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Abstract
We consider a spatially distributed hybrid system consisting of a

convection/reaction system in which the reaction switches discontinuously in
time between modes, independently at each spatial point on reaching “switch-
ing threshholds.” The model involves a novel formulation for evolution of the
free boundary between the modal regions.

Key words: partial differential equations, system, nonlinear, convec-
tion/reaction, hybrid system, bioremediation

1 Introduction

We are here concerned with convection/reaction systems which switch dis-
continuously between alternate modes of the system (i.e., different reaction
functions) independently at each spatial point on reaching certain “switching
threshholds”. We begin with the problem:

i .
∂v

∂t
+

∂v

∂s
= −fj(t, s, v)

ii . j(·, s) = W [v(·, s)]
(1.1)

on Q0 = [0, T ] × [s, s̄]. Here (1.1-i) is a convection/reaction equation with
reaction given by −fj specifying the choice of reactive mode by the index j.
On the other hand, j = j(t, s) is to be determined from v(·, s), independently
at each spatial point s ∈ [s, s̄], by (1.1-ii) through the “elementary hysteron”
W [·] of [1]; we will discuss this switching rule in more detail in Section 3.



Of course we must adjoin input boundary conditions for v to (1.1-i) and
adjoin initial conditions for each component:

v(t, s) = v∗(t)

v(0, s) =
◦
v (s), j(0, s) = j0(s).

(1.2)

For our treatment here it will be important that we assume
◦
v (·) decreasing

in s and that j0 has the form

j0(s) =

{
1 if s ≤ s < s∗
0 if s∗ < s ≤ s̄

(1.3)

for some s∗ ∈ [s, s̄] with α− ≤
◦
v (s∗) ≤ α+.

The system (1.1) is only a special case of the more general form which we
will wish to consider later, but it already exhibits the essential novel features
of the situation:

• The index j is needed to indicate modal selection, so this is a hybrid
system: the state at each point is [v(t, s), j(t, s)], which has both the
continuous component v, taking values in R, and also the discrete com-
ponent j, taking values in {0, 1}.

• The constitutive ‘switching function’ W [·] appearing in (1.1-ii) is not
really a function, but a discontinuous, hysteretically history-dependent,
input/output relation.

This form of hysteretic interaction seems new in connection with partial
differential equations, although we note [7], [5], [8].

Our first step in treating (1.1) will be the substitution1

τ = t− s : ṽ(τ, s) = v(τ + s, s), ̃(τ, s) = j(τ + s, s) (1.4)

whence, with

ṽ∗(τ) = v∗(τ + s̄), f̃j(τ, s, r) = fj(τ + s, s, r), (1.5)

we have

i .
∂ṽ

∂s
= −f̃̃(τ, s, ṽ), ṽ(τ, s) = ṽ∗(τ)

ii . ̃(·, s) = W [ṽ(·, s)].
(1.6)

1Note that we are not changing to Lagrangian coordinates here: instead, we keep spatial
points unchanged while shifting time for each s. This is important to obtain (1.6-ii).
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Note that this has transformed the convection equation into a family of ordi-
nary differential equations in s, parametrized by τ , while (1.6-ii) is a family
of switchings with respect to τ , parametrized by s. Of course, (1.4) has
transformed Q0 into

Q̃0 = {(τ, s) : s ≤ s ≤ s̄, −s ≤ τ ≤ T − s}

and we must consider (1.6) on Q̃ = [τ , τ̄ ]× [s, s̄] where we take τ = −s̄ and
τ̄ = T −s to have Q̃0 ⊂ Q̃; we discuss the requisite data for (1.6) in Section 4
(Remark 4.2).

Our second step, the key to our treatment, is consideration of a free
boundary problem, determining the regions where the index takes each value.

Under the assumptions that the initial data
◦
v, j0 are as above and that f̃ > 0,

we will see that there will be a separator σ(τ), later to be characterized by
a double obstacle problem, such that

̃(τ, s) =

{
1 if s ≤ s < σ(τ)
0 if σ(τ) < s ≤ s̄

(1.7)

so the problem (1.1) for the hybrid pair of unknowns (v, j) can be converted
to a problem seeking the pair of continuously-valued unknowns (v, σ).

