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Abstract

We consider an optimal control problem involving the use of bacteria
for pollution removal where the model assumes the bacteria switch instan-
taneously between active and dormant states, determined by threshold sen-
sitivity to the local concentration v of a diffusing critical nutrient; compare
(7], [3], [6] in which nutrient transport is convective. It is shown that the
direct problem has a solution for each boundary control ) = dv/dn and that
optimal controls exist, minimizing a combination of residual pollutant and
aggregated cost of the nutrient.

1 Introduction

In [7] (and [3], [6]) we considered a model of bioremediation using bacteria
which are sensitive to the presence/absence of a critical nutrient in switching
discontinuously between dormant and active modes. [We will consider only
a single “critical nutrient” and assume any other demands are adequately
supplied and do not affect the dynamics.] While we observe that the models
considered here are oversimplified caricatures of realistic situations, we em-
phasize that our focus here is entirely on the mathematical considerations
arising in this analysis. Noting that the modeling here is perhaps least realis-
tic in the assumed instantaneity of the transitions, we comment that there is
considerable variety of bacteria, so some may plausibly resemble the models
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here reasonably closely, and (compare, e.g., [8]) note that this instantaneity
is just an idealization of the ‘fast scale’ of a multiscale process.

In any case, our focus here is on the mathematical interest of the problem
in which switching occurs in somewhat different contexts than is typical of
hybrid control. The notion of threshold induced modal switching is charac-
teristic of hybrid systems where the modal switching is typically a control
action and the thresholds relate to feedback. In the absence of a Zeno phe-
nomenon (infinitely many transitions in a finite time interval), the system
evolution can be followed separately on each of finitely many interswitch-
ing intervals. What is somewhat new here, where the switching is instead
a feature of the physical modeling of the controlled process. is that each
individual bacterium is subject to such modal transitions so in a continuum
model there will be, globally, a continuum of modes and some form of the
Zeno phenomenon becomes almost inescapable.

We focus on a distributed parameter control problem in which, assuming
the initial presence of suitable bacteria in a dormant state, one provides
nutrient so as to activate the biomass, thus leading to metabolism of an
undesirable pollutant — or cometabolism (cf., e.g., [10], [1]), i.e., converting it
to a more innocuous form. In contrast to the earlier model of [7], in which the
nutrient transport was purely convective, we now consider diffusive transport
with the control ¢ entering as a boundary control of the diffusing nutrient
concentration. Note that our concern here is with a model in which, as in [3],
7], the bacteria and the pollutant are each stationary in position. Indeed,
this is essential for the treatment here. [One might alternatively wish to
consider a diffusing biomass, but note that the modal transitions we describe
are following the history of individual bacteria, so the mode at ¢t would then
not be expressible simply as a function of position and our present analysis
would not apply. We do not attempt here to consider that situation.|

The dynamics of our model are described by a coupling of four unknown
functions: w = wu(t,z) (for t > 0, = € Q) denoting the bacterial concen-
tration, v denoting the concentration of the critical nutrient and p denoting
the pollutant, each taking values in R, = [0,00), together with another
‘Boolean-valued” unknown function w = w(t, z) identifying the mode of the
bacteria at (t,x) by setting w = 0 for dormancy and w = 1 for activity.

We will formulate the problem more precisely in Section 3, but briefly de-
scribe the dynamics here. We begin with a fairly standard diffusion /reaction



equation (3.1) for the nutrient concentration v:
vy = Av — av — Pwu.

We are assuming normal behavior (u; = y(wu) for some growth rate v) when
the bacteria are active (w = 1), and “nothing” when dormant — although
it is interesting to allow for the possibility that only some fraction » < 1 of
the bacteria survive a dormant interval to be reactivated at a switching time
when w switches: 0 ~ 1. The pollutant is metabolized (or cometabolized)
by the (active) bacteria at a fixed rate 0 so, at each = € {2, we have

Py = —owu.

Our objective, of course, is to remove as much as possible of the pollutant by
having enough active bacteria, accomplishing this by having a high enough
nutrient concentration.

We then may consider, as a problem of optimal boundary control, intro-
ducing a controlled nutrient flux to activate the otherwise dormant bacteria
to remove the undesirable pollutant by metabolism or cometabolism. Adding
such a flux of new nutrient makes the boundary conditions equationvbc for
the nutrient dynamics (3.1) take the form

—Vu-n=1 on ¥ = [0,7] x 0f2.

