I d =: M< o,
0

(iii) |e(t) -o(s)| < K(t-s)d(s) for t > s> 0; typically one

might consider d(t) := ce Ot

Given switching values Gj (0 < 61 < 92 < 1) we define the switching rules by
(3.1) using the observed functional (sensor)

o0
(4.13) ’ glE] := I d(s)E(s) ds.

0

Note that we can topologize X as a subset of the linear space
~ + A
X := {f measurable on R : I |E]d =: ||g]] < = }

and 6, 'Hj extend continuously to }E, RYxX. It is worth noting that (4,12iii)
implies differentiability a.e. of ¢ (with '] < K{IS) and that the observed
sensor value 6(1;) := B[E(t;*)] for any solution £&(*) must be continuously

differentiable with
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(4.14) 8 (t) = [ &'(s)E(t;s) ds.
0

Much as with (3.8) one gets a lower bound on the interswitching intervals:

if, for example, one switches from Ty to Ty at time t1 and then, proceeding

next switches back to =« at time t then

along 7 1 23

2’

(4.15) ]

1
@
|

e[E(tz) —g(tl)]

roo

= ¢(s)£(t2;S) ds - J ®(S)£(t1;8) ds
0 0

tymty o
= d(s) ds + I O(s)E(t.; s-[t -t ]) d
‘0 t, -t R
2 1
- J Q(s)i(tl;s) ds
0
th o
< f Itb(s)| ds + j |<1>(s+t2-t1) -<I>(s)| ds
0 _ 0
< (ty-t)dmax{|e]} +MK] = C(t,-t))

so (tz-tl) > (62-61)/0; the same estimate holds for interswitching

intervals along T For an upper bound on the interswitching interval, we

l-

note that if, e.g., one proceeds along m, following a switch at time tl’

then

[+

o(s) ds + J @(s)g(tl; s—t2+t1) ds

ty7ty

2t
ol = |

= 1 - J d(s)[1 —E(tl;s—t2+tl)] ds

B8y
o0

In

1 - J s(s) ds » 1 as (tz-t:l)-H:o
Bty
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so for t2-—t1 is bounded by T such that

ml\
J d(s) ds < 1 - 62.
T

A similar estimate holds for intervals along nl. This proves that (2.5i) holds
(for arbitrary initial [£,k]) with positive lower and upper bounds for the
lengths of the interswitching intervals. Hence, global solutions (i.e., solu-

; + . i .
tions on R ) exist for every initial [£,k]. Observe that if we introduce the

subset
XO = {£(*) € X: one has the obtained bounds for the intervals of constancy},
then X0 is invariant under the switching system and so could be taken to be

the underlying state space.

THEOREM 5: Let EQ be the switching system with state space Xx{1,2} defined
by (2.5), (3.1), (4.11), (4.13) in terms of a function ¢ satisfying (4.12).

, + ' | A
' Then global (on R ) solutions exist for each initial [£,k] € Xx{1,2}. There

is a compact invariant set (B which is a global weak attractor: for each

neighborhood N> @B, every solution eventually enters and stays in N.

Proof: The first part of the theorem has already been shown for the underlying
state space X. For any initial Eo £ X we observe that the same method of
estimation (4.15) gives a lower bound, except that one now uses

JO [0(s+t,-t)) ~B(s)]E(E,8) ds < MK(t,-t;) Il£<tl>1|§

which makes the constant C dependent on ”E(tl)ll. Since, in any case,
E(t;+) is {0,1}-valued on [0,t) one has

t oo
ey = J E(t;s)d(s) ds + J lgo(s)|¢(s-+t) ds.
0 t
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The first term is no greater than M and, using the Dominated Convergence
Theorem and (4.12ii), the second term goes to 0 as t =+ ». This shows that
for any initial go € X one has [£E(*),3()] satisfying (2.5i) with

asymptotically lower and upper bounds on the lengths of the interswitching

intervals approaching those obtained\for 50 € X. It is also not too difficult
to verify (4.14) for solutions starting at any & € i.

