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Abstract. For hybrid systems in which control consists of selection from a
discrete finite set of modes, a somewhat unfamiliar formulation is needed
for analysis of the possibility of closed loop (feedback) control. We are here
concerned to examine the desiderata for such feedback from the viewpoint of
descriptive modeling of implementation in a PDE context. A principal result
is global existence, in an appropriate sense, for the implemented closed loop
control system. A problem of transport on a graph is then presented to show
how the relevant hypotheses might be satisfied in a PDE example.

Mathematics Subject Classification (2000). 93A30, 93B12, 47J40, 70K70.

Keywords. modeling, multiscale, hybrid systems, switching, modes, disconti-
nuities, differential equations, feedback, Zeno phenomena.

1. Introduction

Consider a collection of partial differential equations which we take, somewhat
arbitrarily, to have the form

T =Ajz+ fj(x) (jed) (1.1)

where each A; is a suitable differential operator. Now imagine a system whose
evolution is governed, over interswitching intervals, by one or another of these;
we call this a hybrid system and take the discrete modal indezx j = j(t) to be a
component of the system state along with the ‘continuous component’ x. We will
be considering the modal transitions [j(t—) = j] ~ [j(t+) = j'] as our control
mechanism for the system. In particular, we will be concerned with the possibility
of closed loop operation of such a control system.

Such hybrid systems are already a much-studied area of interest in the lumped
parameter (ordinary differential equation) context, although much of the under-
lying theory remains open. Although one of the early analyses of such systems [7]
was, indeed, motivated by a PDE example (not in a control context), we note that
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very little has been done so far for the analysis of switching control for distributed
parameter problems governed by partial differential equations, despite the fact
that significant applications come easily to mind, involving the use of such famil-
iar ON/OFF control devices as valves and pumps, light switches and thermostats,
traffic signals, etc.

[One might also consider systems with j = j(¢, s) pointwise, compare [9] where
this becomes a free boundary problem for the set {(¢,s) : j(¢t,s) = j}. Here we
will restrict our attention to situations where the switching may be viewed as
global with a finite number of modes — as is the case, e.g., for traffic signals if
we take each mode as specifying the configuration of signal states for the entire
road network. As with hybrid ODEs, the index j will be a function of ¢ alone.]
Many, but not all, of the relevant aspects of the analysis are then independent of
dimensionality.

In the context of feedback for PDEs, the regularity of the sensor inputs being
considered may be significant even to know that solutions exist. Our formulation
reflects a concern for the modeling of such systems. This will be very much a
question of time scales: we are assuming that the switching itself takes place on
a time scale more rapid than our modeling concerns but that the interswitching
intervals are on the scale of interest.

While other considerations may also be of interest — e.g., controllability or
stabilization to a small region — we here envision three canonical results:

Theorem 1:  Under appropriate hypotheses, treating j(-) as data, the system will
be well-posed in some suitable sense.

Again treating open-loop control with a suitable cost functional,

Theorem 2:  Under appropriate hypotheses there exists an optimal control j, min-
imizing the cost. For the autonomous infinite horizon problem this can be obtained
by a kind of feedback.

Modifying that notion of feedback to be based on suitable sensors,
Theorem 3:  Under appropriate hypotheses the feedback controlled system will be
well-posed in some suitable sense.

Much of the paper is devoted to explaining what these should mean.

2. The formulation

We begin by noting an important distinction between descriptive and prescriptive
modes of modeling: the first is what a scientist does in trying to understand the
various patterns arising in the world; the second is what a composer or an engineer
does in designing (artificial) patterns for various purposes. E.g., in viewing leonine
behavior the first is the modality of the naturalist while the second is the approach
of a lion tamer. In this section we provide a formal prescriptive model for lion
tamers, while aware that a naturalist’s comments will later be complementary in
describing how lions can behave.
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The formal elements of the underlying system consist of

a finite index set J and a corresponding set of state spaces X;.

a set of information spaces Y; with sensor maps Y; : X; — ;.

a nonempty action set A;(y) C J for each j € J, y € Y.

(E) a continuous transition map f : [j,z] — [j/,2'] with 2’ € X}
defined when j € J, x € X; and j' € A; (Y;(x)).

e. a set of dynamical systems = modes 7, each satisfying the

causality condition

mi(t,s,&) =m(t,r,mi(r,s,8)) fort>r>s, €€ (2.1)

o op

We assume throughout that each X;,)); is a complete metric space and that each
m; and f is continuous; at this point we impose no continuity requirements on Y;.
[We expect the modes of (E)-e. to be given as in (1.1) so continuity of 7; just
means well-posedness. Note, however, that any relevant boundary data is then to
be included in specification of the mode.]

