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1. Our intention is to explore some possibly overlooked consequences of
the classical observation “Natura in operationibus non facit saltus,” — which
we take to mean that

• Any apparent discontinuity occurring in the real world is ac-
tually a continuous process having ‘fine structure’ on a more rapid
time scale

(perhaps omitting quantum mechanics). The significance of this observation
for hybrid systems is that the nominal description involving discontinuity is
merely a convenient approximation at the relevant time scale which involves the
(unmodelled?) neglect of dynamics on any faster time scales — whose details
are then necessarily lost in the process of model reduction. We will argue that
some residue of these details must be retained to understand, in certain contexts,
what will actually occur when these hybrid strategies are to be implemented in
the real world.

For example, at a familiar level we think of the thermostat in an electric
heater as simply switching the element on or off discontinuously, but it is cer-
tainly possible to ‘open the box’ and consider in more detail, if desirable, the

1in Hybrid Systems III. Verification and Control, (LNCS #1066; R. Alur, T.A. Henzinger,
E.D. Sontag, eds.) pp. 201–207, Springer-Verlag, Berlin (1996). [Proc. Rutgers Conf. on
Hybrid Systems — Oct., 1995.]

2This is a slightly expanded version of a talk given at the Workshop on Hybrid Systems
held at Rutgers University in October, 1995, and is to appear in the proceedings: Hybrid
Systems III, (R. Alur, T. Henzinger, and E. Sontag, eds.), Springer–Verlag Lecture Notes in
Computer Science.
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moderately complicated internal operation of the thermostatic switch itself —
or, for that matter, similarly to ask about the ‘switching transient’ involved in
current flow to the heater element, rise time for its heating, etc.

From this point of view, the nominal description of the situation is a ‘reduced
order model’, very much in the sense of the ‘outer solution’ of singular pertur-
bation theory. Since the transitions between discrete values of logical variables
are essential to the nature of hybrid systems, we might expect some likelihood
that these considerations could become relevant for hybrid systems in appro-
priate contexts. In particular, we concentrate our attention in this note to the
setting of ‘chattering modes’, for which switching is intentionally frequent so it
is plausible to anticipate significant cumulative effects of the individually negli-
gible switching transients, etc. As we shall see, there is then some possibility of
(perhaps unpleasant) surprises if these are ignored.

The key to our analysis is the consideration of time scales. Suppose we are
faced with a situation in which, on the ‘natural’ time scale, we have frequent
switching between several available elementary modes

ξ̇ = F1 or ξ̇ = F2 or . . . (1)

(These are, of course, vector ODEs in some relevant state space X .) We will
refer to the composite zig-zag dynamics as a chattering mode and we seek a
simplified (averaged) description, called the sliding mode, which provides an
acceptable approximation for the chattering mode. It is even more likely that
the simplified sliding mode represents the ‘intention’ under consideration at the
level of control design and it is the chattering mode which is to be considered as
an (implementable) acceptable approximation (cf., e.g., [9] or [5]) at the natural
(design) time scale.

2. An easy analysis shows that in the case of rapid switching, solutions
of (1) can be well approximated by considering

ξ̇ = F̂ := ΣjαjFj (2)

where the coefficients αj of this convex combination are the (local) fractions of
time spent in each of the modes of (1) — provided there is some intermediate
time scale for which these fractions are suitably definable yet short enough to
take each Fj as approximately constant. Our point is that this relation of (2)
to (1) necessarily comes from some specific implementation. If — e.g., as in
[5] — the chattering mode would be explicitly constructed to provide explicitly
specified time fractions αj , then this relation is clear. In realistic cases such an
(open loop) explicit construction may well be a burden and the control design
may provide for an implicit determination (closed loop) of the switching times
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and so of the coefficients. All the usual arguments for the preference of closed
loop over open loop control design applies to this point.

It is specifically in these situations that there are possible traps for the
unwary in the determination of the correct sliding mode (2) to provide an ac-
ceptable approximation of reality — or, conversely, how one might design an
implicit control structure providing an appropriate chattering mode.

