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Abstract. We consider networked transport systems defined on directed
graphs: the dynamics on the edges correspond to solutions of transport
equations with space dimension one. In addition to the graph setting, a
major consideration is the introduction and propagation of discontinu-
ities in the solutions when the system may discontinuously switch modes,
naturally or as a hybrid control. This kind of switching has been exten-
sively studied for ordinary differential equations, but not much so far for
systems governed by partial differential equations. In particular, we give
well-posedness results for switching as a control, both in finite horizon
open loop operation and as feedback based on sensor measurements in
the system.
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1 Introduction

Despite the aphorism “Nature does not make jumps”, it is frequently useful
to work, either prescriptively or descriptively, with simplified models which in-
volve switching instantaneously between different modes of evolution. We wish
to understand these hybrid systems simultaneously as a design paradigm and
as approximating multiscale problems in which the implementation of switch-
ing is merely on a faster scale than what is being considered. In particular, we
aim at applications from civil engineering, where pumps, valves and other con-
trol elements in networked transport systems are to be operated: in view of the
macroscopic scale of the continuous dynamics involved, we consider the switching
of modes, here representing the operations, as effectively instantaneous. Simi-
lar multiscale problems also arise in various communication, information and
logistic areas.



In the present context we are primarily concerned with the use of this modal
switching for control design in the context of material flow governed by the
well-known semilinear reaction/transport equation

Opu + O [au] = f(u), (1)

embedded into a graph setting where, for example, modal switching might mean
opening or closing a valve at one of the nodes. While we view this switching as
instantaneous here, we do recognize that in a more detailed modeling it is simply
a process taking place on a more rapid time scale than we wish to consider. This
is not so obvious in the context of control design, but even modal switching which
is designed as instantaneous must somehow be implemented in the real world.
A successful switching model is then one where the precise mechanism of these
fast dynamics does not cause any unexpected surprises in what we do consider.
It is just this concern for what might be happening on the fast time scale — and
its implications, especially in the context of feedback control with point sensors
— which leads us to the rather technical treatment in Definitions 1, 2. We refer
to Remark 2 as well as, e. g., to [19,20] for further elaboration of these modeling
considerations.

Thus, we will have a finite set M ~ {1,..., M} of modes in which the system
may evolve with the expectation of switching between these. For the present
we simply consider M as a set, but note that it plausibly could be given the
additional structure of a directed graph, limiting the permissible transitions. So
we will have a discrete state component p(t) € M indicating the current mode
and describe here, following ideas of [17], the state space we will work with for

p(-)-

Definition 1. A switching function u(-) on [0,T] is constructed by specifying a
finite sequence of switching times in

Ax ={(r0,...,75) eRF T 0=1 <7y <+ <7 =T}

with an assignment of a mode i, € M to each interswitching interval [7;_1, 7%].
The set of all such switching functions will be denoted by [0, T]. A sequence
of switching functions {p”(-)} converges to u> if K¥ and each py are ultimately
constant and 17 — TEC.

Remark 1. In the above definition we abuse notation slightly by assigning modes
even to degenerate O-length interswitching intervals and by permitting several
switching times to coalesce while carefully preserving the sequence order of these.
Consistently with our concern for the modeling interpretation, we view these
values as a residue of genuine intervals on a faster time scale than we are choosing
to model. These instantaneous modes cannot affect the dynamics directly, but
nevertheless must be retained for our purposes. a

We have defined ., [0, T] and its topology precisely to obtain the following
compactness result.



Lemma 1. The subspace M15[0,T] C Mypw([0,T) corresponding to a bound on
K is sequentially compact.

Proof. Let © be a sequence in ,//lpffv [a,b]. Then, with a bound on the number
of switching points, we may extract a subsequence (re-indexed by v), such that
KY=K" = K < K. With f{ fixed, a switching function is equivalent to a point
in the compact set Az x MK, O

As a paradigm for transport problems involving modal switching, we are
considering material flow governed by (1) together with boundary and initial
conditions u|s—g = ¢(t), ult=p = u; considering (1) on a network, we must
also treat the coupling at the nodes. As suggested earlier, the modes considered
are often distinguished primarily by alternative nodal couplings (allocations of
incoming flux to outgoing edges), although we also include changes in the flow
velocities or reaction rates as possible modal transitions. Our goal, then, is to
study the effect of such discontinuous modal switching and how this is interacts
with the graph geometry of the transport, especially when the switching is used
as a feedback control.

While well-posedness and asymptotic behavior of similar systems on graphs
without switching modes have been considered in [10,15] using semigroup the-
ory and optimal control of networked transport systems have been considered in
[8,9,13,5,12] taking w;;(t) or ¢;(t) as a control, we will here consider the switch-
ing function u(-) as a control of the system. We note that working with such
discrete-continuous nature of systems governed by ordinary differential equations
(ODEs) is a rapidly developing area; however, similar systems involving partial
differential equations (PDEs) have seldom been considered in the literature so
far, although noting [3]. For readers not familiar with hybrid ODE systems, we
refer to, e.g., [16] or [2] for an introduction.

