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Abstract. We consider dynamical systems under feedback with con-

trol actions limited to switching. We wish to understand the closed-loop

systems as approximating multi-scale problems in which the implemen-

tation of switching merely acts on a fast scale. Such hybrid dynamical

systems are extensively studied in the literature, but not much so far

for feedback with partial state observation. This becomes in particular

relevant when the dynamical systems are governed by partial differen-

tial equations. We introduce an augmented BV setting which permits

recognition of certain fast scale effects and give a corresponding well-

posedness result for observations with such minimal regularity. As an

application for this setting, we show existence of solutions for systems

of semilinear hyperbolic equations under such feedback with pointwise

observations.

1. Introduction

Interaction among components operating at distinct time scales is a chal-

lenging and important area of research and — though having great practical

consequences — is not yet understood in its full complexity. One approach to

such multi-scale problems is the theory of hybrid dynamical systems which,

as far as possible, suppresses consideration of unmodeled details of the fast

scale dynamics. One important scenario in this context is a continuous time

dynamical process on our (slow) scale coupled with an observation based

feedback controller acting on a much faster time-scale which we will then be

approximating as instantaneous. The effect of control decisions on the fast

scale then largely shows up as switching, selecting a discrete mode from a
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finite set by appropriate switching rules: a paradigmatic example is a ther-

mostat, ‘instantaneously’ switching a furnace ON or OFF depending on the

temperature observed at a single point. [We do also allow for the possibility

that a control action may take place entirely on the fast time scale, showing

up as a jump in the state or may be a combination of these. We do not

describe these possibilities explicitly, but that description should be clear.]

When the continuous dynamics are governed by ordinary differential equa-

tions and full state information is assumed, well-posedness of such closed-

loop systems has been addressed by many authors in this area — for exam-

ple, [Sei90, Ben97, Sch00, Mat00, Lyg03, Hee03].

Note that one typically considers switching structures in which the modal

transitions are restricted to specified edges of a transition graph — see Fig-

ure 2 — so the sequencing of these control decisions (e. g., with respect to

the fast scale) remains significant, even when one may have a cascade of

several such actions which could be viewed as ‘simultaneous’ on the slow

scale. For this reason it has seemed necessary to model the time domain of

the closed loop system as an augmented version of the ‘normal time’ interval

in I ⊂ R — a lexicographically ordered set

T∗ = {(t, 0) : t ∈ I} ∪ {(tk, j) : 0 ≤ j ≤ nk for k = 1, . . . ,K} ⊂ R × Z, (1)

with the real value t modeling the ‘normal time’ and the integer value j

indexing the cascade of discrete control actions at the same nominal time,

see, e. g., [Sei88, Sch00, Lyg03, Goe06, Gok08]. A difficulty with this for

sets of functions defined on such augmented intervals is that the relevant T∗
will vary with the function. Note that we leave specification of the set {tk}

somewhat ambiguous by allowing nk = 0 so we can always compare functions

on augmented intervals T∗ and T ′
∗ (with the same underlying normal time

interval) by working with the union of these sets for each of them.

We will be considering functions of bounded variation (BV) in a slight

modification BV∗ of the Jordan sense, defined on such augmented domains

T∗. Certainly the multi-scale perspective we have in mind is entirely consis-

tent with fast scale effects other than the control decisions and we therefore

accept the possibility of concomitant jumps in the state (and so possibly in

the observation) as the slow scale recognition of fast scale dynamics. This

is one reason we will wish to extend known results to such a BV context.

As an application we will here be considering switching control of a dis-

tributed parameter system so the scenario above couples the evolution of the

system, governed by a partial differential equation, with modal switching

based on sensor observations: y(s) taking values in an observation space Y

as described in [Sei09]. The provision of partial state observation becomes



AN AUGMENTED BV SETTING FOR FEEDBACK SWITCHING CONTROL 3

necessary for such infinite dimensional hybrid systems because the assump-

tion of full state observation is unrealistic in many cases. One wishes to

characterize switching rules (5) giving admissible switching controls with a

minimum of regularity assumptions for this observations, making up another

reason for a BV context.