From the above it follows that for any T one has E(t;*) {0,1}-valued
on [0,t), having norm less than M+1 for sufficiently large t, coinciding
. on [0,t] with an element of X0 (i.e., satisfying the lower and upper bounds
for intervals of constancy used to define XO ~ provided XO is defined with
these specified a bit lower/higher than the best possible bounds obtainable for
solutions starting in X). |

Since the tail (restriction to (t,»)) contributes arbitrarily little to the
norm for large emough T, this shows that: For any solution (starting at an
arbitrary go € i) and any € > 0, there is a. t, depending only on ||£OH and
¢ such that ]|g(t)-x0“ <e for t>t,. Thus XO is a global weak attractor.

Let En € XO with gn > £ in %. Let jl o be the constant value of En(-)
L

on its first interval of constancy [O,t1 n) for n=1,... . Clearly the
H]
{j1 n} are all the same — say, 1 — from some n on and each En(') is then
L

) bounded below. Then L1 convergence

0 on ) with (t2

[tl,n’tz,n n'-tl,n
ensures tl,n > t1 for some t1 with £(+) =1 omn [O,tl) a.e. and t1
within the lower/upper bounds. One then, similarly has (t -t, )+ (t,-t,)
2,n 1l,n 2 1
with £() =0 on (tl’tz) a.e. and (tz-tl) within the lower/upper bounds.
Induction then shows & € XO whence X0 is closed in X and so complete.

Next, given € > 0 choose T = T(e) large enough that j ® < /2 on (1,®)

and let N = N(¢) be T divided by the lower bound used for XO for constancy
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intervals so N 1is an upper bound on the number of switches on [0,7].

Partition [0,T] by O0: TO < Tl ees < TI = T so that J ® < €/2N on each

subinterval (Ti,r ). Letting C be the set of gt functions in X which

i+l

are 0 or 1 on each interval (Ti’Ti+1) and vanish on (T,*), we see that
every £ € X0 is within € in X-norm from some one of these centers. Hence

Xo is totally bounded and so compact.- Thus, since Xo is (as noted) invariant.

we may take B = XO.

closed convex hull of XO in %. |

Alternatively, one can also have B convex by taking the

Remark 5: This example is related to the input/output relation (4.8) noted for
Example 5 and applying also to Example 4. For each of those 'linear' cases, if

one views the system as having had an infinite past history with

E(t;s) := o(t-s8) = j(t-s) -1 for s e R

for t €R, them (t;*) € X and (4.8) gives, for the sensor output (shifted

by the lower steady state value):

t
Be) = [ d(s)o(t-s) ds = B[E(t;")]

with & the impulse response function determined by the underlying linear
dynamics (omitting uj) and the sensor functional. Typically — in Examples
4.5 in particular — this & will satisfy (4.12). (For Example 5 one sees
easily, by the Maximum Principle, that 2 > 0 on (0,) and, less easily,
that ®' > 0 on some interval (0,t,) with &' < 0 on (t,,”); regularity
gives @ analytic and exponentially decaying on (0,») and ¢ at 0 when

extended as 0 on R .)

Consider, finally, a situation in which each ‘Rj is a global attractor

(not necessarily invariant) with compact boundary BRj. While the arguments
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and result would be essentially the same for any (finite) J, we discuss only

the bimodal case J = {1,2}.

THEOREM 6: Let I be a switching system defined by a pair of flows Tys T,

on X and 'forbidden regions' le Rz with compact boundaries &Rl = 81 5 and
3

aRz = 32’1. (Necessarily we must assume Rl,lﬁé are disjoint.) We suppose all
orbits for m eventually enter (and so eventually stay in) the open set Rl
2 Rz. Then solutions exist for all initial states;
trajectories satisfying (2.4), (2.5ii,iii) necessarily also satisfy (2.5i).

and similarly for T
Every solution switches infinitely often between LY and T, with uniform
lower and upper bounds on the interswitching intervals. There is a compact
invariant attractive set.