We may anthropomorphize the feedback as a controller who knows the current
mode and sensor values j = j(t) and y = y(t) = Y;(x(t)) and, based on this,
continually selects the mode. Of course the controller’s choices at any moment are
restricted to the available control actions: to remain in the current mode j or to
make a transition j ~ j’ on the fast scale; the switching rules are just that this
selection always be taken from the action set A;(y). It will also be convenient to
introduce the sets

Si={yey;:jec Ay}, 7 ={yey;:jec Ay}, (22

noting that the required nonemptiness of each A;(y) ensures that

SUB =Y,  where B = | J €77 (2.3)
J'#J

We refer to the specification of the sets {S7, BI™9'} as the switching diagram for
mode j and to these collectively (j € J) as the controlling feedback diagram for
the system.

Intuitively, the operation of such a feedback controlled system should pro-

duce finitely many switching times {¢, : v = 1,..., N} in any time interval [0, 7]
with a modal transition j, ™~ j,41 at each t, — thus partitioning [0, 7] into the
interswitching intervals T, = [t,—1,t,] with 0 = ¢9 <3 < ---. A solution of such

a feedback system on the time interval [0,7] would then be a triple of functions
[G(), x(+), y(-)] such that
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a. j(-) is piecewise constant with j(¢t) = j, € J for ¢ in each in-
terswitching interval Z, = [t,—1,t,]; at each ¢ one will have
x(t) € Xy and y(t) = Yju) (x(2)) € Vjes)-

b. the switching times are discrete: finitely many in any [0, 7.

c. switching [j,—1 ~ j, at t,] occurs only if j, € A;, , (y(t,—))

(S) while for ¢ in the interior of Z,, one must have y(t) € S¥»-1.

d. at each switching time ¢,

x(tu+) = £(x(ty—); -1 ~ ). (2.4)
,_, with

x(t) = mj, , (t = ty—1, x(ty1+))- (2.5)

e. on each interswitching interval Z,, we have x(t) € X

Deferring further discussion to the next section, note that (S)-a. will admit the
possibility of degenerate interswitching intervals (¢, = ¢,_1), for which we for-
mally take x(t,—) = x(t,—1+) with no evolution. The occurrence of infinitely
many transitions within a finite period is known as a Zeno phenomenon and this
possibility would be a major technical difficulty for the theory; (S)-b. requires that
this does not occur in the problems we consider.

Remark 2.1. We note a few generalizations which can be included within the
framework of (E), (S).

We have formulated the feedback to depend only on the current sensor values
Y;(t) € Y;, without memory. Note, however, that we can, e.g., treat a Luenberger
observer by introducing it as a state component Yy adjoined to each &},); with
suitably defined dynamics involving the current sensor values and idy, adjoined to
each Yj.

One reason to exclude Zeno phenomena is to avoid potential difficulties with
a recursive use of (S)-d.,e. in constructing solutions. In the proof of Theorem 2
below, the positive switching costs ¢(j ~ j') enforce this exclusion automatically
in optimization. Such costs are a well-known practical reality (often corresponding
to the residual effects of rapid scale transients in chattering; compare [8, 2]). It is
therefore a common practice to introduce dead time following (some) transitions
k ~ k', temporarily preventing a repetition of the mode k or of that transition. We
can include such dead time in the formulation by introducing a state component
z € Z = R, satisfying 2z, p» = 1 for the relevant switching indices (k ~ k) €
J’' € JxJ, and adjoining Z to each X;,Y;; as part of £(-; & ~ k') one then resets
Zk~k to 0. Now one obtains the dead time effect by deleting k from each A;(y, z)
or deleting k' from A (y, z) until gy reaches its threshold. Note that being able
to treat this kind of resetting of z to handle dead time is now our principal reason
for retaining a transition map f as part of (E).