After briefly presenting an example in Section 2, we will discuss W [·] and
the characterization (1.7) in Section 3 and then in Section 4 will complete
the demonstration of well-posedness for the problem (1.6) and so also for the
convection/reaction/switching problem (1.1)-(1.2).

Remark 1.1. It is not very difficult to generalize this to n-dimensional con-
vection. Suppose we wish to consider the equation

∂v

∂t
+∇ · (vv) = −f(t, x) (1.8)

in a spatial region Ω0 ⊂ Rm with (specified) velocity field v = v(x).
The relevant notion of “geometric admissibility” for [Ω0,v] is intu-

itively clear, but awkward to describe satisfactorily. Given a point x ∈ Ω0

we can solve the ordinary differential equation: dx/ds = v(x) to obtain both
a flowline and a parametrization by s ∈ (s, s̄) along that flowline. We are
then assuming that this flow moves smoothly through the region Ω0 from
each input point x0 = x(s) ∈ ∂Ω0 to an outflow point x(s̄) ∈ ∂Ω0, taking
finite time [s̄− s].
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The second, more awkward, aspect of this admissibility is that there
should be a local transverse variable y ∈ Y ⊂ Rm−1 parametrizing the family
of flowlines so Ω0 appears as a manifold Ω with local coordinates [s, y], dif-
feomorphically related to the original x. While looking to this generality in
principle, we will actually treat explicitly only the more restricted situation
in which, for each such y ∈ Y , there is just one associated flowline segment
[s(y), s̄(y)] so Ω0 maps smoothly and invertibly to

Ω = {x = [s, y] ∈ Rm : y ∈ Y, s(y) < s < s̄(y)}. (1.9)

Without further loss of generality, then, we assume we already begin with a
‘nice’ bounded region Ω0 = Ω in the form (1.9).

We are then specifying the boundary data for the convection on the
set of input points Γ0 = {[s(y), y] : y ∈ Y } ⊂ ∂Ω. Note that with this
coordinatization x = [s, y] the convective flow is at unit speed (with respect
to s) along the flowlines y =constant so (1.8) becomes the family of spatially
one-dimensional problems

∂v

∂t
+

∂v

∂s
= −f̂(t, s, y, v),

v(t, s(y), y) = v∗(t, y), v(0, s, y) =
◦
v (s, y)

(1.10)

with f̂ = f + (∇ · v)v, parametrized by y ∈ Y .
Of course we can also take f in (1.8) to depend also on j, v and then, at

each spatial point, couple this with the modal switching rule W [·] to consider
a family, parametrized by y ∈ Y , of convection/reaction/switching systems
(1.1). Assuming Ω is given as in (1.9) and after again making the substitution
τ = t− s, we have the system

i .
∂ṽ

∂s
= −f̂̃(τ + s, s, y, ṽ), ṽ(τ, s, y) = v∗(τ + s̄, y)

ii . ̃(·, s, y) = W [ṽ(·, s, y)]
(1.11)

(plus initial conditions) for the hybrid pair [ṽ(τ, s, y), ̃(τ, s, y)]. Each of these
problemsy would then be treated, as described earlier, by converting to a
problem for v and σ(·, y).

We will finally wish to couple (1.11) with another quasilinear problem
for an RK-valued unknown w. Our fully coupled system will then have the
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general form

i .
∂v

∂s
= −fj(t, x, v, w),

ii . j(·, x) = W [v(·, x)],

iii .
∂w

∂t
− Lw = gj(t, x, v, w)

(1.12)

for t > 0, x = (s, y) ∈ Ω. In incorporating (1.11) — i.e., (1.8) after the time
shift — with the switching ̃ = W [ṽ], we have omitted the ˜s over v, j and
are now writing t rather than τ . Note that the index j appears in (1.12-iii)
well as (1.12-i) and that (1.11) is coupled with (1.12-iii) through this and the
dependence of fj, gj on both v and w — but the switching (1.12-ii) depends
only on the component v, not on w.

Under appropriate hypotheses we will obtain well-posedness for this fully
coupled hybrid system in Section 5.

