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Abstract

We consider a diffusing population as consisting of particles under-
going Brownian motion, each with its own history from a Lagrangian
viewpoint. For each such particle we then consider possible ”state
transitions” determined by crossing thresholds (hysteretic relay as in
hybrid systems). Our objective here is to construct a continuum model
of the resulting process as a reaction/diffusion system and then to show
existence of ”solutions” of this system. Technical difficulties arise here
in resolving the concerns of hybrid systems (anomalous points and the
possibility of Zeno phenomena) in a setting where one is tracking the
collective effects on individual diffusing particles without being able to
track their individual trajectories. [For visualization, we think of an
example of diffusing bacteria and nutrient in which, while undergoing
diffusive motion, each bacterium is reacting to its own experience of
local nutrient concentration in switching between dormant and active
modes.]
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1 Introduction

Imagine a population of dormant bacteria diffusing in a region Ω.. At some
time a supply of nutrient is added locally to part of the region and, where
this nutrient concentration v(x, t0) is above some threshold level η+, the bac-
teria are immediately re-activated. [For present purposes we do not question
whether instantaneity of bacterial transition between dormant and active
modes is a realistic idealization on a normal time scale, but take it as given
that this holds for the bacteria being considered.] At some later time t the
nutrient concentration has become v(·, t) and the region may be partitioned
into a subregion Ω+(t) where v(x, t) > η+, another subregion Ω−(t) where
v is below the threshold η− for transition to dormancy and an intermediate
region Ω∗(t) = {x ∈ Ω : η− ≤ v(x, t) ≤ η+}. What might we expect in Ω∗(t)?
If we could have used a Lagrangian viewpoint to follow an individual bac-
terium with path z(·) such that z(t) ∈ Ω∗(t), we would have noted that the
bacterium, initially dormant, would have been re-activated at any moment
that z(t) crossed the boundary to enter into Ω+(t) — by its motion or by
a change in Ω+ — and would then, similarly, have again become dormant
at any subsequent moment z(t) crossed the boundary to enter into Ω−(t),
etc. Thus, the bacterium switches mode (± = active or dormant) as it ex-
periences the nutrient concentration t 7→ v(z(t), t) and its current mode is
determined as given by its own most recent transition. Thus, we would have
well-determined modes for Ω±, but a bacterium found in Ω∗ might be either
dormant or active. Modeling this is further complicated by any behavioral
differences in these bacterial subpopulations: e.g., active bacteria (reproduce
and) metabolize nutrient, but dormant ones do not, so this affects the cou-
pling with evolution of v; they may also diffuse differently.

This example (closely related to the Hoppensteadt-Jäger model described
in Section XI.8 of [9]) indicates the kind of situation with which we are pri-
marily concerned. Indeed, the original motivation for the present analysis
came from a context suggested by bioremediation and optimal control (com-
pare, e.g., [4] and [7] in which the bacteria remained stationary). While one
might suggest a variety of similar problems, the emphasis here will be exclu-
sively on purely mathematical concerns rather than practical consideration
of any particular potential application. In particular, we will concentrate
on interpreting the formulation so that we can give a positive answer to the
fundamental question of the existence of ‘solutions’. We will return to these
problems in Section 5, but will begin our analysis with the Lagrangian view-
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point, isolating the experience of the individuals in the diffusing population.
When we follow dynamics z′ = ϕj(z) (for a fixed j ∈ M) we think of

this as a “mode”. If the modal index function j : [0, T ] → M is piecewise
constant, we refer to the jumps from one mode to another as the ‘modal
transitions’ of the title. Thus we would have

z′ = ϕj(z) j = j(t) on [0, T ]. (1)

[We do not require autonomous dynamics, but suppress the arguments t in
ϕj(t)(z(t), t).] We will be interested in situations where this switching of the
modal index is not specified as input, but is to be determined through the
operation of a transducer W so

j(·) = W[y(·)] with y = Y (v) (2)

where v is some auxiliary function whose evolution is coupled with that of z
and Y is a suitable scalar function. [For the bacterial example above, we have
y(t) = v(z(t), t).] Our concern is with W whose operation is to switch j(·)
from one mode to another when y(·) crosses some threshold, noting that this
may be somewhat history dependent so j(t) need not simply be determined
by knowing the current value y(t). This kind of modal switching has been
extensively studied in connection with hysteresis and in the control-theoretic
literature of ‘hybrid’ or ‘variable structure’ systems; see also [3], [5], [9],
etc. We will be considering descriptively the nonideal relay and variations,
collecting in Section 2 a review of some relevant material about W. For
simplicity of exposition we will mostly restrict our attention to M = {0, 1}
while noting in Section 2 that it is not difficult to generalize this to considering
M finite.