It is important to consider the possibility of switching rules leading to

Zeno phenomena, i. e., accumulation points of control decisions (switching

times); this is one of the main technical difficulties in obtaining global ex-

istence results. In BV∗ one does allow infinitely many small jumps in the

state, but ‘non-Zenoness’ refers to finiteness of the set of control actions and

so means not only that there are at most finitely many slow scale switch-

ing times, but also that there are no infinite cascades. [We note, of course

that there are physical systems, e. g., a buzzer, whose hybrid idealization

would involve an infinite cascade, and our present theory would not cover

these unless the time scaling separates these discrete transitions (treating

the sliding mode as chattering) or one uses some averaging (homogenization)

to redefine this behavior as a single mode.]

We apply our results for the augmented BV∗ setting to show existence of

solutions for systems of semi-linear hyperbolic equations under such switch-

ing feedback control with pointwise observations. Since our example is a

first order transport system, we will also be led to the use of BV∗ for the

spatial domain.

2. BV∗ and Switching Rules

As anticipated in the introduction, we wish to distinguish ‘points’ in time

with the same ‘normal time’, but with well-defined ordering. This distinction

is to be viewed as permitting phenomena on a finer scale (in time) to rise

to our attention as necessary. We think of this as introducing an augmented

version T∗ of the normal (slow scale) control interval as in (1).

To consider BV for functions defined on an augmented time domain T∗,

we introduce

V ar(y,T∗) = sup
S

{

∑

k

|y(sn) − y(sn−1)|

}

(2)

with the sup taken over all (finite) sequences S = (s0 ≺ s1 ≺ . . .) in T∗.

Here, ‘≺’ means the lexicographic order in R × Z. We set

BV∗ = BV(T∗) = {y : T∗ → R : V ar(y,T∗) < ∞} (3)

with the subscript∗ to be understood as a reminder of the augmention in-

troduced above.
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µ = 1 µ = 2

µ = 3

y(t) ∈ C1y2

y(t) ∈ C1y3

y(t) ∈ C2y3y(t) ∈ C3y1

Figure 1. Example of a switching structure.

We will be addressing the Zeno phenomenon and some implications of

that time-domain modeling when the feedback uses partial state information

based on sensor data y. Given an augmented time domain T∗ ⊂ R × Z

as explained above, an observation-trajectory is a mapping y : T∗ → Y

with each sensor value y(s) given by the system state at the (augmented)

time s ∈ T∗. Accordingly, we consider the set of mappings {µ : T∗ → M},

where M is the finite set of available modes and µ(s) ∈ M for s ∈ T∗.

Observe that, since the switching times are initially unknown, this modeling

implies that the time domain T∗ of the closed-loop system is not given a-

priori, but must be constructed causally during the system’s evolution. A

feedback law then assigns a set of admissible mode-trajectories to a given

observation-trajectory and is, therefore, of the form

Φ : [T∗ → Y ] → 2[T∗→M ] (4)

which we make precise by assuming that the feedback Φ is given by a set of

switching rules of the form:






If one is in the mode µ at any given event time s ∈ T∗, then:

switching µ y µ′ is permitted (only) if y(s) ∈ C(µ y µ′),

staying in mode µ is permitted (only) if y(s) ∈ A(µ).

(5)

where the sets A(µ), {C(µ y µ′) : µ′ 6= µ} cover Y for each µ ∈ M . Such

switching rules encompass a very broad class of feedback laws.

Example 1. For Y = R, M = {0, 1} and thresholds ρ1 < ρ2 in R, setting

A(0) = {y ≤ ρ2} and C(0 y 1) = {y ≥ ρ2}

A(1) = {y ≥ ρ1} and C(1 y 0) = {y ≤ ρ1}

defines the well-known (closed) non-ideal relay, the elementary hysteron of

[Kra83].
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We further remark that, as in this Example, we do not require the sets

A(µ) and C(µ y µ′) to be disjoint in general and thus permit situations

with, e. g., A(µ) ∩ C(µ y µ′) ∩ C(µ y µ′′) 6= ∅ where staying in mode µ,

switching to mode µ′ or switching to mode µ′′ are all feasible according to

(5). Of course one cannot expect unique solutions of the closed-loop system

in the case of such switching rules and an appropriate theory must handle

such non-determinism.