2 A motivating example:

application to a bioremediation model

We begin by describing an ODE version of this model — considering only
the reactive aspect with no spatial dependence. This is given by the hybrid
system

α̇ = u− fj(α, β) β̇ = jg(α, β) π̇ = −cjβ

switching rule: j = W [α].
(2.1)

Here β = β(t) is the biomass, which can either be in an active or in a
dormant state, indicated by j = 1, 0, respectively and π is the level of
a pollutant, cometabolized by the bacteria when active. The modal state
transitions are determined by the concentration α = α(t) of some critical
nutrient through the input/output map W [·]:

• The bacteria become dormant when this concentration α(t) drops below
a critical threshhold value α−,

• The bacteria are then re-activated when α(t) subsequently rises above
a higher threshhold α+.

The nutrient is fed into the system (input u = u(t)) and is also degraded in
time and metabolized by active bacteria.
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One might now consider a distributed version2 of (2.1): at each spatial
point x of a region Ω we have a biomass concentration β(·, x) and pollutant
level π(·, x) with the activity state j(·, x) for the bacteria; both bacteria and
pollutant are assumed to be attached to that point. As in (2.1), these satisfy

β̇ = jg(α, β), π̇ = −cjβ; j = W [α] (2.2)

(as an independent evolution in time for each x ∈ Ω, i.e., ordinary differential
equations parametrized by x). We then postulate Ω as a subsurface region
with a (known) groundwater flow having stationary stream velocity v =
v(x), carrying the nutrient convectively in solution — with specified flux at
the boundary points where the flow enters Ω. Assuming the same form for
the reactions as in the model (2.1), we then have the ordinary differential
equations in (2.2) coupled through the convection/reaction equation

αt −∇ · [αv] = −fj(α, β). (2.3)

[The nutrient supply now appears in the input boundary condition, rather
than in the equation (2.3) itself.]

Remark 2.1. The systems (2.1) and (2.2), (2.3) are, of course, oversimpli-
fied caricatures of biologically correct models. For example, the equation
π̇ = −cβ (for active bacteria) is crude — and is actually impossible in that
π̇ necessarily vanishes after π gets to 0, perhaps requiring a further disconti-
nuity in the dynamics at this point. . . More significantly, the discontinuous
switching is intended as an approximate reduction of complexity where a
biologically more realistic description would involve a complicated process
developing on a faster time scale than we wish to consider. At present we are
less concerned with the realism of these models than with the mathematical
problems which they pose.

For this bioremediation problem, then, we are thus considering the cou-
pled system (2.2)–(2.3) — to hold in Q0 = (0, T )× Ω) with initial data and

2A version of the model (2.1) was considered in [3] in the context of optimal con-
trol, selecting the nutrient supply rate u(t) for effective bioremediation to optimize a
cost/benefit criterion, balancing the cost of the (expensive) nutrient with reduction of the
pollutant level. An earlier version of the spatially distributed problem (2.2), (2.3) was
presented in [5] — again in an optimal control context — with a brief indication of the
well-posedness argument.
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suitable (boundary) source data for α. If we consider this for one-dimensional
Ω as in [5]), then we recognize the system as (1.6), coupled with the ordinary
differential equations β̇ = jg(α, β), π̇ = −cjβ, parametrized by s ∈ Ω —
giving (1.12-iii) on taking w = [β, π]T with L = 0 and gj = j[g(α, β), cβ]T.

3 The switching function W [·]
Our modal switching will be determined independently at each spatial point s
by switching rules (cf., e.g., [4]) equivalent to the elementary hysteron of [1].
We consider a causal map W from continuous scalar inputs t 7→ ω(t) to the
corresponding {0, 1}-valued outputs t 7→ χ(t) for τ ≤ t ≤ τ̄ : after specifying
a pair of threshhold values (with α− < α+) and a consistent initial value
χ(τ), the output will be characterized by the conditions:

i. χ =

{
0 when ω < α−
1 when ω > α+

ii. χ is constant except for switching:{
0 y 1 when ω increases across α+

1 y 0 when ω decreases across α−

(3.1)

[This is not a pointwise function: W : ω(t) 7→ χ(t) since the determination
in (3.1) of the output χ(t) is history-dependent at times when the input
ω(t) lies between the threshholds; following [1], we may emphasize the rate-
independence of this history dependence.]