There are also problems for which we do expect the possible occurrence of
such behavior. It may then be convenient to view this behavior as a whole, defining
within our framework a chattering mode (or idealized as a sliding mode). a
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Without further hypotheses it is easy to construct examples for which no
global solutions exist at all: for example, the switching rules as given might pro-
duce a sequence of switching times ¢, /' t. < T — violating (S)-b. and also with
no way to obtain a continuation after t,. Also, since A;(y) need not be a single-
ton, we cannot expect that (S) will determine solution evolution uniquely when
solutions do exist. Typically the sets Ci~I will be switching surfaces with the
trajectories transverse to these and y leaving S; so switching is forced. We must,
however, allow for the alternative possibility that y, continuing from y € C7™J " us-
ing mode j, would remain (at least briefly) in S; and the choice would be genuine.
Such anomalous points are a major technical difficulty for this theory and we will
further discuss their effect later, noting here only that this is an inherent source
of non-uniqueness for solutions since we will be accepting both possible choices as
legitimate. In the next sections we re-examine the formulation above in the light
of possible implementation and impose hypotheses ensuring existence.

3. Modeling and interpretation

Mathematical models are always created, selected, and analyzed with a purpose
and we keep this functionality at the forefront of our present concern: convenience
is one of the major desiderata in the selection of appropriate models. While con-
trol theory is inherently a prescriptive approach to the world in which we may be
inclined to ignore the descriptive aphorism, “Natura non facit saltus” ( “Nature
does not make jumps,” attributed to Newton, Leibniz, Linnaeus,. . . ), we recognize
that any control design is useful only as implemented:
A prescriptive model should be a descriptive model of its implementation

so we must have some concern that the nominal behavior of these discontinuous
systems is consistent with their actual behavior. In this section we complement
the prescriptive formulation (E), (S) with some interpretive comments on the con-
struction from this point of view, clarifying our choices of assumptions.

The fundamental principle of such interpretation is that hybrid systems are
a simplified description of multiscale problems in which the transitions j ~ j’
which we are describing as ‘instantaneous’ are actually taking place on a faster
time scale than we wish to model; see, e.g., [10]. [If X;; = &, the transition
function f : x(t—) ~ x(t+) might then simply reflect the result of state evolution
on the rapid scale.] As with any modeling, success means that we have taken into
account those aspects whose effects are inescapable without treating details which
can be ignored. Since our description is then an idealization of the world, we are
inclusive in the consideration of mild solutions, so our version of well-posedness
will require that

The limit of solutions will itself be accepted as a solution,

i.e., the solution set depends upper semicontinuously on the data.

Note that we are permitting degenerate interswitching intervals Z,, with
t,_1 = t,. This might simply correspond to the possibility, which we want to
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include here, that distinct effects can occur simultaneously on the modeling scale,
meaning only that we cannot determine priority without resolving aspects of the
rapid behavior which we are content to leave hidden from us; we do insist that the
sequencing, particularly that of the associated modes j,, be preserved since this
priority may be significant in determining the subsequent evolution on our model-
ing scale. In such a situation we cannot predict the outcome definitively with the
information available. On the other hand, by accepting the alternatives as equally
valid solutions we are able to say that,

“What happens must be one of these possibilities.”

(to within the level of approximation corresponding to the usual model uncer-
tainty). An arbitrary selection might provide uniqueness, but lacking a selection
principle justifiable from considerations of the unknown rapid behavior we are
primarily concerned not to exclude any genuine possibility and so reject such an
artificial uniqueness as spurious. This is done in much the same spirit as the accep-
tance of ‘weak’ or ‘mild’ or ‘generalized’ solutions since at worst these are idealized
versions of genuine possibilities and this idealization may not permit us the luxury
of restricting our attention to ‘classical solutions.” We will refer to the times and
the situations giving this ambiguity as anomalous points. [A related possibility
would be a cascade with several transitions j ~ j’ -+ ~ 7 occurring as a sequence
on the fast scale; it is always possible, but perhaps inconvenient, to replace this
by an equivalent compound single switching event j 7 7.]

In view of the above, j(-) need not be a ‘function’ on [0,7] in the usual
sense. However, we can think of it simply as a finite modal sequence of pairs
(J,7)y € J x Ry with 7, the length of the v-th interswitching interval Z, so
>, Tv = T’; one recovers the switching times as t, = 7 +- - - +7, and recovers j(t),
when ¢ is not a switching time, by (S)-c. Abusing notation somewhat, we continue
to denote these by j(-). We topologize the set MS|0, T of all such modal sequences
on [0,7T] as follows:

Definition 3.1. [j™ — j] in MS[0,T] means that each j* = j, for large m and
each 7" — 7, in R subject to the constraint »_ 7" =T.