Proof: For any £ ¢ @5 define

(4.9) Tj(g) := inf{t: ﬂj(t.‘é) € atRj} = sup{t: nj(t,a) ef@j},

¥j(g) inf{t : 7 (t,E) € azj}

noting that t.(f) # 0 by the continuity of nj(-,g) and that nj(t,g) € Rj

3

for large enough t (as Rj was assumed attractive for ﬂj) so ?5(5) < o,

for every £ ¢ @3 — with Tj(g) = ;5(5) if and only if s enters Rj at
nj(rj(g),g). The continuity of ﬂj(',') gives lower semicontinuity of T and

upper semicontinuity of ;5 since Rj is open. Hence by the compactness of
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Rys Ry»

T, o= min{Tl(E) : Ee 8«22}, = min{Tz(E) : e Rl

N
e

™ = max{?i(i): > GRZ}, ™

1 5 max{?z(&;) : E € aazl},

are well-defined so min{T;,T;} gives a lower bound for interswitching
intervals while max{?*,?;} gives an upper bound. Existence of solutions for
all initial states is then immediate since local existence is ensured a priori
and no solution can blow up in finite time (or fail to switch infinitely often)
since each ﬂj gives an orbit eventually entering Rj'
Next, we introduce K := Kl U K2 where

~
W

{m (e,8): 02¢t< T,6), Ee R},

K, {my(t,8): 02t <T,(8), €& R},

Note that K is invariant and attractive since, for any initial point, we

must eventually hit, say, aRl and switch to Wz — remaining in K2<: K

until switching to Wl at a point of 3R2 and then proceeding along “l’
remaining in Kl(: K until again switching, etc. To see that Kl is compact,
suppose En e K, so En = ﬂl(tn-lgn) with £ e dR, and 0<t < ?i(gn)-
There is then a subsequence for which gn > E@:BRZ (by the compactness of HRZ)
and also tn<+'E' (by the compactness of [0,;}?] y. By the continuity of ﬂl
and upper semicontinuity of ;i we have (for the subsequence)

En = nl(tn,gn) - nl(?,g) =3 E with 0 < ;_5 —l(E) so also 'é € Kl' Similarly

K2 is compact and so K is. W
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5. PERIODICITY

As noted in the Introduction, it was computational experience with the model
of [ 3] which suggested seeking periodic solutions of switching systems. At
present, the only positive result for existence of periodic solutions (Theorem 7
below) is for a class of switching systems with no tangential points. If a more
general positive result could be obfained, one would expect it for systems as in
Theorem 5 with, say, @%3 @é disjoint balls. We construct a counterexample,
however, with no periodic solutions (Example 7).

The simplest possible case of periodicity would be a periodic solution of
minimal type: starting, say, from some El £ &Rl one proceeds along 7, until

2

hitting aRZ at 52 whereupon one proceeds along m, until hitting HRl

1

again at €1 and repeats. In certain situations such solutions must exist.

THEOREM 7: Let I be a (bimodal) switching system with &1, 6-2.2 compact and
convex or else let I be as in Theorem 3 with compact S(t). Suppose all orbits

R.. Then if

of ., eventually enter and stay in 021 and similarly for LPYR O

1

BRl and aR2 are each transverse to the respective flows, one has existence

of at least one periodic solution of minimal type.