It is not difficult to see that (3.1) does, indeed, define χ = W [ω] — e.g.,
in L = L1(τ , τ̄) — for each ω ∈ C = C[τ , τ̄ ] and that the resulting map is
causal. One must be a bit careful here about transversality — the meaning of
“across” in (3.1-ii) — e.g., if χ(τ−) = 0 and ω rises to α+ at time τ ∈ (τ , τ̄)
without actually crossing (i.e., if ω(t) ≤ α+ on [τ, τ + ε]), then χ ≡ 0 on
[τ, τ + ε). The possibility of such “anomalous points” as τ means that W
cannot be continuous as a map: : C → L.

Remark 3.1. This possibility of ambiguous anomalous points is a source
of significant technical difficulty for the general theory. The treatment in
[4] effectively modifies (3.1) to replace W by its closure, the minimal upper
semicontinuous set-valued extension. This does provide some useful conti-
nuity, but has the consequence that the output of W [·] may turn out to be
nonunique for certain input functions. We need not address this point here,
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since such possible nonuniqueness will not affect us in the context of (1.1):
we will see that this could occur for j only on a nullset and cannot affect v
at all. We also observe that (with ω continuous, so uniformly continuous on
the compact set [τ , τ̄ ] × [s, s̄]) “Zeno points” cannot arise here — i.e., one
cannot have a limit of switching points within any bounded t-interval and,
indeed, one has a uniform positive lower bound for the length of interswitch-
ing intervals.

Of particular importance for us, however, is the fact, already noted in
[1], that W is isotone: assuming consistent initial data we have

for continuous functions {ωk} with χk = W [ωk] :
If ω1 ≤ ω2 pointwise on [τ , τ̄ ], then also χ1 ≤ χ2.

(3.2)

[To see this, note that the conclusion could be falsified only by having both
χk(τ−) = 0 with χ1 switching 0 y 1 at τ while χ2 does not switch or the
reverse of that — neither of which is consistent with (3.1) if ω1 ≤ ω2.]

The novel feature of our present concerns is the consideration of a family
of such hysterons, parametrized by s ∈ [s, s̄], with corresponding initial data
χ0(s) and continuous input families ω(·, s) subject to the assumption that
χ0(·) and, for each fixed t, the function s 7→ ω(t, s) is monotone decreasing:

s1 < s2 ⇒

{
χ0(s1) ≥ χ0(s2) and

ω(t, s1) > ω(t, s2) for each t ∈ [τ , τ̄ ].
(3.3)

Applying W as above, independently with respect to s, we obtain output
χ(·, s) = W [u(·, s)] parametrized by s. Note from (3.2) that χ will also be
monotone in s — χ(t, ·) is nonincreasing for each fixed t — so for each t ∈
[τ , τ̄ ] there exists some separating point σ̂(t) ∈ [s, s̄] such that3

χ(t, s) =

{
1 for s ≤ s < σ̂(t)
0 for σ̂(t) < s ≤ s̄

(3.4)

It is not immediately clear at this point — but will follow from Theorem 3.4
below — that the separation function σ̂(·) in (3.4) is continuous.

3Compare (1.7). This says nothing about χ(t, s) when s = σ̂(t), but that information
will not really be needed for our purposes. It is, of course, possible that σ̂(t) = s or
σ̂(t) = s̄ so (3.4) would not be a true separation.
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Our major task in this section will be to find an alternative construction
of the free boundary. I.e., assuming the form of (3.4), we seek an alterna-
tive construction of the separation function σ̂(·), from the continuous input
function ω : [τ , τ̄ ]× [s, s̄] → R, satisfying (3.3).

To this end we begin by introducing functionals Φ±, acting on strictly
decreasing functions s 7→ ω̂(s), by

Φ−[ω̂] =


s ∈ [s, s̄] if ω̂(s) = α+

s if ω̂(s) < α+

s̄ if ω̂(s̄) > α+

Φ+[ω̂] =


s ∈ [s, s̄] if ω̂(s) = α−
s if ω̂(s) > α−
s̄ if ω̂(s̄) < α−

For future reference we note the easy estimate

dω̂/ds ≤ −β, |ω − ω′| ≤ δ ⇒ |Φ−(ω)− Φ−(ω′)| ≤ δ/β
|Φ+(ω)− Φ+(ω′)| ≤ δ/β.