In considering diffusive contexts, we think both of the effect of stochas-
ticity on a variable structure system and of the coupling of such relay nonlin-
earities with diffusion equations. In Section 3 we will discuss the formulation
of a continuum model of a simple hybrid system with stochastic dynamics
and will then introduce a number of complicating variations.

In working with partial differential equations so z = z(x, t), the case where
the modal selection is global — think of a thermostat coupled with the heat
equation — is easily understood as a hybrid system in which the continuous
component has infinite dimensional state space. For our bacterial example,
this is not possible and it is then less clear how to formulate the resulting
evolution. In Sections ?? and ?? we discuss how this might be related to the
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stochastic problems when working in the diffusive context and show existence
of solutions for a model problem corresponding to that example.

2 Threshold induced switching

In this section we ask how the {0, 1}-valued function j(·) could be determined
by a relay from a function y(·), viewed as input. At this point we do not ask
how y might be obtained in connection with (2), but take it as given.

For scalar input the ‘ideal relay’ with threshold η is simply the discontin-
uous function

Wη(s) =

{
0 for s < η,
1 for s > η.

Dynamically, this gives the switching rules for Wη : y(·) 7→ j(·) as a trans-
ducer:

j(·) switches 0 y 1 when y(·) increases across η
j(·) switches 1 y 0 when y(·) decreases across η.

(3)

Note that this mandates switching when y(·) crosses η and we take it also
as forbidding switching other than at y = η. Effectively, this amounts to
working with a single “mode” which would be discontinuous across η; cf.,
e.g., [2].

More interesting (and more typical in control-theoretic applications) is
the ‘nonideal relay’ W with separated switching thresholds (η− < η+) so,
given a specified initial state j(0), the rules (3) become

j(·) switches 0 y 1 when y(·) increases across η+

j(·) switches 1 y 0 when y(·) decreases across η−
(4)

(again taking this as forbidding switching 0 y 1 except when y = η+ and
similarly for 1 y 0; a more complicated description would be needed if
one wished to allow for jumps in y(·)). Note that a nonideal relay is not
expressible as a function: one cannot determine j(t) from y(t) when η− <
y(t) < η+, although we do have a “Markovian” history dependence in that
j(t) is determined by only the most recent crossing. [The value of a nonideal
relay for control-theoretic applications is that this separation might reduce
the switching cost associated with ‘chattering’ [1] if the input would hover
near the common threshold. Of course, it also occurs in “natural” contexts
as the bacterial example.]
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We can take W as characterized by the initial mode and the threshold pair
(η−, η+), suppressing this in simply writing W[·]. [One could always work
with the thresholds 0, 1 by the input transformation r 7→ (r−η−)/(η+−η−).]

One difficulty which arises in the use of (3) or (4) to define W is the
possibility of a Zeno phenomenon: infinitely many modal switches within a
finite time interval so there might not be a well-defined mode to switch from.
However, we observe that

{1} If the input function y(·) is continuous and the thresholds are
separated as in (4), then the Zeno phenomenon cannot occur.

To see this, note that continuity of y on the compact interval [0, T ]
implies uniform continuity so there is a minimum time needed for
y to change from one threshold value to another. Thus, there is a
bound on the number of interswitching intervals. [One easily sees
that this bound is uniform for y ∈ Y with Y compact in C[0, T ].]

Note that the switching formulation views the output transitions as in-
stantaneous, ignoring the transient fine structures of the system dynamics
and of the transducer itself as occurring on an unmodeled fast scale; this has
possible consswquences which must affect our thinking, if not our subsequent
analysis since we note that there is one anomalous situation in which (4) in-
volves an ambiguity in the operation of W[·]: since (4) speaks only of y(·)
crossing a threshold value, one must address the possibility that the input
signal grazes this value without immediately crossing.

{2} Consider a trajectory y(·) with y(t∗) = η+ and j(t∗−) = 1. In
this situation we generically expect that there would be neighboring
trajectories ŷ(·) which do not merely graze and that these are of
both types: some with ŷ > η+ arbitrarily near t∗ and some with
ŷ locally bounded away from η+. For the former trajectories, we
would switch 1 y 0 near t∗ and so might also expect to switch at t∗
in the limit case. For the latter, however, we would continue past
t∗ without switching and so might also expect this in the limit.