For the graph setting, we use a notation similar to the one introduced in [10].
We suppose we have a directed graph G = (V, E) with vertices V = {vy,...,v,}
and directed edges E = {eq, ..., ey}, each normalized and identified as e; ~ [0, 1]
( = 1,...,m). The distribution of material along an edge e; at time ¢ > 0 is
described by the unknown function u;(t,s) for s € [0,1]. The dynamics on the
graph are governed by PDEs like (1) that are coupled at the nodes, together
with a switching function u(t) as to switch certain properties of the system as
desired. The full governing equations are then

Dy (t.5) + O 0,5y 1, 9)] = 720 5,1, 9), 5 € (0.2), 120

Js
¢1_7 (a;b(t)u ) “ 0) Z(t) (z_: ¢+ ( u(t) )‘( Jr sOlt(t)( )) >0 )

u;(0,5) = @;(s), €(0,1)
p(t) € M={1,.. M}w t>0

fori=1,...,nand j=1,...,m, where for each fixed up € M



a(t,s) > 0 is the transport velocity of the flow along the edge e; [Note that,
for convenience, we have taken all a;‘ > 0 so flow is consistently ‘from left to
right’ on each edge.|

— [} (t,s,u;(t, s)) is a source/reaction function along the edge ¢;

— (qb;j)nxm and (¢;g-)nxm are incidence matrices for outgoing, respectively in-
coming, edges e; at vertex v; with coefficients

pp= il u=alO L u=e() (3)
I 0, otherwise I 0, otherwise
- wfj (t) are functions expressing the proportion of mass routed at vertex v;

into edge e;; these satisfy
I By — 0if b= —
0<wj(t) <1 and wj(t)=0if¢,;; =0, t>0 (4)
and we also ask that

dowh(t)=1 forallt>0 (5)

j=1

— ¢!'(t) is a source/drain function at the vertex v;

— @;(s) is the initial distribution of material along the edge e;.

We define the outgoing and incoming edge degree of a vertex

n

d-(v) =) o5  dT ()= ¢f (6)

j=1

and interpret the system (2) as routing material from the input vertices Z =
{vi|d*(v;) = 0 or ¢! # 0} to the output vertices O = {v; |d™ (v;) = 0} through
a network while the system’s parameters switch in time. Indeed, at any time
t > 0, condition (5) together with (2)2 implies Kirchhoff’s Law

m m
_ u(t), o + u(t), ()
;dm‘ (aj uJ) (t.0) ;@j (aj u]) ‘(tﬂ- w5 (1) (7)

for each i = 1,...,n, so we have conservation of flow along the edges and at the
vertices in regard to its respective sources fj“ or ¢t

We will be interpreting (2) using the classical method of characteristics (cf.,
e.g. [6, ch.II], [7, ch.VII]), thus considering generalized solutions which need not
be pointwise differentiable or even continuous except along the characteristics.
Both in interpreting the nodal coupling (2)2 and for our results on feedback
switching control for which we wish to be able to work with point sensors, we
must be strongly concerned with the regularity in time of point evaluations.
However (cf., Remark 2), we must accept the introduction and propagation of




discontinuities in the solution and so work with a space of piecewise continu-
ous functions. Our interest in feedback control, with state-dependent switching
rules, i.e., viewing M as a state-dependent directed graph, will then require our
definition to be similar to Definition 1 in retaining certain aspects of the fine
structure so this again will be a nonstandard space.

Definition 2. A piecewise continuous function g(-) on [a,b] is constructed by
specifying finitely many partition points a = pg < p1 < --- < pg = b and,
on each partition subinterval, assigning a continuous function g, € €10,1]. For
degenerate 0-length subintervals, we impose the restriction that the assigned g
must be constant. As a function on [a,b], we have

S — Pk—
o(s) = i (p) for s € (per, 1)
Pk — Pk—-1

and g(s) = [gr-1(1), gr(0)] if s is one of the partition points py. We may even
have g(s) = [grk—1(1), gk, - - -, Gk+i—1, 9k+1(0)] at coalesced partition points py, =
-+ = pi41; note that the multiple assignment at such a point is not just a set, but
preserves the sequence order. The set of all such piecewise continuous functions
will be denoted by Gpwla,b]l. A sequence of such functions {g”(-)} converges to
g% € Gpwla,b] if K¥ is ultimately constant with p}, — p3° and each gy (-) — g5°
uniformly on [0,1]. Piecewise continuous functions on the graph will then be in

Cow(G) = (Gpw[0,1])™.

For a given u(-), we see that generalized solutions of (2), as given by the
method of characteristics, for piecewise continuous data, will lie in the space
Gpw ([0,T] — Gpw(G)) of piecewise continuous functions from [0, 7] into Gpw (G).

Remark 2. As in the comment following Definition 1, we have again abused
notation slightly by admitting degenerate 0-length partition subintervals and
permitting several partition points to coalesce while continuing to assign func-
tions separately to each of the infinitesimal subintervals. We will provide some
motivation for this definition and, in particular, comment on the interpretation
of the coupling given by (2)2 for solutions of such regularity.

While we defer to the next section a detailed discussion of our use of the
method of characteristics, we first note a couple of examples indicating how
modal switching, especially in the context of a graph geometry, can introduce
discontinuities which then propagate.