The function 1) > 0 on X is the control. Assuming the nutrient is expensive,
the natural cost functional for the control problem has the form

T=e / p(T,) + e / " (1.1)

where these L'-norms are on 2, Y, respectively, giving the amount of pollu-
tant remaining at the terminal time and the amount of nutrient added (so
we are dealing with minimization over a nonreflexive space).

Scalar threshold induced modal switching by a discontinuous elementary
hysteron has been well studied, but there are several versions of this; note,
in particular, [2] and [11]. The version used here follows [5], [8], etc., and we
include in Section 2 a review of some properties we will need, especially since
we are concerned here with a continuum of such hysterons corresponding to
the continuum of spatial points in {2 — and this affects our treatment of the
coupling between the dynamics of v and the dynamics of w.



2 Threshold induced switching: the hysteron

We begin with the scalar situation, here corresponding to looking at a single
point x € Q, and considering the hysteron as an operator W : [y(-),w] —
w(+) (from sensor input and initial mode to modal output) which is to be
determined by a set of switching rules with respect to the upper and lower
thresholds 0 < n~ < n™:

a. y(t) >nt = w(t)=1
b. y(t) <n~ = w(t)=0

- N w(0) =w ift=20
c. nm<ylt)<n" = {w( =w(t—) f0<t<T

(2.1)

Thus, if the current sensor input y(¢) is above the upper threshold n* or
below the lower threshold n~ the mode is uniquely specified, independent
of past history — but it is history-dependent (the result of the most recent
prior switch) when the current input lies between those thresholds. Note that
(2.1-c) ensures that the output w can only switch at threshold values and
(2.1-a,b) ensure that one must have modal switching: 0 ~ 1 when y crosses
n* upward and 1 ~ 0 when y crosses = downward.

Lemma 2.1. If y(-) is continuous on [0,T], then (2.1) ensures a bound on
the number of switching times, hence a bound on the variation Var|w].

PROOF: For any interswitching interval (¢i,¢5) we necessarily have
y(t1) = n~ and y(t2) = n* (or vice versa) so for y(-) continuous, hence uni-
formly continuous on [0,7], there must be a positive lower bound on the
difference t5 — t;. Hence there must be a upper bound on the number of such
intervals and so on the number Var|w] of switchings. |

We note that (2.1) need not uniquely determine the output w(-) for a
given input y(-), even topologizing w in L'[0,T] (so, e.g., its specification
just at the (isolated) switching times could be ignored). The most serious
nonuniqueness occurs at anomalous points when y(-) is nontransversal at a
threshold. For example, suppose one might have w(t—) = 0 and y(t—) = n*
(so y(t) < n* on some (small) interval [ — e,7]) and suppose also that
y(t) < n* on some (small) interval [r,7 4+ ¢]. Then (2.1) permits w = 0



continuing on [, 7 + €|, but also permits a switch of w : 0 ~ 1 at ¢, then
continuing in mode 1 until y might decrease to n~. The treatments in [2],
[11], etc., show how to make selections with various nice properties of the
hysteron (as isotonicity, rate independence, etc.), but we will here take W
to be inclusive: given y(-) € C°([0,7] and w € {0,1} we accept all modal
functions and set

Wiy, w] = {w € BV([0,T] - {0,1}) : (2.1)}. (2.2)

This defines the elementary hysteron W as an operator which will map
C°([0,T] x {0,1}) to (subsets of) BV ([0,T] — {0,1}) < L'[0,T]. The
rationale for this definition is that the model is to be viewed as a reduced de-
scription of a multiscale process so these discontinuities represent the effects
of otherwise unmodeled behavior on a faster scale than we consider. To the
extent that there may be uncertainties involved in this reduced modeling,
our response is to accept that any of these continuations is as consistent with
our available information as any other. Further, this definition will ensure a
form of well-posedness, that “the limit of solutions is a solution.”

In this context we point out that one way to produce such switching is
to introduce

1 ifn>n* - 1 ifn<n-
N _
X () _{ 0 else X~ (n) _{ 0 else (2:3)

and consider solutions of the singularly perturbed ODE

dw

S = X (1= w) () w, w) —w. (24

Then Wy, w] consists of the limits of such solutions as ¢ — 0+ and ¢ con-
verges uniformly to y.