Somewhat similarly, a solution x(-) would not be a ‘function’ on [0, 7] even
if there were no change in state spaces: we retain, at any switching time ¢, both
values x(t—), x(t+) and, even in contexts with degenerate interswitching intervals,
include both when discussing a corresponding trajectory [[x]] = {x(t) : t € [0,T]}.
We view the switching as occupying time on a more rapid scale — so the transition
map f might represent evolution on that rapid scale — but we make no attempt to
include more of the course of this evolution as a connecting part of the trajectory.
With this treatment we note, from the continuity of each m;, that the trajectory
[[x]] for any solution x(-) on any [0,7] will be compact in U;X;.

On the other hand, there might be a still slower time scale on which the
switchings we are here describing become a rapidly repetitive chattering mode,
averaging as a sliding mode, switching infinitely often within a finite period. These
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situations are certainly important and have been treated extensively (cf., e.g.,
[3, 11, 1, 8]), but they are not our present concern and, as is essential for our
treatment here, we will adopt hypotheses bounding the number of pairs in any
modal sequence as above for any bounded period [0,T]; compare (S)-b. which
forbids Zeno phenomena for feedback solutions.

We turn now to considering the open loop problem in which a fixed modal
sequence j is specified as data. [We continue to use (E), (S), but note that (E)-b.,c.
are here irrelevant: effectively we are taking each A; independent of y in defining
‘admissibility’ of j, so Yj is not needed.]

Theorem 1. Let an admissible j(-) be given as data and suppose suitable initial data
& given in Xj, . Then there is a unique solution of the open loop problem specified
by (E), (S) and this depends continuously, in an appropriate sense, on the specified
j and €.

PROOF: Existence is immediate, recursively constructed uniquely by alter-
nately using (S)-d..e. starting with x(0) = ¢ and x(t) = 7}, (¢,0,&) on Z; = [0, t2],
etc., so we need only verify continuous dependence. Our definition of convergence
J™ — j means that only the interswitching times 7" change with m so, recalling
the assumed continuity of the transition maps and dynamical systems involved,
the same recursion also shows that x™(t]'+) — x(t,£) (even taking £™ — & and
even if some interswitching intervals become degenerate in the limit). We similarly
get Xx™(t) — x(t) for any ¢ in the interior of an interswitching interval for j and
assume that any ‘appropriate sense’ for convergence of the solutions will follow
from this, e.g., we exclude the use of an L> topology for solutions. m|

Remark 3.2. The statement and proof above are ambiguous as to the total
interval but we may think of this as finite [0, 7] and, as usual with T arbitrary,
this also provides the result on [0, 00).

We now set

MSN = {j e MS[0,T)] : there are at most N switches },
KN () ={[[x]] : x(-) corresponds to j € MSY, x(0) = ¢}.

It is easy to see that each of the subsets MS™[0, 7] will be compact in MS[0,T].
We have have already noted that each individual trajectory [[x]] is compact and,
from the discussion of continuous dependence in the proof above, we now see that
each KN (¢) is compact. O

Still in the setting of the open-loop problem, but now in a context of infinite
horizon optimal control, we consider choice of the modal sequence so as to minimize
a cost functional of the form

\I/:/ e~ cJ(t) dt+Ze be(du_1 ™~ g). (3.1)
0
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We wish to show that the inf defining the value function
V;(€) = inf{¥[j, £] : j(0) = j, x(0) = &} (3.2)

is actually an attained minimum.

Theorem 2. Assume that each running cost c¢;(-) > 0 of (3.1) is continuous; sup-
pose j1 = j and suitable initial data § are given in J, X;. Let each switching
cost c(j ~ j') > 0 and assume there is some j. for which U is finite. Then there
is a modal sequence (switching control) j = j* for which ¥ = W[j,¢] attains its
minimum V;(§). This minimum cost depends lower semicontinuously on & € Xj.

PROOF: The set {j : ¥ < co} is nonempty by assumption so we can consider a
minimizing sequence j™: ¥ = U[j™, &] — inf{¥} = V;(&). For arbitrary T < oo,
the switching costs then ensure a bound on the number of transitions during [0, 7]
so we may extract a convergent subsequence; further extracting subsequences we
can assume j"" — j* on every bounded interval. Theorem 1 applies to the problem
on each [0, 7], showing the corresponding solutions converge x™ — x* there ‘in a
suitable sense.” From the form of (3.1) we easily see this implies convergence of
the restricted costs:
g — U*
[0,7]

Letting T' — oo, this shows that ¥* < V;(&) so V;(§) is a min with minimizer j*.
If j is the minimizer for £™ — &, then we can extract a convergent subsequence
as above to get j™ — j* and see

V() < ¥[j*, €] < liminf,, W[j™, &™) = liminfy, V;(€™). -
[It is not difficult to see that V() is actually continuous if each m; is locally
uniformly continuous.]

so U*

<\I/m‘ +e< U4+ — V;(9).