Now observe that the nonempty sets C(µ y µ′) in (5) imply a switching

structure in the form of an underlying modal transition graph; see Figure 2

for an illustration. Also observe that the switching rules (5) do permit

cascades, i. e., compound jumps µ y µ′
y . . . y µ′′···′ (abbreviated as µ y

y µ′′···′) occuring at the same ‘normal time’ t. Indexing so µ0 = µ, . . . , µN =

µ′′···′ (where the length of the cascade is N = #{µ, . . . , µ′′···′}) and setting

sn = (t, n) for n = 0, . . . , N , this requires

y(sn) ∈ C(µn y µn+1) for 0 ≤ n < N, y(sN ) ∈ A(µN ) (6)

with the next control event, if any, being a switch to some mode µN+1 6= µN

at a time t′ > t. [We will continue to use this terminology and notation even

for N = 1, when this would not represent a true cascade.]

Independently of any feedback structure, we will call switching sequences

µ(·) : T∗ → M admissible, if

• for any two consecutive (distinct) modes µ, µ′ of the sequence, the

directed edge [µ → µ′] is in the modal transition graph (feasibility),

• there are only finitely many switches µ y µ′ in each finite interval

in ‘normal time’ (non-Zenoness).

With this in mind we consider possible paths [µ0 → · · · → µN+1] in the

transition graph and the corresponding sets

B[µ0, . . . , µN+1]

= C(µ0 y µ1) × · · · × C(µN−1 y µN ) ×A(µN ) × C(µN y µN+1).

We can then define ∆[µ0, . . . , µN+1] by

∆[· · · ] = inf

{

N
∑

n=0

|ηn+1 − ηn| : (η0, . . . , ηN+1) ∈ B[µ0, . . . , µN+1]

}

. (7)
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We do impose the following assumptions on the switching rules.

Hypotheses 1.

(1) Each C(µ y µ′) is closed (and empty unless [µ → µ′] is an edge of

the modal transition graph).

(2) For each µ ∈ M we have
(

Y \
[

⋃

µ′ 6=µ C(µ y µ′)
])

⊂ A(µ).

(3) There exists ∆∗ > 0 such that ∆[µ0, . . . , µN+1] ≥ ∆∗ for each path.

(4) For any V > 0, there exists N∗ = N∗(V ) such that ∆[µ0, . . . , µN+1] >

V whenever N > N∗.

These are, of course, purely geometric verifiable conditions on the sets A(µ)

and C(µ y µ′) which define the switching rules.

With the Hypotheses 1 at hand, we have the following Theorem.

Theorem 1. Suppose, for some T and δ > 0, y ∈ BV∗([T, T + δ]∗). Then,

µ(·) given by (5) is an admissible switching signal on some [T, T + δ]∗.

Proof. Consider any time interval I∗ = [T, T +δ]∗ and let V = V ar(y(·),I∗).

The Hypothesis 1.4 ensures, provided one has non-Zenoness, that the switch-

ing signal can always be constructed causally on I∗ by (5) with no cascade

longer than N∗(V ). [Note that the domain I ′
∗ of µ(·) for the normal time

I = [T, T +δ] is here determined by this signal, as it is constructed.] Clearly

from Hypothesis 1.3. above and (6), the separation distance between y at

the switching event starting any cascade and at the start of the next cascade

must be at least ∆∗ — i. e., if tk and tk+1 are consecutive switching times

in I, then

V ar(y, [tk, tk+1]∗) ≥ ∆∗.

By subadditivity of the variation, V ≤
∑

k V ar(y, [tk, tk+1]∗) > K∆∗, where

K is the number of such completed cascades during [T, T + δ]. Thus, we

must have K ≤ V/∆∗ and so at most (K + 1)N∗ switchings altogether. �

3. Semilinear Hyperbolic Systems in BV∗

As an example for a BV∗ setting, we consider semilinear transport/re-

action problems and, as in [Han08] will be interested in feedback-control

of the kind described by switching rules of the form (5). We wish to ex-

tend the results of [Han08] in two ways: first to be able to handle matrix

problems (in particular, systems of equations that can be regarded as the

linearization of the shallow-water equations, the Euler-equations for gas-flow

in pipes, equations of traffic flow, multi-commodity flow, etc.) and, second,

to the BV setting (which paves the way to a potential treatment of the fully

nonlinear problems).