(3.5)

Given the continuous input function ω, we next set ϕ±(t) = Φ±[ω(t, ·)] so

[ϕ−(t), ϕ+(t)] = K(t) := {s ∈ [s, s̄] : α− ≤ ω(t, s) ≤ α+} (3.6)

for t ∈ [τ , τ̄ ]. Note that the assumed continuity of ω ensures that ϕ±(·) are
each continuous.

From any given pair [ϕ−, ϕ+] of continuous functions with ϕ− ≤ ϕ+

pointwise on [τ , τ̄ ] and a consistent initial value σ(τ), we can solve a double
obstacle problem to obtain a function σ on [τ , τ̄ ], characterized by

i. ϕ−(t) ≤ σ(t) ≤ ϕ+(t) for τ ≤ t ≤ τ̄
ii. σ(·) is constant when that is possible subject to i., so it is

increasing or decreasing only when this is forced — i.e.,
it increases when σ(t) = ϕ−(t) with f− increasing and it
decreases when σ(t) = ϕ+(t) with f+ decreasing.

(3.7)

We may write σ(t) = σ(t; ϕ−, ϕ+) to indicate explicitly the dependence of σ
on the pair of functions ϕ±.

Remark 3.2. We recognize (3.7) as a one-dimensional version of Moreau’s
sweeping process (cf., e.g., [2]) determined by the moving convex set t 7→
K(t) = [ϕ−(t), ϕ+(t)]. Assuming some regularity, (3.7-ii) effectively requires
that σ̇ ≥ 0 when σ < ϕ+ and σ̇ ≤ 0 when σ > ϕ− so σ satisfies the variational
inequality: (ζ−σ)σ̇ ≥ 0 for ζ ∈ [ϕ−, ϕ+]. From, e.g., [6, Theorem 4.5] — note
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also the treatment of the generalized play operator in [7, Proposition III.2.5]
— we have existence of unique solutions for (3.7) with the well-posedness
estimate:

|σ(t)− σ̃(t)| ≤ max

{
|σ(0)− σ̃(0)|, max

0≤t′≤t
{∆(t′)}

}
(3.8)

where σ(·) = σ(·; ϕ−, ϕ+), σ̃ = σ(·; ϕ̃−, ϕ̃+),
∆(t) = max{|ϕ−(t)− ϕ̃−(t)|, |ϕ+(t)− ϕ̃+(t)|}.

t →

s ↑

s

s̄

ϕ+

ϕ−

ω < α−

ω > α+

σ(·)
ŝ

Figure 1: σ(·) and switching along s = ŝ

Later we will also need the following observation:

Lemma 3.3. Let σ = σ(·; ϕ−, ϕ+) and σ̂ = σ(·; ϕ̂−, ϕ̂+) be obtained as in
(3.7) with the same initial data at τ . Suppose, for each t, one has:

ϕ−(t) ≤ σ̂(t) ≤ ϕ+(t),

{
ϕ̂−(t) = ϕ−(t) when σ̂(t) = ϕ̂−(t),
ϕ̂+(t) = ϕ+(t) when σ̂(t) = ϕ̂+(t).

(3.9)

Then σ, σ̂ are identical on [τ , τ̄ ].
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Proof: Given σ̂(·), consider the use of (3.7) to construct σ. As t increases,
our hypotheses (3.9) just ensure that σ(·) is forced to increase or decrease
precisely when σ̂(·) had been forced to increase or decrease by (3.7-ii), so
they remain the same on all of [τ , τ̄ ].

We may further remark that this gives, in particular,

σ(·; ϕ−, ϕ+) ∧ s̄ = σ(·; ϕ− ∧ s̄, ϕ+ ∧ s̄),
σ(·; ϕ−, ϕ+) ∨ s = σ(·; ϕ− ∨ s, ϕ+ ∨ s).