The simplest analysis corresponds to a bimodal control specification:

(C0)

{
if x > 0, then: ξ̇ = [u1, v1]

else (if x > 0), then: ξ̇ = [u2, v2]

where we assume u1 < 0 < u2 and have written ξ = [x, z] ∈ X so x is one
‘coordinate’ (with z complementary in X ) or, more generally, is a sensor value.
The surface x = 0 is the switching surface and we alternate between these modes
— giving (1) with Fj = [uj , vj ]. The ‘inwardness condition’ u1 < 0 < u2 ensures
that we must zigzag across x = 0 so, as averaged in (2), we must have x ≡ 0 so
ẋ = 0, requiring α1u1 +α2u2 = 0: in this situation the sliding mode is uniquely
determined from (C0) with no further analysis needed.

At this point we note, as a warning, anecdotal evidence [6] that possible
‘traps’ may arise: a real apparatus was constructed corresponding to a ‘control
law’ of the form (C0) with scalar z (2-dimensional dynamics) in which v1, v2
had the same sign yet the physically observed motion along x = 0 paradoxically
went in the opposite direction.

To see how such an apparent paradox might occur and might be explained
by details of the implementation which were neglected in the apparently com-
plete description above, we consider a more complicated situation involving four
(constant) fields in X = IR3:

F1 ≡

 −2
−1
5

 , F2 ≡

 1
−2
−4

 , F3 ≡

 2
1
5

 , F4 ≡

 −1
2
−4

 .
Our control intention is to move along the z-axis (x = y = 0) in the positive
direction. To this end we employ the control specification:

(C1)


if x > 0, then: (C2)

{
if y > 0, then: ξ̇ = F1

if y < 0, then: ξ̇ = F4

else (x < 0) : (C3)

{
if y > 0, then: ξ̇ = F2

if y < 0, then: ξ̇ = F3

We can apply the same analysis as for (C0) to simplify (C2) and (C3) to
obtain sliding modes in the plane y = 0, noting that we arrive at this plane for
each of the alternatives (x > 0, x < 0). For x > 0, the condition that the y-
component of the sliding mode must vanish implies coefficients α1 = 2/3, α4 =
1/3 for the convex combination of F1, F4 and we obtain similarly the coefficients
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α2 = 1/3, α3 = 2/3 for the convex combination of F2, F3 when x < 0. Thus we
have the sliding modes

F̂2 =

 −5/3
0
2

 , F̂3 =

 5/3
0
2

 ,
respectively, for these alternatives. Inserting these sliding modes in (C1) , we
obtain the simplified control specification in the plane y = 0:

(C1′)

{
if x > 0, then: (C2′) ξ̇ ≈ F̂2

else (x < 0) : (C3′) ξ̇ ≈ F̂3

In this case a repetition of the same analysis now requires that the x-component
of the convex combination of F̂2, F̂3 should vanish, giving coefficients â2 = â3 =
1/2. The resulting sliding mode gives the desired motion along the z-axis with
velocity +2. So far, so good.

At this point we note that the control specification:

(C4)

{
if y > 0, then: (C5) ξ̇ = {F1 if x > 0;else F2}
else (y < 0) : (C6) ξ̇ = {F4 if x > 0;else F3}

is logically equivalent to (C1) — each says, in a slightly different way, that one
is to use Fj when in the jth quadrant of the x, y-plane. Now. however, applying
the same method of analysis3 to (C4) as was previously applied to (C1) now
gives the sliding modes

F̂6 =

 0
−5/3
−1

 , F̂6 =

 0
5/3
−1

 ,
in the plane x = 0 for y > 0 and y < 0, respectively, to give the simplified
control specification in the plane x = 0:

(C4′)

{
if y > 0, then: (C5′) ξ̇ ≈ F̂5

else (y < 0) : (C6′) ξ̇ ≈ F̂6

and so to imply a resulting motion along the z-axis with velocity −1, i.e., in
the direction opposite to what had been obtained earlier. If the sliding mode
computed as for (C1) were in fact correct (so the motion actually occurring
had v = 2 along the z-axis), then (C4’) would present a paradoxical behavior
within the plane y = 0, much as for the ‘experimental’ situation of [6].