AN AUGMENTED BV SETTING FOR FEEDBACK SWITCHING CONTROL 7

We, therefore, consider a ν-component family (parameterized by µ) of

reaction/transport systems

ut = Aµux + fµ(u), (0 < x < 1, t >
¯
t) (8)

with sufficiently regular Aµ = Aµ(t, x) and fµ(u) = fµ(t, x, u); we assume

the input data provided at the ends x = 0, 1 as appropriate will be suitable,

e. g., in BV∗; we also assume the initial data ū provided at
¯
t will be suitable.

Further we consider partial state observation, determined by point ob-

servations on some finite set (x1, . . . , xN ) of sensor locations, chosen in the

interior of [0, 1], so

y(t) = Pu(t, ·) = [u(t, x1), . . . , u(t, xN )] ∈ R
n with n = Nν. (9)

[Note that this assumes we observe each component at each observation

point, but that is not necessary. We could also have included observation

of the input data if desired, but that too is not required. Note, finally, that

we are assuming, without further mention, that 0 < x1 < . . . < xN < 1.]

The combined evolution of (8) and (5) for given initial data (µ̄, ū) at t = 0

will then be given by a sequence

(µ̄, 0, ū) → (µ1, δ1, u1) → (µ2, δ2, µ2) → · · · (10)

with each uk solving (8) with µ = µk,
¯
t = δk, and ūk+1 = uk(δk+1). [Note

that the evolving state is given by uk on the time interval [δk, δk+1] so there

is no evolution on intervals of length 0, when δk+1 = δk as part of a cascade;

we then have uk+1(δk+1) = uk(δk).] To have δk+1 > δk we must have

y(t) ∈ A(µk) on the time interval (δk, δk+1) while at the event times we

must have y(δk) ∈ C(µk−1 y µk) for each k = 1, 2, . . ..

As already in [Han08], we wish to consider data for which the appropri-

ate treatment of s ∈ [0, 1] allows us to distinguish ‘points’ with the same

nominal position (changing in time), but with well-defined ordering. This

distinction is now to be viewed as permitting phenomena on a finer spatial

scale: compare (1) in Section 1. We think of this also as introducing an

augmented version [0, 1]∗ of the ‘normal interval’ [0, 1] by taking

[0, 1]∗ ⊂ R × Z (11)

much as for temporal intervals. We will use the same notation and definition

(2) as for augmented temporal intervals, noting that the nature of one-

dimensional transport systems is that the treatments of time and space

should correspond through the characteristics.
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We will impose the following assumptions, holding for each µ.

Hypotheses 2.

(1) The matrix functions Aµ depend smoothly on (t, x) and each Aµ(t, x)

has distinct non-zero eigenvalues: λµ
k = λµ

k(t, x) 6= 0.

(2) The reaction term fµ is bounded (|fµ| ≤ β) and is uniformly Lips-

chitzian in u (with a Lipschitz-constant L).

[These are not minimal hypotheses: for example, the bound on |fµ| is de-

ducible from the Lipschitz condition and a bound for initial data.]

Assuming that Hypotheses 2.1 holds, we can set

Dµ = Dµ(t, x) = diag{λµ
k} = PµAµ(Pµ)−1, û = Pµu

and

f̂µ(t, x, û) = f̂µ(û) = Pµfµ((Pµ)−1û) + DµPµ
x (Pµ)−1û (12)

to get a system

ût + Dµûx = f̂µ(û). (13)

In order to use the method of characteristics we let

t 7→ σ(t) = σk(t; t∗, x∗)

satisfy the ordinary differential equation

σ̇ = −λµ
k(t, σ) σ(t∗) = x∗ (14)

so (13) becomes a coupled system of ODEs for the components ωk of û

d

dt
ωk(t, σk(t)) = f̂µ

k (t, σk(t), ω1, . . . , ωK) (15)

with the components f̂µ
k of (12). Observe, from (15), that singularities of

each ωk can propagate only along the characteristics σk.