It is easily seen from examples that, in general, W is neither single-
valued nor continuous. However, the key property we will need, motivating
our choice of this set-valued version of the elementary hysteron, is that W is
a closed operator when defined by (2.2).

Lemma 2.2. Suppose y,(-) are continuous functions converging uniformly
on [0,T] toy and w,, € Wy,,w] for each n with {w,(-)} converging pointwise
ae to w. Then w € Wy, w].



PROOF: Noting the proof of Lemma 2.1, we observe that for large n
the number of switching times is bounded and each w,, is necessarily piece-
wise constant with the same values during the interswitching intervals. One
then easily sees that pointwise convergence on any dense set implies that
the limit w is also piecewise constant and that one has convergence of the
switching times: ¢, — ;. If §(t) > n* for some ¢, then g(7) > n* + ¢ for
some € > 0 and all 7 in some neighborhood of ¢; then uniform convergence
gives y,(7) > 0T so w,(7) = 1 for large n so w(t) = 1. Thus, w satisfies
(2.1-a.) and, similarly, (2.1-b.). In much the same way one shows switching
is only possible for @ when ¥ = n* so one also has (2.1-c.), thus ensuring
that w € Wy, w]. |

Somewhat related to Lemma 2.2, etc., we note without proof the following
characterization of Wy, w]:

Lemma 2.3. For continuous y(-) on [0,T], the set W[y, w| is the set of
pointwise limits of solutions w(-) of the singularly perturbed ODE

=X (= w) X~ w w(0)=w

where x(n) ={1ifn>0; 0 else} forneR,

(2.5)

taking € — 04 and continuous y(-) converging uniformly to y.
Finally, we have

Lemma 2.4. If Y is compact in C°[0,T], then W[Y,w] is compact when
topologized, e.q., by pointwise convergence.

PROOF: Given any sequence (w,) in W[Y,w| we first extract a sub-
sequence (wlog, using the same indexing) such that y, — ¢ with each
w, € Wly,,w|. Much as in the proof above of Lemma 2.2, each w, is
piecewise constant with a bounded number of switching times ¢, ; and char-
acterized by {t,x}. By the compactness of [0,7] one can then extract
a further subsequence such that ¢, — {; for each k. Since each w, is
piecewise constant with values 0 or 1, this gives pointwise convergence to
some correspondingly piecewise constant w and so, by Lemma 2.2, with
w € Wly,w] C W[Y,w]. |



We will be considering a somewhat more general hysteron W, acting on
continuous functions on Q = [0, 7] x 2 to get {0, 1}-valued functions on Q by
applying W independently at each x € €. Our application assumes the initial
presence of a dormant bacterial population so we have the simplification
that the initial nutrient concentration is below the lower threshold whence
w =w(0,z) = 0 for each z. Thus, we will usually suppress the argument w
in considering W or W. Our definition of W is:

w e Wly] if and only if:  w(-,z) € W[y(-,x)] for each z € Q.  (2.6)

Note that Lemmas 2.1, etc., apply at each z € €2, but we have not yet
explicitly considered properties of the operator W.

3 Formulation of the model

In this section we consider the direct problem. For our model we let u =

u(t,z) (for t > 0,2 € ) denote the bacterial concentration at each fixed

point x €  and let v denote the diffusing concentration of the critical

nutrient; these are unknown nonnegative scalar functions. Also unknown is

w = w(t, z) identifying the mode of the bacteria at (¢, z) by setting w = 0 for

dormancy and w = 1 for activity and the pollutant concentration p = p(¢, x)
For v we have the fairly standard diffusion/reaction equation:

vy = Av — av — fwu (3.1)

where the term —awv (a = constant > 0) represents a degradation with time
of the nutrient and the term —f wu represents (metabolism or) cometabolism
of the nutrient by active bacteria — of course, with no such (co)metabolism
for dormant bacteria. We will consider boundary control, taking as boundary
conditions for (3.1):

—Vv-n=1(t, ) at x € 00 (3.2)

with n the unit outward normal. Thus, the control is the function ¢ > 0
on X = [0,7] x 02, which gives the flux rate at which new nutrient is being
supplied to the region.

When the bacteria are active, pollutant is (co)metabolized at a fixed
rate 0 with no such remediative action when dormant. We then have

pr = —owu. (3.3)
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as a family of uncoupled ODEs parametrized by x € (2; while nominally
taking 0 to be a positive constant, we will, somewhat artificially, set 6 = 0
when p < 0 since even active bacteria cannot affect a nonexistent pollutant.