[0,T7] 0,71 — (0,7

4. Modeling feedback

Suppose we consider the optimization problem of Theorem 2 for autonomous dy-
namical systems so autonomy of the system makes the value function V' indepen-
dent of any starting time and

Vi(§) = v o T e Viu () (x*(7)) (4.1)
for each 7 > 0, where j*,x* are optimal as in the proof of Theorem 2. We would
like to recover the optimal switching control from V', allowing for the possibility
that this need not be unique. The possibility of a transition j ~ j' # j when
x(t) = & just means that j is in A; and

some optimal j starting at (j,&) -
immediately switches j ~ j' # j (4.2)

c(j ~ 3+ V(&5 5) = V5(6)
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where equality just means that the optimal value can be attained with a switch
to j'. On the other hand, comparing with (4.1) and (3.1), we see that

{ some optimal j starting at (j,&)

continues i mode j (4.3)

/OT ey (m (1, €)) dt + €7V (m;(r,€)) = V(&) (some 7 > 0).

Remark 4.1. From this we observe that:
Let J,f,m; be as in Theorem 2; assume each m; is autonomous. Set V; = X;
Y; =id(X;), and

A (&) ={j if (4.3), j'if (4.2)} (4.4)

forje J, &€ X, to complete the specification (E). Let (j,x), starting with (j1,&),
be as in Theorem 1.

Then the pair (j,x) is optimal for the switching control problem of Theorem 2
if and only if it is a feedback solution as in (8S).

PROOF: Clearly any optimal control satisfies (S) with (4.4). Conversely, by
connectedness and the continuity of y(-) = x(+), such a solution of (S) satisfies
(4.1) on each nondegenerate interswitching interval Z,, (hence) and on [0,T] by
induction on v, hence is optimal. O

This is a primary motivation for taking (S) as defining the general structure of
feedback we consider here, while noting, for example, that we cannot always expect
to have full-state feedback as in Remark 4.1 and would necessarily implement only
finitely many sensors. Thus, we consider the evolution of a solution for (S) as
an independent problem, with the elements of (E) somewhat general. Purely for
expository convenience, however, we assume henceforth that X;,);,Y; are each
independent of j € J and that the dynamical systems 7; are autonomous.

Recall that the sensor maps Y; and the resulting sensor output y(-) played
no role in Theorems 1 and 2, but the regularity to be expected of these is now
a significant concern in being able to evaluate y pointwise in ¢ so the conditions
of (S) make sense. This regularity and its interaction with the avoidance of Zeno
behavior — i.e., with (S)-b. — constitute the essential technical difficulties in ana-
lyzing this feedback structure. For Theorem 1, (S)-b. was already an admissibility
hypothesis on the given j and in the proof of Theorem 2 this was a consequence
of the assumed positivity of the switching costs. For a general feedback we will
need new hypotheses; we begin by assuming the feedback diagram and sensor map
satisfy the following set of hypotheses.
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a. each €77 is closed in X and 87 D [V \ B7].

b. Y is set-valued with Y (£) finite and nonempty for each £ € X.

c. Y is upper-semicontinuous, i.e., if one has y, € Y (xy) with z; —
Z in X, then there is a subsequence (yk(g)) converging to some

(H:) 7 €Y (@)

d. cascades of the form j = j are forbidden: i.e., there exists no
sequence of pairs (j,£)Y_,; with j; = j5 such that

Y(EV) aTZiacies # 0, Syl = f(&,;jy /\/j,/_,'_l).

It is precisely at this point that our considerations will depend in an essential
way on the particular PDE setting since we have in mind, at least as an idealization,
that our sensors will be point evaluations in the spatial domain of (1.1). For the
operation of a thermostat, where (1.1) becomes a heat equation, one has more
than enough regularity that this causes no difficulty (provided the sensor location is
separated from the furnace/AC). For a transport equation, however, the occurrence
of modal switching can be expected to introduce spatial discontinuities which
propagate to the sensors and cause temporal discontinuities in y(-); it then becomes
a delicate problem (cf. [5]) to provide a space X which allows for this and at the
same time gives both continuity of the dynamics and adequate regularity of y(-).