Ezample 1. Consider a 1-edge graph with (1) taken simply as u;+us = 0
and with constant initial data u = 1. In the first mode we use u|s—¢ = 1,
so the solution remains u = 1, but at the switching time ¢t = 7 the new
mode keeps the equation fixed but now uses input data u|s—¢ = 2. Then
a jump discontinuity is introduced at the input node and propagates
(along the characteristic s = ¢ — 7) into the edge.

For comparison, consider a simple 2-edge graph with e; feeding into es
through the central node v. We again take constant initial data u = 1 for
both edges and constant input data v = 1 into e;. For the first mode we



use the equation u; + us = 0 in both edges and then switch at the time
t = 7, to a new mode with the same equation on ey, but now with the
equation u; + 2us = 0 on e;. One easily sees that the solution remains
u = 1 on ey, but the flow velocity there has become 2 so the flux into
the node has switched from 1 to 2 at ¢t = 7. By Kirchhoff’s Law the
input flux to es must then be 2 corresponding to u|s—g = 2 for e after
7 — giving the same jump discontinuity introduced at the node (and
propagating into ey along the characteristic s = ¢t — 7) as before.
Except for discontinuities present in the initial data, we see from this
that new discontinuities will (only) be introduced at nodes at switching
times and will then propagate along characteristics: compare [14].

While not true for general elements of €y ([0,T] — Gpw(G)), we easily see
that point evaluation of a solution (or the corresponding flux) will produce a
function in %}, ([0, T]) since the discontinuities propagate only along character-
istics. Some comment is needed, however, about how to combine (sum) several
of these (specifically coming from evaluations at the endpoints of edges incoming
to a single node) as is required for our interpretation of (2);. When there are no
repetitions, the set of partition points for the sum will be the union of the sets
for the summands with the sums obtained as usual on the resulting subintervals.
One must be careful, however, when there is a repetition.

Ezxample 2. Consider a Y graph with ey, es directed toward the central
node and ez directed out; we take u; + us = 0 on each edge so, using
Kirchhoff’s Law, we have wug(t,s) = u1(0,s — ¢t + 1) + u2(0,s —t + 1)
for0 < s <1, 0<s—t+1< 1. As initial data we take u; = H.,
e = 1— Hy with He(s) = {0 for s < 1/2+¢ 1fors > 1/2+ ¢} so
at t = 1 we have us(1,-) = H. — Hp + 1. For small € > 0 one then has
us(1,-) = 1 except on the infinitesimally small interval (1/2, 1/2 + ¢)
where ug(1,-) = 2. On the other hand, for ¢ < 0 one has uz(1,:) =1
except on (1/2 + €, 1/2) where, now, ug(1,-) = 0. Taking the limit as
€ — 0 for the initial data, without regard for sign, we obtain two limit
solutions distinguished by the retention of either 2 or 0 as assigned to the
degenerate interval corresponding to treating e alternatively as a positive
or negative signed infinitesimal: once the fine scale order is fixed, the sum
is clear.

Note that these solutions are distinct, representing information about behavior
on an unmodeled fast time scale in looking at the race between e; and es as to
which discontinuity will first arrive at the node, indeterminate at the level of
our modeling. While the distinction is of no direct significance for the transport
dynamics, it may be of later consequence for the switching dynamics of feedback,
so we must retain both possibilities — accepting as a consequence that the
solution would no longer be unique. Such indeterminate races, at worst, lead to
uncertainty among a finite number of alternative solutions differing at each ¢ only
on a finite set of points of the graph — so we consider the solution to be ‘almost
unique’: the relevant notion of well-posedness is then upper semicontinuity of



the solution sets as data is varied. We emphasize that, while our Definition 2
was largely motivated by consideration of modal switching, the nonuniqueness
which we have just observed occurs due to the nodal coupling rather than to
switching.

We may, of course, encounter still more complicated situations: one could
have more than two incoming discontinuities racing to a tie as above along
several incoming edges, but there is also the more interesting possibility that
one or more of the incoming discontinuities is already multiple with degenerate
partition subintervals. If, for example, each of the discontinuity points at 1/2 in
the Example 2 were double (a = b = 1/2 for e; and A = B = 1/2 for es, with
corresponding constant functions assigned to the infinitesimal intervals [a, b] and
[A, B]), then there would be 6 resulting possibilities (each leading to a quadruple
degeneracy with 3 assigned constants) corresponding to the alternative orderings
{abAB, a AbB, aABb, AabB, AaBb, ABab} on the fast time scale; we accept
each of these as an admissible alternative in accepting multiple solutions. The
general situation would be extremely cumbersome to specify in formal detail,
but goes the same way. O

With Definition 2 at hand, we later refer, for any time ¢ > 0, to the continuous
state component of the system (2) as the vector

u(t) = (ur(t, ), ... um(t, ) € Cou(G), 8)

in opposite to the discrete state component pu(t) € M introduced earlier. Thus

the hybrid pair
x(t) := [u(t), u(t)] 9)

will be the full state of the system.
We will make the following assumptions throughout the paper:

(A1) For every p € M and j =1,...,m, the given functions a?(-, -) are contin-
uous in t and continuously differentiable in s and there are bounds 0 < a < @
such that a < a;-‘ (+,+) < @. [Thus, by compactness, there exists a Lipschitz-

constant a such that |a¥ (-, s1) — @/ (-, s2)| < a@|s1 — s2| for all 51,2 € [0,1].]