We are assuming normal behavior (u; = 7(u) for some growth rate =y
when the bacteria are active (w = 1), and “nothing” when dormant. Thus,
independently at each x € €2, the bacterial concentration u satisfies the ODE

u = y(wu) — d, (3.4)

with ~y(+) representing population growth when the bacteria are active. While
one could let v depend also on the nutrient level v; noting that v > 1~ where
relevant here (i.e., where wu # 0), reasonable modeling of such dependence
would not materially affect the analysis and we take the growth term to be
a fairly standard nonlinearity: we need assume only that (+) is nonnegative
and Lipschitzian so 0 < y(r) < a + br.

[The term “d,” indicates, somewhat cryptically, the possibility that u(-, x)
satisfires the ODE without d, on each interswitching interval, but that only
a fraction 0 < p < 1 survives reactivation (w : 0 ~ 1). Thus there is to be a
jump in u(+, z) so u(t+, z) = pu(t—, ) when w(t—, z) = 0, w(t+,z) = 1. We
do not give this detail in (3.4), but will consider this in proving the existence
Theorem 4.2.]

Finally, throughout this we ask that

we Wu] —ie, w(-,z) € W(v(-,x)) for each x € Q. (3.5)

The system (S) is then the coupling of (3.1), (3.3), (3.4) and (3.5) with
the BC (3.2) and the initial conditions. Since we are here modeling pol-
lutant and bacteria as spatially fixed, (3.3) and (3.4) are families of ODEs
parametrized by x € ) with (3.5) also applied independently for each x.
For our regularity hypotheses on the system (S), see the statement of Theo-
rem 4.2. The relevant solution is discussed in the proof of that theorem, but
we already note here that u, v, p will be nonnegative with u,p € L*>°(Q) and
with v uniformly continuous on each Q. = [0,T] x {x € Q : |z — 0| > €}
— although (depending on the control /) possibly unbounded on Q.

The two usual ways to show existence for such a nonlinear problem would
be either to seek a fixpoint of some map or to construct approximations and
apply compactness. Here the discontinuity of the component W discourages
use of the fixed point approach: for hybrid systems with assurance of a finite
set of switching times, one usually proceeds by solving separately on each
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interswitching interval without concern for these discontinuities, but in our
present model one expects a continuum of such times collectively although
one has a finite set of switching times for each spatial point . We will
proceed by approximation.

Our strategy will be to introduce a finite partition of € into sets {§2;} with
characteristic functions x; and choose x; € €); so each z; is in the interior
of Q. We then set y(-) = y*(-) = [y1(*), ..., ys()] = Pv with y;(-) = v(-, z;)
and replace w in the system by w® = W[Puv], i.e., wP(-,z) € W]y;(-)] for
x € ; to get the approximating system (S¥) with the same data.

4 Existence of solutions

In this section we prove existence of solutions of the coupled system (S)
for given data 1. In general one cannot expect uniqueness of solutions, but
the nature of the existence argument does show that limits of solutions are
again solutions. It is almost immediate then to obtain existence of optimal
controls.

We begin by presenting an existence proof for the simpler approximating
system (S¥), omitting some details of the proof which will be made part of
Theorem 4.2:

Theorem 4.1. Each problem (S¥), as described above, has a solution.

PROOF: The key point here is that we can proceed causally on inter-
switching intervals. With each w; = w(-, x;) constant on the interval, there
is no difficulty solving the coupled system of DEs (the diffusion equation for
v and ODEs for u, p) until (2.1-a,b) would require switching some component
w; — or (2.1-¢) would permit switching. We will see in proving Theorem 4.2
that each of the functions y; = v(-, ;) is necessarily uniformly continuous
on [0,7] (no matter how we might make the switching choices if anomalous
points would occur) and that there is a fixed bound, depending only on the
points x; and the data estimates, on the collective number of switching times.
We can therefore proceed to solve (S¥) successively on these interswitching
intervals — restarting with the new (temporarily constant) value of w at
each switching time — up to t = T". Note that this construction enables us
to handle the possibility of reactivation failure: at each switching time where
w; switches 0 ~ 1 we multiply u by p at each x € €2;. Since we followed the



switching rules where relevant, we see that the modal indices resulting must
satisfy (3.5)F, i.e.,

wj = wP(-,iL‘j) € W[yj] = W[U<'>wj)]’ (4'1)

as desired, in addition to (3.1) with (3.2), (3.3) and (3.4) including reactiva-
tion failure. Thus we have a solution of (SF). |

With this in hand, we turn now to showing existence of solutions for the
model system (S).