In the following we will drop the ˆ and simply assume Aµ was given as

diagonal in (8) so we actually start with (13), but note both the regularity

required to include Pµ
x in f̂µ and the necessity of re-interpreting the results

if we had really needed to make the change of variables.
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¯
t
0 1

b

b

b

(t, s)
b

σ1(t) σ2(t)

σ3(t)

(t∗, s∗)1

(t∗, s∗)2

(t∗, s∗)3

Figure 2. Typical set of characteristics σk(t).

For our present purposes in this section we assume the families of charac-

teristics σk(·) are already given for each mode µ and will then actually start

with the integral equation form of (15) — see (17) below — with only min-

imal concern for the regularity needed to derive this from previous forms.

Our only significant assumptions here are following.

Hypotheses 3.

(1) For each k and for each t > t0 we have σk(τ) = σk(τ ; t, x) defined

and monotone in τ for t∗ ≤ τ ≤ t with σk(t; t, x) = x. [We assume

each σk is either increasing (corresponding to λk > 0 in the setting

of a smooth matrix problem, as earlier) or decreasing (corresponding

to λk < 0).] Here p∗ = (t∗, x∗) denotes the ‘starting point’: σk(·),

going backward in τ from p = (t, x), always hits either the initial time

(t∗ = t0 with x∗ = σk(t∗) in [0, 1]) or the appropriate input boundary

(t0 ≤ t∗ ≤ t with x∗ = σk(t∗) = 0 or 1, depending on whether σk is

increasing or decreasing). See Figure 2 for an illustration.

(2) For x′ ≺ x in [0, 1] we have

σk(τ ; t, x′) ≺ σk(τ ; t, x) for each τ ≤ t (16)

provided t∗, t
′
∗ ≤ τ ; similarly, when the characteristic hits the rele-

vant input boundary, we require t′∗ ≺ t∗ for increasing σk and t∗ ≺ t′∗
for decreasing σk.

[Note that we do not insist that σk(τ ; t, x) should depend continuously on

(t, x) and if x, x′ correspond to the same position (so, in our regular notation

we have x′ = x, say with x′ ≺ x), then we need not assume that σk(τ ; t, x′) =

σk(τ ; t, x) although we do assume (16). In particular, if switching might

occur during a time interval under consideration, we assume one can ‘restart’

each characteristic across the switching time.]

At this point we are ready for our main concern of this paper: to prove

the following existence result.
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Theorem 2. Under the Hypotheses 1, 2 and 3 the transport/reaction prob-

lem (8) with feedback (5) has solutions.

Proof. As usual, one works with (15) as a system of integral equations:

ωk(t, s) = ωk(p∗) +

∫ t

t∗
fµ

k (t, σk(τ ; t, x), ω(τ, σk(τ ; t, x))) dτ (17)

for k = 1, . . . , ν — coupled through the evaluation of fµ
k at u = [ω1, . . .]

in the integral. We will henceforth take (17) as defining our notion of a

‘solution’ of what we continue to write in the form (15) or (13) and so as

defining our notion of solutions of (8).

Our strategy is to construct µ(·) and ω = [ω1, . . .] on short time intervals

[T, T + δ], proceeding recursively. The key to this is the observation that,

for the problem (8), one can choose δ > 0 such that the observation y(·)

on any [T, T + δ]∗ can depend on switching prior to T . Our main concerns,

then, will be to show, firstly that the constructed state evoltion is such that

y(·) ∈ BV∗[T, T + δ] and, second, that this ensures that any µ(·) consistent

with (5) will be in BV∗[T, T + δ].