(A2) For every u € M and j = 1,...,m, the given functi(_)ns f]“(,,) are
continuous; there is a constant b > 0 such that | f}'(-, -, u)| < b(14u) and there
exists a Lipschitz-constant b such that [ £} (-, -, u1) — (-, u2)| < bluy — ug|
for all uy,us € R.

(A3) For every p € M and (i = 1,...,n, j = 1,...,m), the given functions

wk:(+) are continuous and satisfy (4), (5).

ij
(A4) For every u € M and i = 1,...,n, the given functions ¢(-) are continu-
ous.

The paper will be organized as follows. In Section 2 we will consider the
system (2) with p(-) specified as data, i. e., we will show that we have an ’almost
unique’ solution u(-) in the sense described in Remark 2, and that the solution



set is upper semicontinuous in its dependence on the data. In Section 3, we will
consider the switching function u(-) not as given a priori, but as the argument
of an optimization problem

min, (e, 0,7 J [1(-), u ()]
{ suc(h) tngt o u('u) solves (2) with u(0) = i (10)

for a fairly general cost function J[-] including switching costs. In Section 4, we
complement the system by an internal feedback law at each ¢

stay with mode p unchanged

[, y] = or (11)
switch (immediately) to mode p'

specifying the discrete state component while the system evolves in time. The
feedback switching structure we consider, with y(-) given by a finite number
of point observations in the graph, parallels the structure occurring for opti-
mal switching with full state observation. We finally discuss some extensions of
the switching transport model above for applications and conclude with some
remarks in Section 5.

2 The Direct Problem: Taking u(-) As Data

We begin by considering well-posedness of the system (2) introduced in Section 1
when the discrete state component u(-) is specified a priori as data. It is conve-
nient to consider this first in the setting of a graph G consisting of a single edge
(m =1, n = 2) for which the (2) is equivalent to the following initial boundary
value problem (IBVP)

%u(t, s)+ a“(t)(t7 s)%[u(t, s)]= f“(t)(t, s,u(t,s)), s€(0,1), t>0
(t 0) — M t>0

W= o0 FF

u(0,s) = u(s), se€(0,1)

(12)

with fA(t, s, u(t,s)) = fr(t, s, u(t,s)) — %a“(t, s) for all p € M. Moreover,

using classical methods of partial differential equations, see e. g. [7], we consider

characteristic curves, denoted as $,(-), noting that these may change their slope

discontinuously at switching times but remain continuous. These characteristic

curves are obtained as solutions of the switched ordinary differential equations
d3q (1)

— O ) s (r) — 1
o a'M(t,85),  8o(ts) = S« (13)

with data (t., s«), in the initial gnomon

G:={(t,9)|t>0, s=0}U{(t,s)|t=0, 0<s<1}. (14)



[Geometrically, a gnomon is the L-shaped piece of a parallelogram remaining
when a similar parallelogram is excised from its corner. We are modifying this
usage to consider together the bottom and left side of the infinite rectangle
[0,00) x [0, 1], visualizing flow as ‘left to right’ along the edge so this gnomon
precisely contains the input data for transport on the edge.]

We parameterize the gnomon homeomorphically by o € [0, 00), using

1-— if 1
(t*75*)a - (07 U)’ 1 7=
(c —1,0), ifo>1.

Then, setting @y (t) = u(t, $,(t)), we have Oy, = Opu + a*9su using (13). Thus,
(12) becomes a family of switched ordinary differential equations in ¢, parame-
terized by o,

diy (1)

o ="t as1), 46 (0) =u

(tes)er  (EerSi)o €G (15)

where fHO (¢, 1, (t)) = fHO(t,3,(t), 4y (t)) With 5,(t) given by (13) and

a(l - o), o<1
(tursa)e = { (16)

" oMo (g —1), o>1.

We will be assuming a finite set of discontinuities of the data |, s,), on the
gnomon G and denote the set of characteristic curves emanating from these by
I'. Tt is easily seen that solution discontinuities can occur only along the curves
of I'.

With the above method, a generalized solution (i.e., constructed, as noted
earlier, by the method of characteristics so not necessarily differentiable and only
piecewise continuous) can be obtained for correspondingly suitable regularity of
the initial and boundary data, provided the system (13), (15) has a solution for
each o. With the choice of regularity for the data we have the following.

Lemma 2. Consider the system (12) under assumptions (A1), (A2) and (A4)
for m = 1 and n = 2. Moreover, assume that u(-) € €pw[0,1] and p(-) €
Mpw|0,T). Then there exists a unique solution u(-,-) of the IBVP (12). Further,
for fized s* € [0,1], u(-,s*) € Gpwl[0,T]. Finally, for each t € [0,T], we have
continuous dependence of u(t,-) on a(-), ¢*(-) and p(-).