Proof: 1In either of the cases considered we start with a compact, convex
'initial set' KO and define a map T: KO > K0 with a fixed point 50 £ HRZIN KO
determining a periodic solution of minimal type as above. For the first case we

simply take KO = RZ

B 1is the compact convex invariant attractive set whose existence is ensured by

while for the 'linear' case we take KO s= GBf\aRz) where

Theorem 3. Now, for go € KO define T(go) as follows: starting along LY

from go, proceed until hitting BRl at El and then return along T, until
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hitting BRZ at gz =3 T(go). Because there are no tangential points it is
not hard to show, from the continuity on ]R+x52 of Ty and Tys that the map
T is continuous. In the first case one clearly has T(go) € RRZ C'KO while
in the second one has T(go) £ KO by the invariance of (B. The Schauder Fixed
Point Theorem ensures existence of a fixed point EO e K., of T and it is

0

clear that this EO defines a periodic solution for I. N

Corollary: Let X be an asymptotically stable 'linear' switching system as in

Theorem 3 with X =2R2. Then there is at least one periodic solution.

Proof: Trivially, the only interesting case is that in which the steady state
solutions g = —Aflu, g, = -A—lu2 are in the forbidden regions (Rl, Rz;

thus, from (3.1),
<e,gl> > 62, <9,52> < el.

To apply the theorem, one need only show there are no tangential points in this

case.

Suppose, to the contrary, one had a tangential point £ € BRI for nl.

Then for a solution of x = Ax + uy passing through & we must have, at £,

<6,8> = 8 <g,x> = 0, <8,%> < 0.

2’
Using the equation and éetting zZ =X - 51, r :=§ - gl, this gives

(4.10) <,0> < 0, <6,AL> = 0, <0,a%c> < o.

For stability, the spectrum of A must lie in the left half-plane so A

; 2 .
satisfies a characteristic equation A" + bA+ ¢ =0 with b >0, ¢ > 0.
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This, however, would give
2
<0,A > + b<0,Ar> + c<B8,z> = 0

which contradicts (4.10). B

Note that this argument is strictly two-dimensional and, indeed, it is possible
to have tangential points in, say, the three-dimensional case. Nevertheless,
we continue to conjecture the existence of periodic solutions for any compact

- stable 'linear' switching system (see Remark 6).

EXAMPLE 7: For the setting of Theorem 7 we see that the assumption that 'there
are no tangential points' is necessary: we construct an example with exactly
one tangential point for which there is no periodic solution.

Looking at Figure 6 we see in (a) a sketch of T moving more-or-less
radially into Rl but wiggling trickily through (Rz. (For comparison, Figure
7 shows the same example — to within topological equivalence — with the flows
radial but the region @2 no longer a ball.) The orbits of T intersecting

R

, are those between [31] and [el], entering (Rl between the points A

and E. Note that every solution for the switching system must hit BRZ (infin-
itely often) and so, from some time on, must coincide with a trajectory emanating
along T, from a point of the arc KE. The significant features of this geometry
arethat[al] is tangent to BRZ at o as well as at o and [ei] is tangent
to BRZ at g . The intermediate orbits [bll, [c1], [d1] are indicated only
to show a smooth field across RZ except that [cl] must 'éxit' from <R2 and

then re-cross BRZ at a point §' 'between' o and a as well as crossing

R, at y between o and ¢ .

2
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Looking next at the sketch of w, in Figure 6(b), we note as the signifi~
cant features (i) that the orbit [d2] of T, is tangential to aRZ at
the same point ¢ defined above as the point of tangency of [el] to a@z
and then enters RZ at the same point o defined above as‘the 'first' point
of tangency of [al] to aRz and (ii) that the two ﬂz—orbits [az] and
[e2] enter R, at points y and §; defined above as two intersections of
the same nl-orbit [c1] with BRZ. The point ¢ is the only tangential point
in the sense of our original definition.

As noted above, for consideration of (possible) periodicity the only tra-
jectories of interest are those emanating from AE; let us follow these trajec-
tories. For [AD) the wz—orbits hit BRZ to fill in the 'interval' [y,g)
and then the trajectories 'return' along ﬂl-orbits hitting BRI again to fill
in [C,E). For (D,E] the ﬂz-orbits hit BRZ to fill in the 'interval'
d&;;} and then the trajectories 'return' along ﬂl-orbits hitting 8R1 again
to fill in (A,C]. For the trajectory emanating'from D one has a choice:

D +»¢ along [d2] and then 'return' along [e1] to E or D o along

[d.,] and then 'return' along [al] to A.