(3.10)

We now turn to the principal substantive result of this section. The signif-
icance for us of Theorem 3.4 is that, subject to (3.3), the input ω equivalently
determines the indicial output j of W [·] by

(3.6) −→ (3.7) −→ (3.4) : ω 7→ ϕ± 7→ σ ≡ σ̂ 7→ χ = j

without directly using the switching rules (3.1) and, further, that we will
have the estimate (3.8) available.

Theorem 3.4. Let ω be a continuous scalar function on [τ , τ̄ ] × [s, s̄] sat-
isfying (3.3). Define χ(·, s) = W [ω(·, s)] on [τ , τ̄ ] for each s ∈ [s, s̄] with
monotone initial data χ(τ , ·) and use (3.4) to obtain σ̂(·). Also, define ϕ±
from ω as in (3.6) and, with the consistent initial datum σ(τ), use (3.7) to
obtain σ(·). These functions σ and σ̃ are then identical.

Proof: Consider an arbitrary s∗ ∈ [s, s̄]. For exposition, let us assume,
e.g., that s < s∗ < σ(τ) so, by assumption, χ(τ , s∗) = 1. If, the switching
rules (3.1) cause χ(·, s∗) to switch 1 y 0 at some t1 > τ , this can only be
because the corresponding input ω(·, s∗) decreases across α−. This, however,
means that we must have ω(t, s∗) ≥ α− for t ≈ t1− and ω(t, s∗) < α−
for t ≈ t1+ whence ϕ−(t1+) < s∗. Of course, this ensures that σ(·) has
been forced to decrease across s∗ by t1 so the switch 1 y 0 of χ(·, s∗) does
not falsify (3.4) there: χ(t1+, s∗) = 0 with s∗ > σ(T1+). Conversely, if σ(·)
decreases across s∗ at t1, it can only be because ϕ−(t1+) < s∗ so ω(t, s∗) < α−
for t ≈ t1+ and, by (3.1), we must have χ(·, s∗) switching 1 y 0 at t1 so
again (3.4) would not be falsified.

Proceeding this way along s = s∗ as t increases, we may argue similarly
that (3.4) continues to hold for τ ≤ t ≤ τ̄ , noting that the corresponding
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argument holds for switchings 0 y 1 and σ(·) decreasing across s∗. As s∗
was arbitrary, the asserted result follows.

Remark 3.5. While the assumed monotonicity (3.3) with respect to the
parameter s was significant for our arguments, replacing the decrease by
strict monotone increase

s1 < s2 ⇒

{
χ0(s1) ≤ χ0(s2) and

ω(t, s1) < ω(t, s2) for each t ∈ [τ , τ̄ ].

would permit corresponding considerations. [One either parallels the argu-
ments above or applies these results with sign reversals for ω and for α±.]

4 Solving the simple system

Our primary task in this section is to show well-posedness for the system

i .
∂ṽ

∂s
= −f̃̃(τ, s, ṽ), ṽ(·, s) = ṽ∗(·)

ii . ̃(·, s) = W [ṽ(·, s)] ̃(τ , ·) = χ0(·)
(4.1)

with hybrid state [ṽ, ̃] ∈ R × {0, 1} at each (τ, s) ∈ Q̃ = [τ , τ̄ ] × [s, s̄]. We
defer to Remark 4.2 a discussion of the relation of this to the original con-
vection/reaction/switching system (1.1)-(1.2) before the substitution (1.4).

Theorem 4.1. Assume

• f̃j (j = 0, 1) are each strictly positive, continuous and Lipschitzian in ṽ;

• the data ṽ∗(·) is continuous;

• for some4 s∗ ∈ [s, s̄] one has

χ0(s) =

{
1 for s ≤ s < s∗
0 for s∗ < s ≤ s̄.

(4.2)

4We impose a consistency condition: If ṽ∗(τ) ≤ α− we require s∗ = s; else we solve
d
◦
v /ds = −f̃1(τ , s,

◦
v) with

◦
v (s) = ṽ∗(τ) and require that s∗ = s̄ if

◦
v (s̄) ≥ α+.
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Then the system (4.1) has a unique solution on Q̃. Further, this solution
depends continuously on the data ṽ∗ and the constitutive functions f̃j.