Proof. Assuming (A1), (A2) and u(-) € #pw(0,T], the switched ordinary dif-
ferential equations (13) and (15) have a unique global solution on [0, 7T]. More-
over, the solutions are continuous also at the switching times 7, of () and
reversible (cf. e.g. [18]). So using that these solutions depend continuously on
the initial data, the resulting coordinate transformation (t,s) < (t,§,(¢)) is a
homeomorphism between the domain [0, 7] x [0, 1] and the corresponding portion
of [0,T] x G (where G is the gnomon). Consequently, the number of discontinu-
ities in u(t,-) is bounded by the number of discontinuities in a(-) and () (-)
on [0,1] or [0,T], respectively. Then, using that ¢*()(-) € %,y [0,T], we have



u(t*,) € Gpwl0,1] for all t* € [0,T]. By exchanging the variables ¢ and s, it
also follows that u(-,s*) € €pw[0,T] for all s* € [0, 1]. Finally, a laborious but
straightforward use of standard wellposedness theory for the ODEs (13), (15)
shows that u(t,-) depends continuously there on the data. O

We now get back to the networked system (2) and collect here the hypotheses
we will impose for the uncontrolled problem.

Hypotheses (H'):

1. The assumptions (A1)—(A4) hold.

2. The discrete state component pu(-) is given with p(-) € AW [0, 7.
3. The initial data satisfies u(-) € Gpw (G).

Theorem 1. Consider the coupled system (2) under the hypotheses (H': 1-3).
Then there exists a solution u(-) € Gpw([0,T] — Gpw(G)). Further, the solution
set is upper semicontinuous in its dependence on the data u and p(-).

Proof. We wish to apply Lemma 2 to each of the edges e;, j = 1,...,m. There-
fore, it suffices to show that the right hand side of the nodal conditions (2)s is
piecewise continuous for all i, j with quj # 0. This can be easily seen, noting that

under (A4), we have <pf-b(')(~) € Gpwl0,T] and u;(-,1) € G,w([0,T] according to
1)y,
J

Lemma 2, so (a j

o € Gpw|0,T], and that any finite sum of functions in
%pw|0, T'] taken as in Remark 2 is piecewise continuous. Well-posedness of the so-
lution u(t, -), as interpreted here, follows from the corresponding well-posedness
in Lemma 2. Indeed, the problem is almost well-posed in the usual sense since
nonuniqueness is impossible except in the coincidental situations discussed in
Remark 2. a

We next note certain bounds which we will use subsequently.

Corollary 1. Under the hypotheses of Theorem 1, there exist uniform bounds
for the transit time At(s,,s*) of material traveling from points s, to s* (s, <
s* €[0,1])

(8" —su)/a < At(sk,s¥) < (8" —s4)/a (17)

and there exists a constant ¢(T'), such that
lu(t)| < &(T) forallt e [0,T]. (18)
These bounds are independent of 1(-) € Mpw([0,T7).

Proof. The bound (17) is an easy consequence of (13) under (Al). Similarly, the
bound (18) is given by (15) under (A2), i.e.

A7) = T (s 550+ max | Oll 4 T5) . (19

J i
where df,. = max; d*(v;), [|4;(-)]|ec and [|¢f (")l are finite due to u; €
Cowl0,1] and ¢! (+) € Gpw [0, 7. 0

10



3 Optimal Switching

In this section, we wish to consider the possibility of optimal modal control for
the system (2) — taking the switching function p(-) not as given a priori, but
as an open loop control, subject to our specification in order to minimize a cost
criterion of the form

I :/o [C“(t) (u(?)) + Zéi(u(t)) oMt
€O
3 20
+ZV(Tk—Tk_1;u(Tk);uk_l ~ ) o= ATk (20)
k=1

+ e My(u(T)).
Here, for each fixed u € M,

— () is a running cost involving costs ¢} (-) and dj(-) for the distribution
of material along the edges or the external input at the nodes, respectively,
e.g.,

i=1

m 1 n
() =) (/0 ¢ (s,uz)ds + Y df (wij (1), @?(0)) (21)
j=1

Y(Tsu; i) is a switching cost associated with a modal transition p ~ p/

= 6i(u(t)) = 8:(Bi(t) — >2j=1, ., Pi;ui(t, 1)) models a demand penalty at the
output vertices i € O
— (+) is a terminal cost
— A is a discount rate.
We will indicate as needed the dependence of J[-] on the data u(-), u(-), x(-), X, etc.
and we write J7 to indicate dependence on T. Our principal objective here is
to show the existence of an optimal control, i.e., solving (10) for J[] given as

above. We collect here the hypotheses we will impose for this optimal control
problem.

Hypotheses (H?):

1. The assumptions (A1)-(A4) hold.

2. The functions f;(-) are given.

3. For the initial state X = [@, i], we have @ € 6w (G) and i € M.
4

. The functions c¢#(-) in (21) are Isc (lower semicontinuous) on the closed set
{u:ct(u) < co}.

5. The functions 7,u +— ~(7,u) are Isc, there exists a bound v > 0 such that
() =7
6. The functions §;(-) and 9 (-) are lIsc.