3It is also interesting to note that the plane x = 2y is invariant if one uses only F1 and
F3 and, again switching at x = y = 0, the analysis then gives motion along the z-axis with
velocity +5.
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3. Our principal concern in this section will be the resolution of the
different results associated with (C1) and (C4) despite the apparent logical
equivalence. The real understanding of (C0) — and so of (C1) and (C4) —
comes from a somewhat more detailed consideration of the actual implementa-
tion which, for such a control specification as: “if x > 0, then ξ̇ = F1,” would
involve both a sensor X, tracking x and an actuator A producing F1.

At this point we re-emphasize the intended significance of the sliding mode
as providing a more easily computable formulation which is expected to provide
a realistic approximation of satisfactory accuracy to ‘what would, in fact, occur’
when the control program is implemented in the real world or, conversely if one
begins with an sliding mode at the design stage, the responsibility to ensure
that the implementation will (approximately) produce what is intended when
the ambiguities inherent in the discussion above show that this may not be
‘automatic’.

Even apart from consideration of possible time sampling and/or quantization
effects for X, the simplest version of the switching process, as implemented, will
still have some delay δ′1 in the actual sensing of the state condition: if x = 0 at
time t0, then the controller will actually have the established state (x > 0) at a
time t1 = t0 + δ′1 (with x = ε′1 > 0) at which the actuator A is nominally set to
F1. One will then have some switching transient for the actuator corresponding
to an evolution (t = t1 + τ)

ξ̇ = F ∗21(τ) (0 < τ < δ′′1 ) (3)

with F ∗21 = F2 at τ = 0 and F ∗21 ≈ F1 after the further delay δ′′1 ; in a multimodal
setting the switching transient and δ′′1 will obviously depend on the mode from
which one is switching. Thus, δ21 = δ′1 + δ′′1 represents the time scale for
switching from F2 to F1, etc.

Provided4 δ′1, δ′2 are taken so δ′′j � δ′j (making (1) a plausible approxima-
tion), we see that the total period ∆21 for which the control state is (x > 0) —
i.e., the interval from t1 when this becomes the state to t∗0 when again x = 0 to
t∗1 = t∗0 +δ′2 when the state has been switched to (x < 0) — and the correspond-
ing period ∆12 will each be of the same order of magnitude as δ21; in this case
we get (2) with coefficients [α1, α2] = [∆21/∆,∆12/∆] (here ∆ = ∆21 + ∆12 is
the total ‘cycle time’) as well as the approximate relation u1∆21 +u2∆12 ≈ 0 —
leading to the same results as for the original (less detailed) analysis but with
a more refined understanding of the justifying assumptions.

For the analysis of (C1) we observe from our most recent discussion that
the approximate reduction to (C1’) is justifiable only if the time scales for

4With no such assumption it would be perfectly possible that by t2 = t1 + δ′′1 one would
already have x < 0 so one would abide in eternal transiency without the nominal description
(1) ever becoming even approximately true. For simplicity we assume that — as is often done
in practice for related reasons — δ′1 is artificially increased, as necessary. An analysis without
this assumption would certainly be possible but could be expected to be significantly more
complicated.
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the separate consideration of (C2) and (C3) are each quite rapid compared

to the alternation between them, i.e., if δ14, δ23 � δ̂23 where it is not difficult
to see that δ̂23 is comparable to δ12, δ34. Effectively, this analysis is justifiable
provided the sensor Y were extremely fast compared to the sensor X and, con-
versely, the analysis given for (C4) would be justifiable provided the sensor
X were extremely fast compared to the sensor Y . These are implementation
assumptions and it is the distinction between them which resolves the paradox;
compare the discussion in [7].

In this context we may understand the title of this paper as suggesting that
the actual result of implementing such a control fragment as (C1) is impossible
without taking into account some features of the implementation, some residue
of reality which must be retained in the model reduction process as providing a
‘selection principle’. The nature of this ‘residue’ is clear when, as just indicated,
there might be a ‘time scale separation’ for the effects of the two switching
surfaces. When this simplifying assumption is inapplicable — say, if X,Y are
of comparable speed then the determination of a suitable sliding mode becomes
much more problematic. Some partial analysis is presented in [7], but this very
much remains work-in-progress.