Certainly this is ambiguous. It is clearly possible to select unambiguously
and, indeed, several of the treatments in [3], etc., select in such a way as
to obtain various nice properties (as isotonicity, rate independence, etc.).
Nevertheless, we will choose to let W be set-valued: given y(·) ∈ C([0, T ]→
H) we accept all modal functions satisfying the switching rules

W[y(·)] = {j(·) ∈ BV ([0, T ]→ {0, 1}) : (4) } (5)
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The rationale for this definition (compare [6]) is that the model is to be
viewed as a reduced description of a multiscale process so these possible dis-
continuities represent the effects of otherwise unmodeled behavior on a faster
scale than is being considered. To the extent that there may be uncertainties
or ambiguities involved in this reduced modeling, our response is to accept
that any of these continuations is as consistent with our available information
as any other; the decision to leave the fast time scale unmodeled precludes
the rejection of either alternative. With this definition we now have the
following.

{3} When the index functions {j(·)} are topologized, e.g., by point-
wise convergence, then W is a closed operator. Thus W[Y ] is
compact whenever Y is compact in C[0, T ].

To see this, suppose we are given a sequence {jn ∈W[yn]} in
W[Y ] such that yn → ȳ uniformly. By {1}, each jn is then piece-
wise constant with a fixed number of switching times tn,k and
is characterized by {tn,k} and the common interswitching values.
By the compactness of [0, T ] one can then extract a further sub-
sequence such that tn,k → t̄k for each k. Since each jn is piecewise
constant with values in {0, 1}, this gives pointwise convergence
to a correspondingly piecewise constant ̄ and by (5) we have
̄ ∈W[ȳ] ⊂W[Y ].

We also observe that threshold determined switching can occur as a re-
duced model for certain singular perturbation problems and, conversely, those
can be used to simulate a nonideal relay. Consider the system

ẋ = f(x, y) εẏ = g(x, y) (6)

so the reduced system corresponds to solving 0 = g(x, y) to get y = Y (x)
(stable if gy < 0) and then ẋ = ϕ(x) = f(x, Y (x)). However, if we consider
g(x, y) = x+3y−y3, then there are stable branches Y−(x) for x ≤ 1 and Y+(x)
for x ≥ −1. If, while following the upper branch ẋ = ϕ−, one would reach
+1 with ϕ−(1) > 0, then (very rapidly for very small ε) y would increase to
Y+(1) with little change in x. In the limit ε↘ 0 this gives the instantaneous
modal switching we have been describing; note that on taking ε very small
this is just the multi-scale viewpoint. This is easy to visualize only when x, y
are scalar variables, but the principle generalizes appropriately.
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Having described operation only of the simplest nonideal relay (scalar
input and {0, 1} output) so far in this section, we note that this is easily gen-
eralized. For example, we might consider Rd-valued inputs and M-valued
outputs for finiteM. In this case we would define the operator W by switch-
ing rules in terms of specified sets Ajk ⊂ Rd for j 6= k ∈M with j 6= k under
the assumptions that

a) each Ajk is the closure of its interior
b) for each j, the sets Ajk are disjoint
c) for each k, the sets Ajk, Ak` are disjoint

(7)

The switching rules are then that:

j(·) switches j y k when y(·) enters Ajk (8)

and, as earlier, we define the transducer by

W[y(·)] = {j(·) ∈ BV ([0, T ]→M) : (8) } (9)

{4} This operator generalizes (5), noting that (4) is of the form (8)
with A01 = [η+,∞) and A10 = (−∞, η−]. The behavior is now
essentially the same with corresponding arguments. Given (7),
one has {1}’ when y is continuous. There is again the ambiguity
as in {2} if y grazes ∂Ajk while one is in mode j and we accept
appropriate choices to get {3}’.

As an example of such a modeling situation, one might think of
a population of “agents” moving in Ω assigned to stations located
at distinct points {ζj} with a switching rule that the assignment
of an agent at z ∈ Ω would be switched j y k if z became
significantly closer to ζk than to ζj, e.g., if |z − ζk| < 1

2
|z − ζj|.