We now provide an additional hypothesis which, along with (Hy), will suffice
to give (S)-b. in showing the existence of solutions for the feedback problem. This
hypothesis (Hs) is rather technical, but, as an example, we will later show how to
verify these hypotheses for transport on a graph.

There exists 7 > 0 such that for each £ € X', T > 7, and N’ there
exists N = N (&, N',T) such that:

fT—-—7<T <Tandj is in MSY', then there are
(H2) [0,7—7]
no more than N points of = = {£ € X' : #Y (£) # 1} in the trajectory
{x(t) :t €[0,T"]}.

[While we have formulated this hypothesis to obtain a context of piecewise contin-
uous y(-), one might expect that a rather similar treatment could be formulated
for, e.g., y(-) of bounded variation.]

Theorem 3. Assume we have (E) satisfying (Hy), and (Hz). Then, for any given
(7,€) € T x X, there is [j(-),x(-),y(-)], a global solution of the feedback problem
starting with (j,€).

PROOF: It is convenient to restrict our attention to ‘skittish solutions,” which
switch whenever that is allowable under the switching rules of (S). By Zorn’s
Lemma one has existence of a maximally defined skittish solution [j(-),x(:),¥(-)]
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whose domain necessarily has one of the forms [0, 0], [0, T%], [0, T%), or Ry = [0, 00);
we wish to show this can only be [0, o).

From (2.3), we have initially either y(0)NB’ # () and proceed with a maximal
finite cascade j ~~ 7 or have y(0) = Y (£) in &7 \ B7. Since (H;)-a. gives S7 \
B = Y\ B/ open and (H;)-c. ensures a solution can remain for some (small)
interswitching interval in mode 5. In the former case, the cascade ends with j' ~ 7
leaving x = £ with y = 7 = Y(§) ¢ B (or the cascade could have continued);
by (2.3) we then have 7 € §7 and the solution could be extended. In either case,
then, the domain [0, 0] is inconsistent with maximality. Similarly, a domain [0, T}]
is also inconsistent with maximality since we could restart the problem at T, and
use the same argument.

Next suppose the maximal domain were of the form [0, T%). Since [j(-), x(-), y ()]

is a solution on every subinterval, either there is a last switching . ~ j, at £, < T
or the sequence of switching times (¢,) converges to T}, violating (S)-b. on [0, T}]
itself. In the former case, t — x(t) = m;}, (t — t,, x(t,+) is continuous on [0, T}] and
either y(7.) = Y (x(T%)) € 8’ — so the solution continues through 7% in mode j.
by (Hy)-a. — or y(T.) N B # 0 so one can switch and the solution can be ex-
tended at least to [0,7T]; either of these possibilities contradicts the maximality
of [0,Ty).

In the latter case, with ¢, — T, the maximally defined j(-) necessarily con-
sists of an infinite sequence of nondegenerate interswitching intervals of length
7, > 0 (with Zzozl 7, = T, ) separated by maximal cascades j,—1 7 j,. Choose
any 77 € (Tx — 7, T4), let N’ bound the number of switchings in j(-) on [0,7"],
and set N = N(§, N, Ty) as in (Hs). Now consider any one of the interswitching
intervals Z =7, = [t',t"] (ie., t' = t,—1,t" =t,) witht' > T on which j = j = j,.
By (S)-c, this must be initiated with x(#'—) = ¢! producing a maximal cascade
a1 = e jt =g with Y(§7) € ¢ and €4 = £(¢7;57 ~ 5T for
v=1,...,n—1as in (Hy)-d. Assuming no points of = occur in this sequence (or
during 7) so Y is simply a continuous single-valued function there, one can show
easily that the set S of points in I which can initiate this particular sequence (as
€Y is closed and in ICNl, so compact in X. Thus, iterating f, the set S’ of points
terminating the sequence (as £"¢,) is also compact and S” = Y (S’) is compact
in Y — with 8” N BI = (), as the cascade is maximal. Hence there is a minimal
distance from S” to B7. We must have y(¢") € B? to end Z by initiating another
transition and note that [t — Y (m,;(t — t/,&n4)] is uniformly continuous on Z so
there is a minimal time required to make this transit; with only finitely many
possibilities for the cascade, this time 7, may be taken as the same for all so the
length 7, of such an interswitching interval is bounded below by 7, and there can
be at most 7/7, such intervals. We have no lower bound on the length of those
interswitching intervals involving points of Z, but the number of these is bounded
by our technical hypothesis (Hs), contradicting the assumption above of an infinite
sequence {Z,,}.
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Thus, the maximal domain must be [0, 00); as desired, the maximally defined
skittish solution is global. Of course, this need not be unique and there may also
be additional (non-skittish) global solutions. Note also, from this proof, that if we
are given, on a bounded domain, any [j(:),x(-),y(:)] satisfying (S) there, then it
can be extended to a global solution. O