Thus, we begin by considering (17) on a time interval [T, T + δ] for which

we assume the switching signal µ(·) has been given (so this is really [T, T +

δ]∗) and we also have given the initial and input data. It is then standard

to see that the right hand side of (17) defines a contraction mapping on the

space L∞([T, T + δ];L1([0, 1]; Rν )) (with a suitable, exponentially weighted,

norm), so a solution exists there. What is missing in that for our present

purposes is an a priori estimate for V ar(u(t, ·); [0, 1]∗). As in (2), we let

S = [0 = x0 ≺ x1 ≺ · · · ≺ xN = 1]

and, temporarily fixing k, consider (17) for each x = xn with corresponding

characteristics σk(τ ; t, xn). For exposition, we will assume for this k that

the characteristic curves σk are right-moving with increasing t so the input

boundary is at x∗ = 0. In this case we note that if x′ ≺ x′′ with x′
∗ = x′′

∗ = 0,

then t′∗ ≻ t′′∗ . Without loss of generality, we take the ‘initial’ time as T . We

assume that δ = t − T is small enough that σ(·; t, 1) hits the initial time

so t∗ = T for that characteristic. Again without loss of generality, we may

assume that xn̄ ∈ S is such that σ(T ; t, xn̄) = 0 (i. e., σ(t;T, 0) = xn̄) so
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tn∗ = T for n ≥ n̄ and xn∗ = 0 for n ≤ n̄. Then

ωk(t, xn) − ωk(t, xn−1)

= ωk(pn∗) − ωk(p(n−1)∗) +

∫ t(n−1)∗

tn∗

fµ
k (τ, σk(τ ; t, xn), u(τ, σk(τ ; t, xn)) dτ

+

∫ t

t(n−1)∗

[

fµ
k (τ, σk(τ ; t, xn), u(τ, σk(τ ; t, xn))

− fµ
k (τ, σk(τ ; t, xn−1), u(τ, σk(τ ; t, xn−1))

]

dτ

Using the bounds on fµ assumed in Hypotheses 2.2, we take absolute

values and sum over n to get

N
∑

n=1

|ωk(t, xn) − ωk(t, xn−1)|

≤
n̄

∑

n=1

|ωk(tn∗, 0) − ωk(t(n−1)∗, 0)| +
N

∑

n=n̄+1

|ωk(T, xn∗) − ωk(T, x(n−1)∗)|

+

n̄
∑

n=1

β[t(n−1)∗ − tn∗]

+ L

∫ t

T

N
∑

n=1

|u(τ, σk(τ ; t, xn)) − u(τ, σk(τ ; t, xn−1))| dτ

≤ V ar(ωk(·, 0); [T, t]∗) + V ar(ωk(T, ·); [0, 1]∗)

+ β(t − T ) + L

∫ t

T

V ar(u(τ, ·); [0, 1]∗) dτ

noting that Sτ = (σ(τ ; t, xn̄), . . . , σ(τ ; t, xN )) and ST = (0 = xn̄∗, . . . , xN∗)

each partition (part of) [0, 1]∗ and that (tn̄∗, . . . , t0∗) partitions [T, t]∗; taking

the supremum over S gives

V ar(ωk(t, ·); [0, 1]∗)

≤ V ar(ωk(·, 0); [T, t]∗) + V ar(ωk(T, ·); [0, 1]∗)

+ β(t − T ) + L

∫ t

T

V ar(u(τ, ·); [0, 1]∗) dτ.

(18)

Essentially the same estimate holds for each k, noting only that the in-

put data would either be at x = 0 for increasing σk or at x = 1 for de-

creasing σk′ . We may then sum over k to get a similar integral estimate

for V ar(u(t, ·); [0, 1]∗) and then apply the Gronwall inequality to bound

V ar(u(T + δ, ·); [0, 1]∗) directly in terms of the variations for initial data

and input data.
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It is important to realize here that the input data will include the effects

of switching during the interval [T, t] along with any exogamous input. Us-

ing the estimate recursively for T = 0, δ, . . . ,mδ, . . ., we have a bound on

V ar(u(t, ·); [0, 1]∗) (0 ≤ t ≤ T ) in terms of T , of bounds on the variations of

the initial data and of the exogamous inputs (over [0, T ]), and a bound on

the number of switches during [0, T ].

This proves that the solution we initially obtained in L1 by a contraction

mapping argument is, indeed, in BV∗ with an estimable bound on the spatial

variation V ar(u(t, ·); [0, 1]∗) at fixed times. Essentially the same argument

can be used to bound the temporal variation V ar(u(·, s̄); [T, T + δ]∗) at a

fixed location x̄, although this is treated somewhat differently when x̄ is a

sensor location, assumed internal to (0, 1), or is an output boundary.