2
If one now identifies A = E, then AE becomes, topologically, a circle.
The 'round trip' gives A= E +— C by construction and, with the identification,
D > A X E independent of the choice at €. Thus, the 'round trip' determines

a well-defined map p of the 'circle' AE to itself; one easily verifies,
using the continuity of Tys Moo that this map p is continuous as well as
injective.

Within the framework above one can adjugt the construction to make p any
desired homeomorphism: AE -+ AE: parametrize KB as [O,Zﬁ] (with 0 = 2m),

modify Ty so D := p-l (A= E) 1is the initial point in BRZ of the
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nz-orbit [dZ] as above, and modify ™

so each initial point is mapped as desired. In particular, one can construct

(only 'between' G and into (Rl)

Tys My S0 p is a 'rotation' of the 'circle' through an arbitrarily specified
~angle . (It is even'possible to accomplish this last with c¢® flows on
R’.)

Suppose the construction above has been 'tuned' so that p corresponds to
a rotation with /27 dirrational. This is then the classic example of a map

such that no iterate has a fixed point. Clearly, then, the resulting switching

system can have no periodic solutions since any periodic solution must entail

existence of a fixed point of some iterate of p. We do note that every solu-
tion, for this example, is eventually 'approximately periodic': Every solution
eventually hits the arc KE of 8R1 and (except for a possible one~time choice
if it passes through D) then has 'future truncations' continuously dependent,
uniformly on compact time intervals, on the successive points {gk} at which

it subsequently hits iE — and {Ek} is an almost periodic sequence. (It is
conjectured that behavior qualitatively like this is generic!)

(m) is the identity.

On the other hand, suppose one has /27 rational so p
One then has a periodic solution of the switching system for every initial
point in ZE. This does not mean, however, that every solution is periodic:
for the solutions passing through D one has a choice — next going to € or
to a along [d2] — at each recurrence (every m round trips: aRl > aRZ -+ aRl)

with the sequence of choices being completely arbitrary. Note that if one were

to choose, say, according to the sequence
€y, Oy €y €5 Oy E5 €5 €4 Uy oevy

then this solution has no (even approximate) periodicity property.
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Another variant of this example takes p(t) := t + ¢ sin (t-§) (mod 27m)
with ¢, § > 0, small. This makes t = §, §+n fixed points of p —
corresponding to the periodic solutions of the switching system — with §
unstable and §+7 stable, giving a (globally) attractive periodic solution.
(For p(t) :=t + esink(t-§) one has 2k fixed points/periodic solutionms,
alternately unstable and stable. Fori p(t) ==t + esin(t-8§)/2 one has a
single asymptotically stable periodic solution.) For § = 0 the situation is
much the same except that one has recurring choices at D, as above.

We note that this construction is not really limited to ZR?. Let X be

R (m > 2) or even an infinite-dimensional Hilbert space and write it as X =

B2 oY so points in X are x = [{,y] with ]k[z = lglz + |y‘2. Define

'?rj(t,[E,,YJ) = ['ﬂ'j (C,E),S(t)}’]

where the 7, are as in the two-dimensional constructions above and S(°)

3
is any (compact) semigroup going asymptotically to 0. The regions ‘ﬁj are,

say, balls with centers {gj,O] where the Ej are the centers used in ]R2
above and the radii are the same: (In the infinite-dimensional case this could
be modified to get compact closure.) Since S(t) + 0 as t =+ =, the only

points of interest for possible periodicity'lie in the subspace (y = 0) where

. . 2
the system reduces to the previous construction for R.
We now return to the question of periodicity for the 'linear' case.