[Whether this might satisfy (7 b) would depend on the geometry
of {ζj}.] We note that the assumption (7 b) is needed only to
avoid another possible source of ambiguity — that a modal switch
might be mandated with its destination indeterminate — and the
assumption could be omitted if we would accept that.

This possibility cannot arise if there are only two modes and
we will avoid further analysis of such complications by restricting
our expository attention to the bimodal setting.

Another generalization might be to permit the thresholds to be time-
dependent. If η±(t) are continuous, this does not change the analysis above,
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which could then instead be applied to ŷ = y−η+, etc. [However, if j(t−) = 0
and y − η+ jumped to above 0, then we would necessarily switch to mode 1;
if it jumped from a negative value to 0, then one would have an anomalous
point. Etc.]

3 A Lagrangian view of stochastic diffusion

We next consider the (random) motion of a single individual in a diffusing
population from a Lagrangian point of view, now taking into account the
coupling between the modal switching and the dynamics.

The simplest coupling (2) of the dynamics in (1) with a nonideal relay
W as in Section 2 would take v = v(z) = z , giving the system

z′ = ϕj(z) with j(t) ∈W[Y (z)](t) (10)

(with initial conditions in the state space Z×M and with Y : Z → R). Here,
under fairly standard hypotheses, we could proceed by solving the dynamics
ODE on the finite number of well-defined interswitching intervals.

[While one might think of Z = Rd, one has familiar examples involv-
ing infinite-dimensional Z, e.g., diffusion with a global mode occurs for
thermostat-controlled heating: z ∈ Z = C(Ω) is the temperature distribu-
tion, Y is point evaluation at the thermostat, and we are noting the threshold
separation (bracketing the nominal setting) built into standard thermostats.
Here the modes are given by PDEs: heat equations which differ by the effect
of having the furnace on or off.]

In this section we first consider a stochastic version of the simplest form
of (10) — with z scalar and Y (z) = z. Our model now introduces some
randomness into the dynamics and is to be modeled by the Ito equation

dz = ϕj(z) dt+ σj dw with j(·) ∈W[z(·)] (11)

where dw is the standard Brownian white noise. [For simplicity we are taking
each σk to be constant. We are also restricting attention here to Brownian
diffusion, but note the relevance of the developing theory of anomalous dif-
fusion. Note that both z(t) and j(t) are random variables.] At this point we
introduce the probability density

uk(t, x) dx = Prob {j(t) = k and x ≤ z(t) ≤ x+ dx}, (12)
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conditioned on the initial probability distribution. Because of our switching
rules, the partial density u0 will be supported on the interval Ω0 = (−∞, η+)
while u1 will be supported on Ω1 = (η−,∞). The total probability is then

P =

∫ η+

−∞
u0(x, t) dx+

∫ ∞
η−

u1(x, t) dx.

Of course, the initial data must be nonnegative with P (0) = 1.
It is immediate from the standard theory of Ito equations that the forward

Kolmogorov equation (Fokker-Planck equation) for each will be a diffusion
equation with drift, having the form

ut = ak uxx − (ϕk(x)u)x with ak = 1
2
[σk]

2

for x away from the switching thresholds. Combining, we obtain a coupled
system with a somewhat unusual domain, Q = (0, T ) × Ω, where Ω is the
disjoint union of overlapping copies of the two intervals, Ω0 and Ω1. Thus,

u0
t = a0 u

0
xx − (ϕ0(x)u0)x + ψ0 for x ∈ Ω0,

u1
t = a1 u

1
xx − (ϕ1(x)u1)x + ψ1 for x ∈ Ω1.

(13)

to which we adjoin the boundary conditions

u0(η+, t),≡ 0 u1(η−, t) ≡ 0. (14)

In (13), the source term ψ0 is the contribution rate to u0 (transition
probability) of the modal switching 1 y 0, occurring at the threshold x = η−,
and, complementarily, ψ1 is the switching rate for 0 y 1. To have dP/dt = 0
with these transitions localized at η±, we easily see that ψ0 must be a point
source at η− with rate = −[outward flux of u1] = a1u

1
x, noting (14), and

similarly for ψ1. Thus, these sources must be

ψ0 = a1 u
1
x

∣∣
x=η−

δ(x− η−), ψ1 = − a0 u
0
x

∣∣
x=η+

δ(x− η+). (15)

{5} The system coupling (13) with (14), (15) has a unique solution
for given L2 initial data. If the initial data is nonnegative, so is
the solution and the L1 norm P (·) is preserved.