Proof: It is interesting that, under the given hypotheses, a solution can
be constructed directly, rather than via a fixpoint problem. The construction
on Q̃ of the pair ṽ, ̃ proceeds as follows:

1. For each τ , solve on [s, s̄] the ordinary differential equation (4.1-i) with
fixed index j ≡ 1:

dv̂

ds
= −f̃1(t, s, v̂), v̂(s) = v(τ, s) = ṽ∗(τ), (4.3)

to obtain v̂ on Q̃. Note that the assumption that f̃1 is Lipschitzian in
its third argument ensures solvability of (4.3).

2. The positivity of f̃1 ensures that each v̂(τ, ·) is strictly decreasing in s;
thus we can define ϕ̂±(τ) = Φ±(v̂(τ, ·)) (as in (3.6), but using v̂ as the
input function) so

[ϕ̂−(τ), ϕ̂+(τ)] = {s ∈ [s, s̄] : α− ≤ v̂(τ, s) ≤ α+}; (4.4)

3. Solve the double obstacle problem (3.7) (using the initial condition
σ̂(τ) = s∗) to obtain σ̂ = σ(·; ϕ̂−, ϕ̂+);

4. Use (3.4) in reverse to construct the index component ̃:

̃(τ, s) =

{
1 when s ≤ s < σ̂(τ)
0 when σ̂(τ) < s ≤ s̄;

(4.5)

5. Having obtained ̃, we can finally solve on [s, s̄] the ordinary differential
equation (4.1-i) for each τ , obtaining ṽ on Q̃.

We remark that the assumed continuity of the data and constitutive func-
tions, together with the continuity of σ given by (3.7), ensure the continuity
on Q̃ of the constructed ṽ.

We must now show that the pair ṽ, ̃ just constructed constitutes a so-
lution of (4.1) — in particular, we must show that this ̃ gives ̃(·, s) =
W [ṽ(·, s)], satisfying the switching rules (3.1), using the input ṽ(·, s) for each
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s ∈ [s, s̄]. In view of Theorem 3.4, this is equivalent to showing the correct-
ness of σ̂. The difficulty, of course, is that σ̂ was obtained using v̂ as input
function — rather than ṽ, which was as yet unknown. Thus, to justify our
construction we must show that this distinction is nugatory; we note that
this can be done by appealing to Lemma 3.3 to show that σ̂ = σ, where,
given ṽ on Q̃,

σ = σ(·; ϕ−, ϕ+) ϕ± = Φ±(ṽ(·, ·))

if we can only show that ϕ±, f̂± satisfy the hypotheses (3.9) of that lemma.
To this end we compare the defining differential equations — (4.3) for v̂

and (4.1-i) for ṽ — noting first that ṽ ≡ v̂ on [s, σ̂(τ)] for each τ . To verify
(3.9) we fix τ and, somewhat tediously, check the various cases. We begin
with the prototypical case: s < ϕ̂− < ϕ̂+ < s̄.

We have, then, v̂(ϕ̂−) = α+ and ṽ = v̂ on [s, σ̂] ⊃ [s, ϕ̂−] so
ṽ(ϕ̂−) = v̂(ϕ̂−) and ϕ− = ϕ̂− ≤ σ̂; if σ̂ = ϕ̂−, then ṽ(σ̂) = v̂(σ̂) =
α+ so ϕ− = σ̂ = ϕ̂−. Also, v̂(ϕ̂+) = α− so, as σ̂ ≤ ϕ̂+ with ṽ
decreasing, we must have ṽ(σ̂) = v̂(σ̂) ≥ v̂(ϕ̂+) = α− so ϕ+ ≥ σ̂;
if σ̂ = ϕ̂+, then ṽ(σ̂) = v̂(σ̂) = α− so ϕ+ = σ̂ = ϕ̂+.

[Treatment of each of the endpoint cases is comparably straightforward —
for example, if ϕ̂− = s one must have v̂(s) = ṽ(τ) ≤ α+ so ṽ ≤ α+ on [s, s̄]
whence also ϕ− = 0 ≤ σ̂, . . .— and we leave these cases as an exercise.]
This, for each τ ∈ [τ , τ̄ ], gives applicability of Lemma 3.3 and so completes
the justification of (4.1-ii).