We next consider intervals I(τ) ⊂ (0, 1) for τ ∈ [T, t] such that for each k

and each x ∈ I(τ) one has σk(τ
′; τ, x) ∈ I(τ ′) for each τ ′ ∈ [T, τ ]. [What we

have in mind is I(τ) = [σ−(τ ; t, x−), σ+(τ ; t, x+)] where I(t) = [x−, x+] ⊂

(0, 1) and where σ±(·) are the most rapidly increasing and most rapidly

decreasing families of characteristic curves. We are here assuming that t−T

is small enough that this gives I(T ) ⊂ (0, 1).]

Let vk(τ) = V ar(ωk(τ, ·);I(τ)∗) and v̄(τ) = V ar(u(τ, ·);I(τ)∗). Much as

in the derivation above of (18) — only simpler because all of the relevant

characteristics remain in {(τ, s) : s ∈ I(τ), T ≤ τ ≤ t} without hitting

input boundaries — we now track back a partition of I(τ) along σk(·) for

some k and use (17) to obtain

vk(τ) ≤ vk(T ) + β(τ − T ) + L

∫ τ

T

v̄(τ ′) dτ ′. (19)

Summing over k and then using the Gronwall inequality, we obtain a bound

on v̄(τ) = V ar(u(τ, ·);I(τ)) on [T, t] in terms of v̄(T ).

For a sensor location x̄ ∈ (0, 1), we now assume t − T is small enough

that we can take x̄ ∈ I(t) above with I(T ) ⊂ (0, 1). To estimate the sensor

variation V ar(u(·, x̄) : [T, t]∗) we next take

S = [T = τ0 ≺ τ1 ≺ · · · ≺ τN = t].
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Much as earlier, we use (17) to obtain

ωk(t, τn) − ωk(t, τn−1)

= ωk(T, xn∗) − ωk(T, x(n−1)∗)

+

∫ τn

τn−1

fµ
k (τ, σk(τ ; τn, x̄), u(τ ′, σk(τ ; τn, x̄)) dτ

+

∫ τn−1

T

[

fµ
k (τ ′, σk(τ ; τn, x̄), u(τ, σk(τ ; τn, x̄))

− fµ
k (τ ′, σk(τ ; τn−1, x̄), u(τ, σk(τ ; τn−1, x̄))

]

dτ

Then, taking absolute values and summing over n, we get

N
∑

n=1

|ωk(t, τn) − ωk(t, τn−1)|

≤
N

∑

n=1

|ωk(T, xn∗) − ωk(T, x(n−1)∗)| + β(t − T )

+ L

∫ t

T

N
∑

n=1

|u(τ, σk(τ ; τn, x̄)) − u(τ ′, σk(τ ; τn−1, x̄))| dτ.

Noting that [xn∗ = σk(T ; τn, x̄)] and [σk(τ
′; τn, x̄)] are, in reversed order,

partitions of (parts of) [I(T )]∗ and [I(τ ′)]∗, this gives

V ar(ωk(·, x̄), [T, t]∗) ≤ vk(T ) + β(t − T ) + L

∫ t

T

v̄(τ) dτ (20)

with the observation that (19) already bounds the right hand side here in

terms of v̄(T ). We can always choose δ > 0 so that δ < x1/λ
µ
k for each

positive λµ
k and δ < xN/ − λµ

k for each negative λµ
k so input up to time

T cannot reach any sensor point xn along any characteristic by T + δ and

so cannot affect the observation y(·) on [T, T + δ]∗. We can then apply

Theorem 1 on each subinterval of length δ to complete the proof. �

While we worked with the transport equation only on a single simple seg-

ment, we note that the treatment here extends with only minor changes to

the case of transport on a graph, as would be the setting for a gas pipeline

network or a highway traffic system — the only essential element of that

which we have not considered here is a good treatment of the nodal condi-

tions governing the distribution of material flowing through nodes of that

graph.
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4. Convergence in BV∗

Let us review briefly the formulation of BV∗. We consider, first, the

switching signal µ(·). This has a well-defined sequential order with tran-

sitions µk y µk+1 and is associated with the passage of (normal) time so

each such modal transition occurs at a specified switching time tk. For

admissilbility of such a switching signal we require

(1) order is preserved: k ≥ k′ implies tk ≥ tk+1 (note that we do not

require that the {tk} be distinct on our slow scale);

(2) there are only finitely many such transitions within any finite inter-

val.