To see this, we first obtain a priori estimates as usual on multiply-
ing by u0, u1, noting that u1

x is smooth near η− (away from the
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support at η+ of its source term) so ψ0 is bounded and similarly
for ψ1. Standard semigroup methods then give existence. Multi-
plying by the negative parts then gives nonnegativity, following
[8] and just integrating then gives the preservation of P .

{6} A similar analysis would also apply to problems with time-
dependent thresholds (always with η− < η+), although working
with this is somewhat complicated by the fact that the parabolic
domain Q (as described here) is no longer a cylinder. Although
now applying at η±(t), the boundary conditions (14) are un-
changed and, in view of this, the formula (15) (still obtained
from dP/dt = 0) also remains unchanged — except that we must
now think of each ψk as having two components: for transitions
due to diffusion across a threshold (as above) and also for tran-
sitions due to motion of the threshold. [One must compute the
flux in coordinates moving with the moving threshold so there
is an additional term u1 (dη−/dt) but observe that the Dirichlet
condition u1 = 0 ensures that this addition vanishes. This will
be important in Section 4 and will be further clarified there.]

To use more general Y : R→ R for W[Y (z)] in (11), we need
thresholds Y −1(η±), expressed for z, and then consider (13) with

Ω0 = {x : Y (x) < η+} Ω1 = {x : Y (x) < η−}

with the boundary conditions: uk = 0 on ∂Ωk. The sources ψ
are given much as in (15) with the obvious modifications: e.g.,
ψ0 is a sum of terms ±a1u

1
x δ as in (15), now at Y −1(η−) with ±

signs taken as these are right or left endpoints of intervals of Ω1.
We will not consider time-dependent Y = Y (·, t) other than the
nugatory modification above for moving thresholds, but do note
that the geometry can become more complicated as the multi-
plicity of Y −1(η±) may change.

Essentially the same holds for multidimensional diffusions (with
z varying in Ω ⊂ Rd) using y = Y (z, t); we do note the absence
of a good notation for the measure (supported by ∂Ω1) which re-
places δ(·−η−) in (15)0 (with u1

x replaced by∇u1 ·n), etc. We will
actually be interested in settings where switching is determined
by an auxiliary function v so we would take y(t) = Y (v(t, z(t)))
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for an individual following a diffusive path t 7→ z(t) ∈ Ω. The
regions Ω0, Ω1 above are now replaced by

Ω0 = Ω0(t) = {x ∈ Ω : Y (v(t, x)) < η+}
Ω1 = Ω1(t) = {x ∈ Ω : Y (v(t, x)) > η−}

where each mode 0, 1 would be permitted.

[For multimodal systems one could obtain comparable constructions of
increasing complexity and, in support of our decision to restrict attention to
the bimodal setting, we note that the descriptions here have already become
decreasingly explicit with the increasing complexity of the constructions gen-
eralizing (13), (15).]

4 Switching modes in diffusing populations

We now turn to our principal concern: reaction/diffusion systems involving
populations u of individuals which would follow stochastic individual trajec-
tories and individually switch modes as in Section 2 when viewed from the
Lagrangian perspective.

As already noted, we restrict ourselves for expository purposes to bimodal
dynamics u = (u0, u1) given by a nonideal relay observing a coupled function
v so, pointwise in x, we have y(t, x) = Y (t, v(t, x)) for the switching rules (4).
In this section we will take y as given on Q = [0, T ]×Ω and then in the next
section will consider the problem with a coupled sysyem for the combined
u, v. [For expository simplicity we take v scalar and Y (r) = r so there is no
distinction between y and v. We do note that our formulation would handle
a vectorial auxiliary function v (e.g., as seen in [9, XI.8 Figure 4.]) without
significant change.]

The systems under consideration are somewhat similar to (13) except that
u0, u1 are no longer probabilities, but concentration densities for a diffusing
population which now may also involve interaction/growth and so need no
longer be precisely conservative. Formally this can be written as

u0
t − a0∆u0 = f0(u0, u1, v) + ψ0 − ψ1

u1
t − a1∆u1 = f1(u0, u1, v) + ψ1 − ψ0

(16)

where the terms ψ0,1 denote the respective rates of transitions 1 y 0 con-
tributing to u0 and of 0 y 1 contributing to u1. We assume throughout
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that Ω is bounded with a sufficiently smooth boundary ∂Ω and that the
interaction terms satisfy

f0, f1(u0, u1, v) ≥ 0 if either uk ≤ 0,

f(u0, u1, v) = f0 + f1 ≤ C(1 + u0 + u1).
(17)