Example 4.2. As a first example, consider a thermostat-controlled heating
system. For the simplest case, one would have a single point-evaluation sensor:
Y : £ — n=&(p) with p given in the spatial region Q2 and £ € X = C(Q). We take
the effect of the control in the boundary flux so (1.1) becomes the heat equation
for the temperature distribution x(t, -)

x; = Ax on 2, x, = ax+wv; at 00 (4.5)

defining 7; for the two modes j € J = {0,1} denoting OFF/ON. [Here the flux
difference v — vy gives the effect of the furnace or AC.] We have no jumps in the
state itself when the thermostat switches so f = idx. The well-posedness of (4.5)
is standard and (H;)-c.,d. as well as (Hz) are immediate since Y is single-valued
and continuous.

Now let 0. be our setpoint, the desired temperature, and allow a margin +4
with § > 0. Then switching is determined by

{0} ify>n.—94 {0} ify>n.+4§
Ao(y) =4 {0,1} ify=mn.—-0 Ai(y)=4¢ {0,1} ify=n.+0
{1} ify<n.—9 {1y ify<n.+o

COml = (_00777* - 5]7 80 = [77* - (S,OO),
ClmO = [77* + 57 00)7 81 = (7005 UE + 5]

Le., the furnace turns ON when temperature (at the thermostat) falls below 7, — 4§
and goes OFF when it rises above 7, + 0. [The resulting transducer: y(-) — j(-) is
precisely the hysteretic non-ideal relay of [6, section 28.2], well defined except for
the possible ambiguity of anomalous points.] We have (Hj)-a.,c.,d. trivially; with
§ > 0, (Hy)-b. holds as C° N C!™0 = (), and (H;)-e. holds as y(+) is continuous
here with each &7 \ B’ open.

Taking § > 0 is implicit in the usual design of thermostats and we note that
our hypotheses fail for the idealized thermostat with § = 0. In that setting one
has a (pointwise) functional map: y — j and convexifying when y = 7, (compare
[4, 3]) one does obtain existence, although with the possibility of Zeno-ness in the
form of sliding modes: ON/OFF oscillation of the furnace on the rapid scale. O

SO

Example 4.3. We conclude with a more demanding example, considering trans-
port on a graph with feedback modal control: descriptively, we imagine reacting
chemical species being transported by a solvent, moving as plug flow along the
pipe segments {F,, : m € M} of a network. These single-segment problems are
then coupled at each node N,, of the resulting graph I' through the allocation of
incoming flux, including exogenous sources, to outgoing segments, including ex-
ternal outputs). Our presentation here largely follows the more detailed treatment
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in [5].

The state x(t) in this example will be the densities (concentrations) u(t,-) of
conserved species of interest, taken in a suitable state space X of vector functions
onT. Themap Y : X — Y = R¥ is given by evaluations y; = Wik (-, 5k) at
specified sensor points 55 € I'. We have f = idy here and initially let the feedback
diagram be subject only to (2.3), (H;)-a., and Ci~i' n...n "™ = (), which is
here equivalent to (Hy)-b.

For simplicity of exposition we assume an incompressible carrier (solvent) and
uniform cross-sectional area ., in each pipe segment FE,, and input end 0,, inde-
pendent of the mode; the transport is produced by the action (specified by j) of
a pump at 0,,. The flow velocity v/, will then be constant on E,, and, again for
simplicity we assume v/, is also constant in ¢. The evolution m; of the system is
now determined by these flow velocities. First, we have a set of convection/reaction
equations: on each of the individual edges

ug + vl us = f(u) on E,, (4.6)

and will use the classical method of characteristics to construct solutions:

Let w(t;wp) be the solution of the ordinary differential equation

W' = f(w), w(0) = wo, (4.7)
Given (t,s), track back along the characteristic o(7) = s — [t — T]v to an
initialization point (79,00) — either 7 = 79 < t is a starting time (i.e., 0 or
the most recent switching time) with o9 = o(79) € E,, or else o9 = 0,, with

70 < 7 < t. Now set u(t, s) = w(t —7; w,) where w, is the given data at (79, 09).