11



7. For some p(-) € Mpw[0,T], defining u(-) by (2), the cost J(u(-),u(-)) is
finite.

Theorem 2. Assume the set of hypotheses (H?: 1-7). Then there exists an
optimal p1.(-) € Mpw|0,T] solving (10). Further, the minimized cost J.[X] =
T (3 X)] is lsc in its dependence on the initial data X.

)

Proof. The proof is fairly standard. Let p”(-) be a minimizing sequence in
My [0,T). In view of (H?: 5) a bound on J implies a bound K on the number
K of switching points in each p”(-). With the bound K the space of admissi-
ble switching functions ./, [0,7] = {210, T]| 11(0) = i} becomes compact
by Lemma 1 so, extracting a subsequence, we have u”(-) — pu.(-) for some
() € //ZPW[O,T]. The upper-semicontinuity of the solution set in its depen-
dence on p(-) in Theorem 1 ensures that the limit of the corresponding solu-
tions u”(-) is a solution u,(-) € Gpw(G). The lower semicontinuity conditions in
(H2: 4-6) then ensure similar lower semicontinuity for J[]:

T () <lminf Jp”()] = inf  Flu(x)] = J:[X]
v—oo () € Mo [0,T]
so the minimum 7, is attained at p.(-). Similarly, considering a sequence of
initial data X, — X, and a corresponding sequence of optimizers u%, we see
that J.[-] is Isc under the same hypotheses. m|

We could also consider the corresponding infinite horizon problem T — oo,
for which we omit the terminal cost 1(-) of (20) in defining J°. [Finiteness of
J*° may depend on having a large enough discount rate A in (20).] We also set

Mpw]0,00) = {p(+): [0,00) — M| u(-)ljo,1) € Apw[0,T] for all T > 0}. (22)

Corollary 2. Assume the hypotheses (H?: 1-7) for each bounded subinterval
[0,T] and the existence of some admissible global switching function u(-) €

Mp[0,00) = {u(:) € Mpy[0,00) | u(0) = i} for which T°[u(-)] is finite. Then
there exists an optimal p.(-) = p«(+,X) € Mpy[0,00) for which T = T>[u(-),%]
attains its minimum J°. Further, the minimized cost J°[X] = T [u«(+;X)] is
Isc in its dependence on the initial data X.

Proof. Since //pr [0,00) is nonempty by assumption, there exists a minimizing
sequence for J°°. From this sequence we can, as in the proof of Theorem 2,
extract a subsequence convergent on [0, 1], then extract from that a subsequence
convergent on [0,2], etc. (recursively) and by a diagonal argument obtain a
minimizing sequence {u”} convergent (on every [0,7]) to a switching function
p(+). Since {p”} is a minimizing sequence, we have

T < TX(X) +e, with g, — 0;

for each T we have (again as in the proof of Theorem 2, noting that {u"}
converges on [0,77)

T ] < IT W] 4 ,(T)  with e, (T) — 0.
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Then, for each T,
T ] < T[] +e(T) < T®W +e,(T) < TZ +e,(T) + &0

Letting T — oo gives J[u«;X] < J°[X] so this limit switching function p.
minimizes J°[-,X] as desired. Similarly, considering a sequence of initial data
X, — X and a corresponding sequence of optimizers p”, we see that J2°[] is
Isc under the same hypotheses. a

Remark 3. For an autonomous problem it is easy to see the invariant embedding
principle: that the minimizer on [0, 7] of the finite horizon truncation J7 with
P(+) = J2°[] will be the initial segment of an optimal control for the autonomous
infinite horizon problem with continuation optimal on [T, 00) for initial data
x(T). [A similar, but more complicated statement holds for time-dependent and
for finite horizon settings.] A consequence of this—compare the discussion in

[4]—is that one can never have x = [, u], X’ = [/, u] such that

T+~ i) < TEK] (23)

since in the state x one could immediately switch modes from p to p', incurring
the switching cost, and (23) would contradict the defining optimality of J.2°[z].
Thus one certainly remains in the mode p when the continuous component of
the state is in the open set

St = {u | T [wsu]] < 15{1;%{5?[[#’711]] + (e~ u’)}} : (24)

but, when (following the p-dynamics of the transport problem) one arrives at
the complement

8 = {ul 7 lwull = win (7=l 49 m w) f (25)

one can/should switch away from g to some p' attaining the minimum in (23), al-
though this does not distinguish where switching away from p is not merely pos-
sible but is forced by optimality. In such situations we have obtained nonunique
controls, but each provides the same minimum cost. We see that each 0S* is a
switching surface for leaving that mode: provided the value function J°[x] is
known and one has full state observation (or, almost equivalently, the possibility
of accurately reconstructing that), the policy of switching at OS* converts the
optimal control problem to feedback form. a

4 Switching by Feedback

In this section we consider the system (2) where the switching function p(-) is
neither prescribed nor optimized, but event-driven, to be determined by certain
switching rules during the system evolution. In particular, we have in mind some
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approximate implementation of the optimal control problem in feedback form as
described in Remark 3 in the last Section, but with the system state now only
partially known: our available information is given by S sensor values

yl(t):u(tvsl)v l:]-avS (26)

where each s; is a point in the graph, i.e., s; € e; for some j = j(I), so u(t, s;)
here means u;(t, s;).