The interpretation here is that a set of switching actions taking place “at

the same time” really are occurring in sequence on the fast scale, which is

left largely unmodeled, so we may have tk = tk+1 but still tk ≺ tk+1. As

noted, one notational device for recognizing this is the use of the augmented

time interval T∗ ⊂ R×Z as in (1). The variation V ar(µ(·);I) is here defined

as the number of modal transitions within I.

For eventual purposes of considering both ‘well-posedness’ and optimal

switching, we wish a topology for these sequences and, in the presence of

a bound as in 2.) on the number of switchings, take µν → µ̄(·) to mean

that, for each k, one has both tνk → t̄k and µν
k = µ̄k for large ν. [Note that

the number of distinct (normal time) switching times cannot increase in the

limit.] Bounding the number of switchings and the (normal time) length of

the interval will ensure compactness for this topology.

Next, consider the construction of such a switching signal dynamically by

feedback. We are here assuming that at each moment t (of the effective time

— which is also being created dynamically) we have a sensor output value

y(t) ∈ Y, obtained by (partial) observation of the state and perhaps of some

external inputs and that (5) uses this to construct µ(t).

What is needed for an effective theory is that our definition of the appro-

priate space BV∗ should have the properties:

(a) If we have y(·) ∈ BV∗, then any resulting switching signal µ(·) pro-

duced through the rules (5) should be admissible as above — this is

Theorem 1.

(b) If µ(·) is admissible on [0, T ], then the sensor output y(·) produced

by the dynamics and observation P being considered will be in

BV∗([0, T ]∗) — this the principal point of the argument for The-

orem 2.

It is significantly more difficult to give a good general description of the

corresponding BV∗ for Y-valued functions. For our application it turned
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out to be entirely satisfactory to define this, both in time and in space,

essentially as above for µ(·), but we note some potential difficulties when we

would wish to consider limits and the desirable property:

(c) Each of the reciprocal maps y(·) 7→ µ(·) and µ(·) 7→ y(·) of (a), (b)

will be continuous, using our topology for BV∗.

Note that we have not considered this last property in any detail here, but

the essential point is that our treatment of the fast dynamics should be rate-

independent when normal time interswitching subintervals [a, b]ν collapse in

the limit (aν , bν → ā) — the interesting situation is the possibility that

this may happen with V ar(yν , [a, b]ν) 6→ 0 so some slow scale evolution is

becoming nontrivial fast scale behavior: we may think of the ‘value’ y(ā) as

some actual fast scale function but, since we leave this unmodeled, we may

think of it as an equivalence class of these modulo fast scale order-preserving

reparameterizations. What is then needed is inclusion in the collapsed form

of just enough information that the output of the map should depend only

on this. One might consider for this the more detailed description in [Han08]

for the context of piecewise continuous functions with similar augmentation

of the intervals.

References

[Ben97] Bensoussan, A., Menaldi J. L.: Hybrid control and dynamic programming. Dy-

namics of Continuous, Discrete and Impulsive Systems, Nr. 3, pp. 395–442 (1997).

[Gok08] Gokhman, D.: Topologies for hybrid solutions. Nonlinear Analysis: Hybrid Sys-

tems, Nr. 249, pp. 261–288 (2000).

[Hee03] Heemels, W.P.M.H., Camlibel, M. K., van der Schaft, A. J., Schumacher, J.M.:

On the existence and uniqueness of solution trajectories to hybrid dynamical systems.

Nonlinear and Hybrid Control in Automotive Applications (Eds.: Johansson, R. and

Rantzer, A.), Springer-Verlag, pp. 391-422 (2003).

[Han08] Hante, F.M., Leugering, G., Seidman, T. I.: Modeling and Analysis of Modal

Switching in Networked Transport Systems. Applied Mathematics and Optimization

Vol. 59, pp. 275–292, (2009).
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