Theorem 4.2. Assume §2 is bounded with OS2 smooth and that the initial
data for w,v,p is smooth and nonnegative with vy < 1~ so w =0. Let

t=0
the input flux 1 be a nonnegative finite Borel measure on Y. Then the so-
lution set of the coupled system (S) is nonempty. This solution set is upper
semicontinuous in its dependence on the data.

PROOF: We consider a sequence of problems (S,) = (S¥*) using pro-
jections P = P, with the diameters of QF shrinking and the sets {z;}*
becoming dense in 2. A compactness argument will then permit extraction
of convergent subsequences (so v = v, = v¥ — w,, etc.) and we show the
limits satisfy (S), in particular, that the limit w, is in W{v,].

We begin by considering the solution space of (S), i.e., the a priori reg-
ularity of solutions, Starting with v, we write v = v¥ 4+ v* where v¥ is the
(fixed) solution of (3.1), (3.2) with the term —Swu omitted; v* is the solution
of (3.1) with 0 initial data and no-flux boundary conditionss (¢ = 0). Even
with measure-valued ¢, the regularity for the diffusion equation localizes:
function v¥ will be in C*(Q) although it need not be bounded. Recalling
Q. =1[0,T] x Q. with Q. = {x € Q : |z — 0| < ¢}, this is bounded away
from any singularity admitted by our choice of control space when € > 0 so
v¥ will certainly be uniformly continuous on any such Q.. [For future ref-
erence, we note that a bound on ¢ in [C'(X)]* gives equi-uniform continuity
on each Q. for v¥.] We also note that the assumed nonnegativity of initial
data and of the input flux 1 ensures that v¥ > 0. On the other hand, we will
bound u in L*(Q) and so obtain equi-uniform continuity on Q for v* with
a pointwise bound whence compactness in C(Q.). We emphasize that this
ensures a bound (depending on x € €. but not on the partition P,) on the
number of switching times for the resulting w(-, z). We further can use the
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weak maximum principle to observe that the solutions v remain nonnegative:
e.g., we take ¢ = min{0, v} as test function in the weak form of (3.1) (noting
that pv, = (3¢*); and Vf - Vv = [Vy|? ac and that pwu = 0 [since w = 0
when 0 £ p=v<0<n"]and pv =0 at t = 0) to see that ¢ =0 on Q.

From (3.4) with v > 0 we get u > 0 if one has positive initial data, even
allowing for reactivation failures which involved multiplication by p™ with n
uniformly bounded for x € 2. Using the assumed linear growth rate, we
also get (pointwise) the upper bound for u noted above when wu is bounded
at t = 0 by comparison with u; = a + bu. From (3.3) we see that p remains
bounded above by its initial value, assumed nonnegative and integrable; the
diktat that 6 = 0 when p < 0 ensures that p also remains nonnegative.

We now let (P,) converge in the sense noted above — increasing the
set of sensor points {z;} while further subdividing €, letting {z,} become
dense and letting the diameters of the §2; shrink to 0 in the limit. Since
v¥ is fixed and we have suitable compactness of the set of {v* : P,}, we
can always extract a subsequence, again denoted by (P,), such that vF~
converges uniformly on each Q..

For any x € 2 we have x € (), for some € > 0 and may consider a sequence
of sensor points @, € S converging to z, whence ynx) = vF (-, 2pm)) —
v(,z). By Lemma 2.4 we may further extract a subsequence such that
wP (-, T,)) converges pointwise to w, (-, ) ensuring (3.5). Given this, the
ODE (3.4) gives convergence u¥ — u and (wu)? — wu satisfying (3.4) at x.
Similarly, p¥ — p, as P converges with p, satisfying (3.3) at z. Since z € Q
is arbitrary, this limit is a solution of (S) as desired. We note, in particular,
that p.(t,-) is well-defined on 2 for each t.