For future reference we set y(t) = (y1(t),...,ys(t)) and will then set § =
min{s; |l = 1,...,5}, requiring that 0 < § < 1 with the interpretation that a
sensor placed at a node senses the density at the end of a particular corresponding
incoming edge (s; = 1 for that edge).

For a problem in which switching is the only control, a feedback law neces-
sarily has the form of an assignment of the points observed and control actions
as in (11), which we must make more precise by providing the rules we will use
to specify switching. We begin by assuming;:

(A5) For each u € M there is a disjoint pair of open sets " C RS and S* c RS
such that the complement S* of S* is the union of nonempty closed sets
CH™ with each CH C S* (1 € M).

Our switching rules are then

do not switch ify(t) e SH
switch o ~ g/ immediately — if y(t) € S* (with z/ s.t. y(t) € CA™H)  (27)
switch g ~ p/ optionally if y(t) € C*~* but y(t) ¢ S* U S*.

We note that this set of switching rules parallels the structure of Remark 3 and, in
its simplest realization, corresponds precisely to the elementary hysteron = ‘non-
ideal relay’ of [11, sect. 28.2]. Due to threshold phenomena in (27), one cannot
expect the solution to depend continuously on the system data. However, one
does want every limit of solutions again to be a solution, compare Remark 2. This
upper semicontinuity of the solution set was, after all, at the heart of Theorems 1,
2. Therefore we accept the ambiguity in (27) of optional switching and accept
as solutions the continuations for all the optional choices.

We also note the possibility of a multivalued measurement y(t) = [y*,. .., y*]
obtained from observing values assigned to degenerate partition intervals along
the lines of Example 2 of Remark 2. We interpret this by applying the switching
rules (27) successively to each of the components in that order, as if separated in
time — and accept that, even with the simplifying assumption C*~*" C S* in
(A5), this may result in instantaneous multiple switches u ~ g/ ~ -~ p"’
at the time ¢.

For our main result below, we impose the following hypotheses.

Hypotheses (H?):

1. The assumptions (A1)—(A5) hold.
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2. y()=(y1(+),...,ys(-)) is given as in (26).
3. The initial state X = [, fi] is in Gpw(G) x M.

Theorem 3. Consider the system (2) together with the feedback (27) under the
hypothesis (H3: 1-3). Then this hybrid system has a solution x(-) = [u(-), u(*)]
with u(t) € Gow(G) on [0,T] and u(-) € Mypw[0,T] for all T > 0. Further, this
nonempty solution set is upper semicontinuous in its dependence on the initial
data X.

Proof. Our major objective is the construction of the switching signal p(-), since
the construction of the solution is then given by Theorem 1. Our concern here
will be to show that the resulting switching signal is piecewise continuous, i.e.,
that u(-) € Apw[0,T) for any T > 0. In particular, we will have to show, despite
the difficulty that the observed state y(-) itself will have jumps, that no Zeno
phenomena can arise, i. e., that the switching times 7, (when a switch p ~ p' is
given by the switching rules) do not accumulate. To this end we first observe that
the control actions given by (27) are always admissible under assumption (A5).
Defining A = §/a, we recursively construct () on the time intervals [T}, Tyn+1]
(with T}, = mA). For this recursion we may assume that p(-) € #pw[0, 5] so
all the argument of Theorem 1 applies on that interval, in particular we know
that u(Tx) € Gpw(G), i.e., u(T}) has only finitely many jumps.

With this A it follows from the bounds on the transit times obtained in Corol-
lary 1 that the data at ¢t € [Ty, Tr,, + A] used for each of the sensor points s;
can only come from the ‘initial data’ u(Z},). Thus, recalling the arguments of
Lemma 2, we have y(-)|(7,, 741 € CpwlTm, Tmg1] for all I = 1,...,S and so

Y Tosn] € (Gow [Ty, Trms1])° . Further, we make use of the a priori bound
&(Tim+1) on u(-) also given by Corollary 1, saying that u(t) < &(Ty,+1) indepen-
dently of u(-), and so y(t) < &(Tp+1) for all ¢ € [0, Ty 41]. In the presence of this
bound the switching sets CrH are not only closed, but compact, so there is a
minimum distance d, > 0 in R¥ between any set CH' ™1 and any cror | Fur-
ther, on the union of closed time intervals where y(-) has none of the finite set of
discontinuities, y(-) is uniformly continuous. Consider, then, an interswitching
interval [t,t+7] on which y(+) is continuous. This begins with some modal switch
1" ~ p and terminates with g ~ g/ for some p”, p, )/ € M, so y(t) € Cr'
and y(t+7) € C*™ . Hence |y(t+7)—y(t)| > 0, and, by the uniform continuity,
this gives a lower bound 7, for the length of the interswitching interval. These
intervals are disjoint by definition, so there can be at most A/7, of them in the
finite time A.