We also note that another type of implementation may be plausible for this
nominal context of four fields used in the quadrants defined by two intersecting
switching surfaces. In some applications one might plausibly have a ‘blending’
of the fields Fj — corresponding to a ‘fuzzy logic’ interpretation of the state
conjunctions. This is analyzed in [1], where it is shown that there is a com-
putable sliding mode without any restriction, as above, that there be a time
scale separation for the sensors. We note also the analyses of (C1) noted in
[2] for a stochastic and for a delay interpretation.

4. We conclude with an observation that, apart from the correctness of
the sliding mode approximation to the hybrid dynamics, there is a cumulative
effect of the switching transients (3) — more precisely, of the distinction between
these and the nominal (1) — to be taken into account for, e.g., consideration of
total costs for optimization. E.g., for a thermostatically controlled gas furnace
these ‘switching costs’ include both the control effect of ‘rise time’ delay and the
‘waste’ of gas at ignition of the gas flame. Note that these are ignored in the
nominal (reduced) description which treats the situation as jumping instantly
to the new mode as if in steady operation. The switching costs are individually
small, but one must question the justification for their total neglect in a context
of frequent switching.

Let us consider, for example, a control optimization problem with a cost
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functional of the form

J0 =

∫ ∞
0

e−λtϕ(x, u) dt (4)

so ϕ represents running costs as a function of (continuous) state x and control u.
We are thinking of a setting in which this is minimized by some x∗ corresponding
to a ‘relaxed control’ u∗, expressible in the form Σjαjuj in terms of ‘accessible’
modes uj so

J ∗0 =

∫ ∞
0

e−λtΣjαjϕ(x∗, uj) dt (5)

and, following [5], one would approximate by a chattering mode in which (with
suitable proportions) one cycles through the modes {uj} with cycle time ∆.
Note that this gives the controlled trajectory x̂ with, approximately, x̂ ≈ x∗ +
∆ · ξ for an appropriate (highly oscillatory) ‘perturbation function’ ξ. It is not
too difficult to see that the resulting perturbation of J0 will be quadratic: one
expects this to be 0 to first order here — even if, due to the control constraints,
one would not have vanishing of the first order variation of J0. Thus, a control
specification of this nature would give

J0 = J ∗0 + a∆2 (6)

with a computable coefficient a so long as we continue to ignore the switching
costs J1. Clearly we can minimize (6) by taking ∆ to be as small as possible,
consistent with feasibility.

We now consider the total cost J = J0 +J1 — i.e., including consideration
of the switching cost — with, say,

J1 =
∑

ν
e−λtνεψ (x(tν); jν ←7 jν−1) (7)

where the sum is taken over all the switching times tν and εψ is the associated
cost of a single mode transition. Keeping ψ as ‘order of 1’, we have introduced
ε � 1 here to indicate that this switching cost must be small or we could
not reasonably be using the kind of control strategy we are describing here.
Now suppose, for convenience, we chatter with round robin rotation of J modes
(1, . . . , J , in cyclic order) and cycle time ∆. Taking the leading term with
respect to ∆, we would then have

J1 ≈ (ε/∆)

∫ ∞
0

e−λt [Σrψr(x)] dt (8)

where we have set ψr(x) := ψ(x; r ←7 r − 1). Combining this with what we
obtained just above in (6), one sees that the optimal choice of the cycle time
can be simply computed. The total cost now takes the form

J = J ∗0 + a∆2 + bε/∆ (9)
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and this can be minimized with respect to ∆ by elementary Calculus to obtain

∆opt = [Cε]1/3 with C =
1

2a

∫ ∞
0

e−λt [Σrψr(x)] dt. (10)

[Thus, the optimal cycling frequency is O([unit switching cost]−1/3).] Note that
in [5] the parameter ∆ may itself be viewed as a control variable and we have
here shown how its optimization is related to the switching cost when that is to
be taken into account.
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