Our principal task at this point is to model ψ0,1 along the lines of (15)
so that the problem becomes meaningful. We begin with the single key
assumption that y is continuous on the compact set Q— which ensures that
B0, B1 (and a fortiori A0A1) are separated by a distance depending only on
[η+ − η−] and the uniform modulus of continuity of y. It is then convenient
to partition Q into regions

A0 = {(t, x) ∈ Q : y(t, x) < η−},
A1 = {(t, x) ∈ Q : y(t, x) > η+},
A∗ = {(t, x) ∈ Q : η− < y(t, x) < η+}

and B0 = {(t, x) ∈ Q : y(t, x) = η−},
B1 = {(t, x) ∈ Q : y(t, x) = η+}

(18)

with the obvious interpretation of A0(t), etc., noting the distinction between
∂[A0(t)] and [∂A0](t), etc. In terms of this notation it is now complicated but
relatively straightforward to describe the model we want for modal transition
1 y 0 and similarly for 0 y 1.

Using a Lagrangian viewpoint to follow an individual, we see that the
mode of any individual of the population u1 must change 1 y 0 (going
forward in t, which we visualize as going upward in Q) if she moves into the
region A0 — with an allowed possibility of change while in ∂A0. At this
point the geometry of the partition (18) becomes quite important and we
begin our attempt to visualize this under the simplifying assumption that
B0,1 are nice surfaces in Q.

Note that the support of ψ0 must lie in the underside and lateral surface
of ∂A0 where such particles might be entering from A∗ with increasing t.
We are, of course, imposing the condition that u1 ≡ 0 on A0 so, anticipating
some regularity in x across ∂[A0(t)], this becomes a homogeneous Dirichlet
condition at ∂[A0(t)] for u1 on A∗. Thus, as already noted in {6}, there is
no contribution from boundary motion in using the flux (from A∗ through
B0 toward A0 to become part of u0) as the relevant contribution to ψ0.

{7} Unfortunately, a technical complication arises: this analysis
fails to complete the story if some part of the underside of A0
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might be flat with [∂A0](t) having nonempty interior ω. In this
case u1 need not be 0 there: one might have a nonvanishing con-
centration of mode 1 there at t− in A∗, coming into ω and so
into A0 from t− to t+. In this situation, where ω 6⊂ ∂[A∗(t−)]
there is then an instantaneous mode transition 1 y 0 for all the
individuals comprising {u1(t−, x) : x ∈ ω} to become part of
{u0(t+, x) : x ∈ ω}; should this occur, we denote this contribu-
tion to ψ0 by ψ̃0, etc.

Note that if we have such a flat place and were to adjust v to
tilt this slightly, then we would have ψ̃0 obtained by the flux rel-
ative to a rapidly moving spatial interface between [∂B0](t) and
[∂A0](t) with u1 then vanishing at this interface. To the extent
that this is a good approximation, we would expect that u1 must
at least be small there if not exactly 0. Nevertheless, there are
some technical difficulties handling ψ̃0 directly if there could be
infinitely many instants t at which such flat places would occur,
making a difficulty comparable to the Zeno phenomenon of Sec-
tion 2. In this setting the separation of regions coming from the
continuity assumption may be insufficient to avoid this and for
present purposes we could simply require by hypothesis that v is
such that these do not occur at all (e.g., having adjusting so each
would be tilted) whence ψ̃0 = 0 and similarly ψ̃1 = 0. Instead,
however, we will assume the diffusion coefficients are the same,
enabling us to handle the Zeno phenomenon fairly easily.

The treatment of ψ̃k requires some care with respect to regularity in t
and the formulation of the model: we must have the requisite jumps where
the flat places occur, giving a BV [0, T ] component of the solution pointwise
on Ω and then, excluding those jumps, a weak form∫

Ω

[ϕ0 u
0
t + a∇ϕ0 · ∇u0]

=

∫
Ω

ϕf0 −
∫
∂[A0(t)]

ϕ0 [a∇u1 · n] +

∫
∂[A1(t)]

ϕ0 [a∇u0 · n]

∫
Ω

[ϕ1 u
1
t + a∇ϕ1 · ∇u1]

=

∫
Ω

ϕf1 −
∫
∂[A1(t)]

ϕ1 [a∇u0 · n] +

∫
∂[A0(t)]

ϕ1 [a∇u1 · n]

(19)
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holding for smooth ϕ0, ϕ1 satisfying Neumann boundary conditions at ∂Ω.