Since W is, in general, set-valued, we cannot expect uniqueness. How-
ever, the argument above by compactness does show that a limit of solutions
of (S) is again a solution once we note, as an implication of the localized
regularity, that a bound on v in, e.g., [C(X)]* is sufficient to ensure that
v¥ is in a compact subset of C(Q,) for each € > 0 so the argument goes as
before to show that one obtains a solution of (S) in the limit. |
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5 Existence of optimal controls

Finally, we return to the bioremediation model (S) = (S)¥ as a control
problem with boundary control ¢). As noted, the cost functional J of (1.1)

T[] = eillp(T, )|l ) + callbl| (s

is a natural criterion here, balancing the running cost of supplying an ex-
pensive nutrient during [0, 7] against the economic cost of having pollutant
remaining at the end of this time. We will actually enlarge the control space
to the second dual, admitting measures as controls, so taking ¢ € [C(X)]*
with no change in (1.1)

T = ellp(T, )z + calllliey- (5.1)

From the arguments for Theorem 4.2 we almost immediately get existence
of optimal solutions of this control problem:

Theorem 5.1. There exists an optimal control 1, for which the cost func-
tional J of (1.1) (with fized c1, co > 0) is minimized, subject to ¥ > 0 and
admitting measures as controls.

PROOF: As usual, we consider a minimizing sequence 1, so J[1,] —
J. = inf J. One has coercivity there: the minimizing sequence is necessar-
ily bounded in what is now a dual space so, applying Alaoglu’s Theorem,
we may then extract a subsequence which is weak-x convergent to some
Y. € [C(X)]*. As in the last paragraph of the proof of Theorem 4.2, we
have compactness of (restrictions of) v¥" in each C(Q.) so, as there, we may
conclude that the arguments of the proof of Theorem 4.2 continue to ap-
ply: perhaps for a subsequence, we have convergence to a solution of (S)¥+.
Since the functions p are nonnegative and uniformly bounded on €2, we have
convergence of fQ p to fQ p« by the Dominated Convergence Theorem and
note that fz ¥, < liminf fz ¥, by the weeak-* convergence. The standard
argument then applies: J(¢,) < liminf J(4,) = inf J and, since one cannot
have J(¢.) < infJ, we attain the minimum cost with .. [ |

Remark: Essentially the same argument could be used to treat J-optimal
control with a variety of other convex constraints — e.g., that the support
of 1) be in some given subset of 2 or that ¢ be of the form S5 ¢ (t)ex(z)
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with {ex} given on 01, etc. Further, in the presence of a constraint || < B,
one could similarly prove the existence of a time-optimal control to reach a

(feasible) closed target set as {p(T,-) < M}. |
References

[1] T.C. Hazen, Cometabolic Bioremediation (Ch. 7, pp. 2505-2514) and In
Situ Groundwater Bioremediation (Ch. 13, pp. 2583-2596) in Handbook
of Hydrocarbon Lipid Microbiology, (Timmins et al., eds) Springer, NY,
2010.

[2] M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis,
Nauka, Moscow, 1983 [transl., Springer-Verlag, Berlin, 1989].

[3] S. Lenhart, T.I. Seidman, and J. Yong, Optimal control of a bioreactor
with modal switching, Math. Models Methods in Appl. Sci. 11, pp. 933—
949, (2001).

[4] R.D. Norris, et al. Handbook of Bioremediation, Lewis Publishers, Boca
Raton, 1994.

[5] T.I. Seidman, Switching systems: thermostats and periodicity,

Math. Res. Report 83-07, UMBC, 1983.
http://userpages.umbc.edu/~seidman /ss_83.pdf

[6] T.I. Seidman, A 1-dimensional bioremediation model with modal switch-
ing, in Control of Distributed Parameter and Stochastic Systems,
(S. Chen, X. Li, J. Yong, X.Y. Zhou, eds.) pp. 127-131, Kluwer Acad.
Publ., Norwell, 1999.

[7] T.I. Seidman, A convection/reaction/switching system,

Nonlinear Anal. - TMA 67, pp. 2060-2071, (2007).
[8] T.I. Seidman, Some aspects of modeling with discontinuities,
Int’l. J. Evolution Eqns. 3, pp. 129-143, (2008).
[9] G. Stampacchia, Equations elliptiques du second ordre & coefficients

discontinues, Les Presses de 1’Université de Montréal, 1966.

13



[10] E. Venkataramani and R. Ahlert, Role of cometabolism in biological ox-

idation of synthetic compounds, Biotechnology and Bioengineering 27,
pp. 1306-1311, (1985).

[11] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin,
1994.

14