Remark 6: Clearly, any periodic solution — for any system — can be treated
+

as existing for all time (on IR, rather than R ) and so as having an infinite

past. TFollowing Remark 5, we may thus treat periodic solutions of 'linear'

systems within the framework of Example 6, in terms of the impulse response
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function ¢ which, we assume, satisfies (4.12). Note that any periodic solu-
tion of such a 'linear' switching system gives 3j(+) periodic and so corre-
sponds to a periodic solution of the system 2@ of Example 6; conversely, any
solution of XQ determines (by stability of the underlying linear dynamics
which implies negligibility of 'remotely past initial conditions') a unique
solution for the 'linear' system — necessarily periodic if the solution of Z¢

is periodic. Next, we observe that if £(+) is a periodic solution for Z¢
+
with period Tt then {(t,*) is periodic on R with period T (hence extend-

able as periodic on R) and I, acts on it by tramslation: E(t;s) = Eo(s-t)

d
for t,s g R.
If we consider any periodic, piecewise constant, {0,1}-valued function go

onR as 'initial' value and use the formula E(t;s) := Ep(s-t) to determine

the 'input', then the corresponding sensor output 8¢-) is given by

[

(4.16) By = BlE®] = [ o)y as

0
and so is necessarily periodic. Here, inverting the viewpoint above, we have
taken 2¢ to obtain £(+) by the formula as if we knew this produced a solu-
tion for ZQ. This procedure is valid if and only if, on setting j(t) :=

1 +Eg(t;0) =1+ go(—t), the switching rules (2.5), (3.1) are verified. With

no loss of generality we can assume translation in time so gO(o+) =1, 50(0-) =0
corresponding to a switch from j =2 to j=1 at time t = 0. What is

needed, then, for go to correspond to a periodic solution of minimal type?
Clearly go =1 on (0,a) and go =0 on (-b,0), thus having a period of
length (a+b). Them j=1 on (0,b) and j =2 on (b,a+b), also with
period (a+b). For this to correspond to a solution at all (then necessarily a

periodic solution of minimal type) one must have
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(4.17) () 8 =8;, B =9,

(i1) 8<e6, on [0,a], 6361 on [-b,0].

Note that for the original 'linear' system this gives

x(t) = f S(s)[u1‘+ go(s-t)(uz-ul)] ds.
0

Remark 7: Given some mild compactness condition (as has been part of the con-
clusions for several of the theorems above), we note that it may be possible to

find a periodic solution.

THEOREM 8: Let (Zn) be a sequence of switching systems satisfying the
hypotheses of Theorem 1 and each having a periodic solution [xn(-),jn(-)].
Suppose there is a fixed compact set K C X such that, for every neighborhood
N> X one has xn(-) intersecting N for =n > n,(N). Suppose one has a bound
on the periods: Tn‘ﬁ T,+ Then the limit system: L also has a periodic solu-

tion subject to the same bound.

Proof: Let Nn be a sequence of neighborhoods shrinking to K and (tn) such

that xn(tn) =:E ¢ Nn with gn € K and lEn-—Enl + 0 as n -+ «, Extracting

n
a subsequence, we may assume En +ZekK so En + £. By autonomy we may
translate each solution so En = xn(O). Extracting a subsequence, we may also
assume T ?:5 T, Now, applying Theofem 1 gives, again for a subsequence,
[xn,jn]-+ [x,5] with [x,j] a solution for I. Recalling the construction of

Theorem 1, since xn(Tn) = Sn + £ and T, + T, one has x(1) = € = x(0).

Similarly (possibly requiring a bit of extra care if Tn is a switching time
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for each xn) one has j(;) = j(0) so [x,j] is periodic with period

T<T (Note that if one has an upper bound on the interswitching times

*.
as well as (2.9) then one could bound the number of transitions in a period
— e.g., assuming each [xn,jn] is of minimal type — rather than bounding

the period directly and obtain in the limit a periodic solution subject to

the same bound.) W
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