The construction of 7; is then completed by the nodal coupling, specifying the in-
put data ., (-) to each pipe. For each node N,, we have input edges M, and
output edges M,, (with U, M,, = M = U, M;). Clearly the assigned flow veloc-
ities must satisfy the consistency condition

[flux in]fL = Z amuvl, = Z amvl, = [Aux out]gl =) (4.8)
meMy meMY

Assuming perfect mixing at the node, the vector of combined input concentrations
at IV, of the chemical species will be

Z{amvzn U (T, 1) : m € M}
S om0 Mo}
and the required input data to E,, is then given by
w(T,0m) = us(7) = Up(7) for m € M} (4.10)

[This must be modified in the case of exogenous sources, for which one can permit
some choice in the formulation.]

We take this construction along characteristics as defining our notion of solu-
tion for (4.6) and so the definition of =;.

Un(1) = (4.9)



14 Thomas I. Seidman

Our major technical difficulty in this example is to specify and topologize the
state space X so as to verify the hypotheses (H;) and (Hz) while maintaining con-
tinuity of this 7;. From our solution construction and the continuity of w(,-), we
see that discontinuities will propagate along the characteristics (including across
nodes) and can be created only at nodes at switching times. We expect, then,
that the state x(t) = u(t,-) will be a piecewise continuous function and will take
X = T to be a suitable space of such functions.

As with modal sequences j(-), it is possible to create degenerate ‘intervals of
continuity’ — allowing u(t,-) to be continuous on an interval [s, s'], take a value
on the degenerate interval [¢',s”] with s” = s/, and then again continuous on
[s”,s"]. This could occur if discontinuities propagating through edges E,, and
E,,» incoming to the same node N,, arrive simultaneously; in view of our modeling
considerations we interpret ‘simultaneously’ as meaning ‘indistinguishably close’
— although possibly distinct on the rapid time scale so we retain both possibilities
with the alternative intermediate values. These degenerate intervals correspond to
a fine spatial scale, comparable to the rapid time scale. In view of this possibility
we must careful with the interpretation of the sensor map Y, taking this to be
set-valued when such a subinterval coincides with one of the sensor points 5.

This suggests our characterization of an element of X = TC: for each m one
has a vector-valued piecewise continuous functions on closed subintervals, includ-
ing possible finite sequences of degenerate subintervals as with MS and then, much
as with Definition 3.1, we topologize this as follows:

Definition 4.4. [u* — w] in 7C if, for each E,,, the number of subintervals is
eventually fixed, the dividing endpoints converge, and the functions on them (nor-
malized to domain [0, 1] with values on degenerate subintervals taken as constants)
converge in the sense of C[0,1].

One easily sees that the problem is well-posed in this setting: 7; is continuous
from Ry x C to PC. As suggested earlier, we use point evaluations to define
Y:PC —Y=REby

Y(€) =[G (51),- -+, &) (3K)] (£ €TC) (4.11)

with the provision that: if a discontinuity of £ occurs at one of the sensor points 5
so &£(+) has both left- and right-hand values there (perhaps even more values if this
involves a degenerate subinterval), then y;(€) becomes the set of all relevant values;
this clearly gives (H;)-b.,c. It is not difficult to construct the feedback diagram to
give (H;)-a.,d. — e.g., taking S8’ to contain the open set )\ B?, perhaps adjoining
(as anomalous points) other points 7 € B/ for which Y ~!(n) contains ¢ from which
one might wish to extend the solution in mode 5 — and we assume this.

In order to satisfy (Hs) we require that the sensor points are separated from
the actuators, i.e., from the input nodes where discontinuities might be created.
Thus, we will assume there is some 7 > 0 such that

(5 — 0] /i > 7 forallj € J, 8, € Ep, k=1,.... K. (4.12)
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With this assumption, no discontinuity created after time ¢ = T could possibly
be propagated along characteristics to arrive at any sensor before ¢t = T + 7. If
we have bounded by N’ the number of switchings in j(-) up to Tk — 7, then our
dynamics and the graph geometry bound both the number of spatial discontinuities
arriving to any sensor point , creating a point of =, up to 7y — 7 and the number
of discontinuities in x(T% — 7), viewed now as an ‘initial’ state, and so bounds the
number which can arrive to a sensor point, creating a new point of =, by any time
T’ < T.). This total bound is then N (&, N',T) and we have verified (Hs). O
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