For each sequence @” converging to 4™ in %pw(G), the bounds above are
uniform in v. Thus, by Lemma 1, for each corresponding choice ¥ consistent
with the switching rules (27), there exists a subsequence (again denoted by p*)
converging in .#,w[0,T] to p°>°. By Theorem 1, the upper semicontinuity of
the set of solution components u”(-) ensures that there exists u® such that
u” — u® and z*°(t) = [u*°(¢t), u™(t)] being consistent with (27) for all ¢ due to
the assigned limit values to degenerate intervals in p®(¢) and u®(t). Thus we
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have similar upper semicontinuity of the solution set in its dependence on the
initial data . a

5 Extensions and Final Remarks

In this last section, we wish to present some final remarks and discuss some
extensions of the proposed modeling in view of possible applications.

It should have become clear to the reader that, although the modal index u
is global at any time for our system (2), the distinction between one mode and
another may be quite limited for many applications, e.g., corresponding to a
change wj’(t) ~ wé‘j/ (t) at a single vertex or cutting off a single external source
ol (t) ~ gpé‘,(t) = 0 or changing the flow velocity af(-,-) ~ afl(~, -) at a single
edge: this is primarily a matter of notational convenience.

A word is in order about our inclusion of degenerate O-length intervals in
the Definitions 1 and 2. For Theorem 1, we did not really need the retained
specification of mode assignment for degenerate interswitching intervals since
they made no difference to the system dynamics and the retention of value
assignments for degenerate intervals of continuity in €pw(G) led to the concerns
of Remark 2, but also did not affect the observable dynamics there. However,
this retention has become significant in the context of Theorem 2. Suppose we
have a minimizing sequence p” with p ~ p' at 7 and p' ~ p” at 7. If
now 7/ and 7y, ; coalesce in the limit, we have to admit the compound switch
w o p' o~ p” as this is then likely to be less costly than the direct switch
i~ . Thus, the retention of the intermediate mode p’ for the now-degenerate
interswitching interval [y, Tk11] becomes necessary for our argument. Similarly,
the u-dependence of the costs v requires, for our argument, the retention of
assigned limit values for degenerate intervals of continuity of u(-) since this
can be relevant to relating the cost of the compound switch u ~ p’ ~ p” to
an appropriate limit of the sum of the costs for individual switches u ~ ',
i~ p” which might depend on just the values taken in the now-degenerate
continuity interval (e. g., dependence on the max or min of u(-) over some edge,
compare the example in Remark 2). To take advantage of the assumed lower
semicontinuity of these costs it is important to retain the assignment in the limit.
We could ignore these considerations under sufficiently restrictive conditions
on the switching costs: if these were independent of u and satisfy v(0;u ~
w) < (030 ~ p') +v(0; 4 ~ p”), then the retention would no longer be
needed for Theorem 2. However, for applications, we not only expect to have
some cost associated with each modal transition, but also that this switching
cost may depend on the continuous state component of the system. If we, e.g.
consider controlling a transport network by switching pumps on/off, then the
startup/shutdown sequence of a pump may not only take some (unmodeled)
time, but may also involve consumption of fuel or require manual intervention
subject to the state of the system. Moreover, the retention of limiting assigned
values both for degenerate interswitching intervals and for degenerate continuity
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intervals finally became explicitly significant for the well-posedness result in
Theorem 3.

It is easy to modify our modeling to address another typical problem arising
in many applications: in addition to the transport along the edges within the
network, material may also be stored (queued) at the vertices v;. We model
the storage buffer at the node by an additional state component U;(t) € R
(¢ € {1,...,n}) and enforce conservation at the nodes by replacing (5) by the
nodal dynamics

dUi() _ N~ [y (g0 ‘ — (g"® ‘ u(t)
dt ;{ ik (ak Uk) 1) ¢ik (ak Uk> 0) + ¢ (t) t>0 (28)

for ¢ = 1,...,n with an initial condition U;(0) = 0. A major difficulty is then
the treatment of constraints on U;(-), i.e. box constraints of the form

0< U, <U, (29)

representing limited storage capacity in the buffers that must be maintained by
(28). A plausible model might lead to a discontinuous switch of the dynamics,

e.g. abruptly switching wj’(t) ~ wfj/ (t) in (2)2 when a finite buffer is filled. For
the optimal control problem (10) we may penalize the violation of the constraints
(29), but one may also — similarly to observing the values of u(-) at finitely many
points on edges as in Section 4 — take U, (t) as part of the observed quantities
in R® and maintain the state constrains (29) by the switching rules (27). Well-
posedness of such a closed-loop system under appropriate hypotheses can then
be obtained by an argument analogous to that given for Theorem 3.

It should also become clear from our treatment that there would be little
difference in considering not a scalar but a switched multicomponent flow with
common flow velocities a}‘ (t,s). Also, the restriction to linear nodal conditions
(2)2 is only for expository simplicity, noting that all of our results hold if, in each
mode,one were to make non-linear but continuous assignments (2), at the nodes.
A treatment of the more general problem where the flow velocities are given by
matrices A? (t,s) subject to conditions of strict hyperbolicity and consistency is
in preparation, noting [1].

Finally, we mention here that a key assumption for all the treatment in this
paper is that the flow velocities a*(t, s) in (2) are independent of u, so we were
not dealing here with the shock formations which typically arise in non-linear
systems. Future work will be devoted to the analysis of switching non-linear
systems.
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