{8} The selection of an admissible space for solutions includes the
specifications that u1 ≡ 0 on the set A0 defined by the given v and
that u0 ≡ 0 on A1 as well as homogeneous Neumann boundary
conditions (no flux) for u0 and for u1 at ∂Ω. For given continu-
ous v and such suitable data, (19) has a suitable solution.

The proof of {8} is based on construction of a suitable finite element
approach to approximation (whose description we defer to the next section)
and then a compactness argument based on a sequence of a priori estimates
which we sketch here.

We begin by showing the nonnegativity of solutions. The treatment of
ψ̃0 cannot make u1(t+, x) negative as (t+, x) ∈ A0 where u1 ≡ 0. With
u1 ≥ 0, we see that the outward flux must be nonpositive where we are
imposing on it a homogeneous Dirichlet condition so the contribution ψ0

must be nonnegative. Completion of this argument is then standard, from
the first condition in (17).

With equal diffusion coefficients and consistent bounded nonnegative ini-
tial data we will have bounded (L∞) solutions. To see this, set u = u0 + u1

and f = f0 + f1. Then add the equations of (19) with ϕ0 = ϕ1 = ϕ to get∫
Ω

[ϕut + a∇ϕ · ∇u] =

∫
Ω

ϕf

since the ψ terms cancel. Now use g(t) satisfying ġ = C(1 + g) with g(0) ≥
max{u(0, ·)} to take ϕ = [u− g]+ = max{u− g, 0}, noting that where ϕ 6= 0
one has

0 < ϕ = u− g, ft = ut − ġ, ∇ϕ = ∇u

so C(1 + u) = ġ + Cϕ, ϕut = [1
2
ϕ2]t + ġ ϕ, ∇ϕ · ∇u = |∇ϕ|2.

Since ϕ vanishes at t = 0, Gronwall’s Inequality then gives ϕ ≡ 0 so 0 ≤
u0, u1 ≤ u ≤ g pointwise. [Even with unequal diffusion coefficients one could
have easily bounded u in L1(Ω), but we will need the L∞ estimate to handle
the possibility of a Zeno difficulty from ψ̃.]
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Using ϕ0 = u0 in (19) and integrating over [0, t] gives

1
2
‖u0(t, ·)‖2 +

∫ t

0

a‖∇u0‖2

= 1
2
‖u0(0, ·)‖2 +

∫ t

0

〈u0, ϕ0〉+

∫ t

0

∫
∂[A0(t)]

u0 [−a∇u1 · n] +
t∑
0

〈u0, ψ̃0〉

and we must estimate the last two terms on the right.
The final term is, apparently, an uncountable sum, although we have

pointwise bounds both for u0 and for ψ̃0. The separation of A0,A1, however,
ensures a fixed finite bound (uniform in x ∈ Ω) on the number of nonzero
summands occurring for that x, giving a bound for

∫
Ω

∑t
0 u

0ψ0.
To estimate the penultimate term we note that the same separation per-

mits us to cover the timelike portion of ∂A0 by a finite set of cylinders (with
size bounded below) in A∗ on which ψ1 does not occur since this is supported
on ∂A1. For each of these we use a cutoff function χ (with |∇χ| uniformly
bounded) to restrict attention to that cylinder with homogeneous Dirichlet
data and then estimate the relevant outward flux ψ0 integrated over that part
of ∂A0; since we already have a bound on u0, summing these contributions
gives the desired estimate.

Thus we obtain the usual L2(Q) regularity for ∇u0 and similarly for ∇u1.
This analysis also gives a BV estimate for the variation in t. We emphasize
that all these estimates are uniform for auxiliary functions y in any compact
subset of C(Q), whence uniform separation. This provides the compactness
needed to get a convergent sequence of finite element approximations and so
completes the argument for existence {8}.

5 The coupled problem

In this section we arrive at our final result: the coupling of the pair of equa-
tions (16) for uk (taken with a0 = a1 = a) with a similar diffusion equation
for the auxiliary function v:

u0
t − a∆u0 = f0(u0, u1, v) + ψ0 − ψ1

u1
t − a∆u1 = f1(u0, u1, v) + ψ1 − ψ0

vt − a∗∆v = f∗(u
0, u1, v)

(20)
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with the Neumann boundary conditions

−a∇uk · n = 0, −a∗∇v · n = σ on ∂Ω (21)

and with suitable initial conditions, asking that uk(0, ·) be nonnegative and
pointwise bounded and consistent with the continuous function v(0, ·) on Ω.

For our purposes, it will be crucial that the function v and so y = Y (v)
should be continuous so the uk equations are to be interpreted as in {8} of
Section 4 with a minimum width d∗ > 0 separating A0 ∪ B0 from A1 ∪ B1.

{9} Our strategy will be to introduce spaces Vh of piecewise affine
functions on triangulations Ωh of Ω and projections Ph onto the
spaces Ah of piecewise constants (e.g., by averaging or by evalu-
ation at chosen points). If these are regular triangulations with
mesh width h, we may consider letting h → 0+ and will have
Vh becoming dense in C(Q) and also, for continuous v, will have
yh = Y (Phv)→ y = Y (v) — uniformly for v in any compact sub-
set of C(Q). Further, given Vh,Ph we may define the partition
Ah0 , etc., as in (18), by

Ah0 = {(t, x) : y(Phv) < η−},

etc., noting that each such set is a union of a finite number of
sets of the form (t, t′) × ω where ω ∈ Ωh. The finiteness of the
t-partition comes from {1} and is uniform over h (provided h
is small compared with the width d∗) and over the compact set
for v: the separation, in time as well as space, of Ah0 from Ah1 will
then be uniform.

We now want to use the weak form, corresponding to (19), of
the uk equations; it is convenient to leave the v equation as in
(20), (21). We refer to this partially discretized system as (20)h

although we have, so far, only described it between the modal
switching times for yh. We do note that, as is usual, (20)h is
just an ODE between these switching times with Ah0 , etc., here
independent of t: the modal switching of individual particles oc-
curs only as they cross the threshold boundaries. Note that the
contributions ψ0,1 here represent gradient discontinuities at those
faces of the triangulation corresponding to an interior Dirichlet
condition imposed by having u1 ≡ 0 on an element belonging
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to Ah0 . Etc. The transition points of (20)h correspond to times
when some component of Phv hits an implicit threshold y−1(η±).
We would be solving the v equation forward in t along with this
ODE and, while we will see that v is continuous, note that Ah0
may change from t− to t+: if so with the element ω ∈ Ah∗(t−)
but ω ∈ Ah0(t+), then u1(t−) is added to u0 for that ω as (part of)
ψ̃0 and the system is then restarted. [Note that until we restart
and continue the evolution of v we do not know definitively about
such a change of Ah0 , so this may become an anomalous point of
the discretized system, treated as in {2}.] It is easy to see that
uk,h ≥ 0 by this construction and (modifying the second condi-
tion of (17) to: f, |f∗| ≤ C(1 +u0 +u1 + |v|) now) we have, much
as in Section 4, a pointwise bound on uk,h depending only on the
constant C of the modified (17) and a bound on the initial data,
but not on h.

The v equation in (20)h is quite standard so there is no dif-
ficulty with solution of that. With the growth condition on f∗
(and the resulting bound for uk,h) one similarly has a sup norm
bound on f∗ as it appears there so, with σ fixed (or even just suit-
ably bounded), one can get v = vh in a compact subset of C(Q)
whence, as in {3}, we have a uniform bound on the number of
switching times for (20)h.

With the estimates noted, this ensures convergence in C(Q) of uk,h → uk

and vh → v for some subsequence. Since we have obtained a bound on ψ0,1

in the dual space [C(Ω)]∗, we have subsequential convergence for that, with
the correct limit by consistency; a similar result holds for ψ̃k. It then follows
that such a subsequential limit is a solution of (20). We have thus proved
our desired result:

Theorem 5.1. Let Ω be a bounded region in Rd with Lipschitzian boundary
∂Ω and let y : R→ R be continuous and η− < η+. We then consider (20) in
the sense described above, as corresponding to modal transitions determined
by y = Y (v) by the nonideal relay as W[y(t, ·)] (with thresholds η±) for the
motion of each diffusing particle.

Suppose we are given (21) and bounded initial data consistent with this
and with v(0, ·) continuous. Assume further consistency in requiring, at t0,
that u1 = 0 where y(v) ≤ η− and that u0 = 0 where y(v) ≥ η+. Then there
is a suitable solution of the problem (20)
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