To show uniqueness5 we partially reverse the argument we have used:
Given a solution ṽ, ̃ for (4.1), we may define v̂, ϕ̂±, σ̂ as earlier and essentially
the same argument we have just used shows that Lemma 3.3 is applicable to
give σ̂ ≡ σ so the original construction recovers the same ṽ, ̃ with which we
started — i.e., that construction provides the only solution.

5We note that (4.5) left ̃(τ, s) undefined on the interface s = σ̃(τ). This is not really
a problem, however, as it does not at all affect the differential equation (4.1-i) in the final
step of the construction —and afterwards one can use (3.1) directly from ṽ to obtain ̃ for
those points on the interface itself.

At this point we remark that “anomalous points” for the switching rules (3.1), as
mentioned in Section 2, can only occur only in {t, σ(t)} (and, indeed, only within intervals
of local constancy for σ); since these can actually occur, there may remain a slight bit of
nonuniqueness in our specification of ̃. We do note, however, that ṽ is entirely unaffected
by this and that ̃ is uniquely defined ae, so we treat this technical difficulty as irrelevant
to our concerns.
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We turn now to obtaining a continuity estimate for the dependence of
solutions of (4.1) on the data and the constitutive functions. Thus, in addi-
tion to the problem above with constitutive functions f̃j and data ṽ∗, s∗ we
consider another problem with corresponding constitutive functions f̃ ′

j and
data ṽ∗′, s′∗. From our hypotheses on the constitutive functions, we note the
existence of constants β, λ, K > 0 such that

i. f̃1(τ, s, r) ≥ β > 0 when r ≥ α

ii.
∣∣∣f̃j(τ, s, r)− f̃j(τ, s, r

′)
∣∣∣ ≤ λ |r − r′|

iii.
∣∣∣f̃0(τ, s, r)− f̃1(τ, s, r)

∣∣∣ ≤ K

(4.6)

We measure the difference between the problems (4.1) and (4.1)’ by

|s∗ − s′∗| ≤ ε0, |ṽ∗(τ)− ṽ∗′(τ)| ≤ ε1,∣∣∣f̃j(τ, s, r)− f̃ ′
j(τ, s, r)

∣∣∣ ≤ ε̂(τ, s) with

∫ s̄

s

ε̂ ds ≤ ε2 = ε2(τ)
(4.7)

and, following the steps of the construction above, now proceed to estimate
the difference between the corresponding solution pairs [ṽ, σ] and [ṽ′, σ′].

Subtract (4.3)’ from (4.3), integrate, and then use (4.6-ii) and (4.7): the
Gronwall Inequality now gives

|v̂(τ, s)− v̂′(τ, s)| ≤ (ε1 + ε2)e
λ[s̄−s] =: ε3. (4.8)

In view of (4.6-i) and this, we use (3.5) to see that

|ϕ±(τ)− ϕ′
±(τ)| ≤ ε3/β (4.9)

and then use (3.8) to see that

|σ(τ)− σ′(τ)| ≤ max{ε0, ε3/β} =: ε4. (4.10)

Now, using (4.6-i,iii) and (4.7), we note that∣∣∣f̃̃(·, ṽ)− f̃ ′
̃′(·, ṽ′)

∣∣∣ ≤ |f̃̃(·, ṽ)− f̃̃(·, ṽ′)|+ |f̃̃(·, ṽ′)− f̃̃′(·, ṽ′)|
+ |f̃̃′(·, ṽ′)− f̃ ′

̃′(·, ṽ′)|
≤ λ|ṽ − ṽ′|+ K|∆|+ ε̂,

(4.11)

15



with ∆ = {1 where j 6= j′; 0 where j = j′}. Since

∫ s̄

s

|∆| ds = |σ(τ)−σ′(τ)|,

applying the Gronwall Inequality to the difference of (4.1-i) and (4.1-i)’ gives
the final estimate

|ṽ(τ, s)− ṽ′(τ, s)| ≤ (ε1 + ε2 + Kε4)e
λ[s̄−s], (4.12)

showing uniform convergence [ṽ′, σ′] → [ṽ, σ] as ε0, ε1, ε2 → 0 in (4.7).

Remark 4.2. There is no difficulty in using the chain rule to pass, by (1.4),
from (1.1) to (1.6) and so to the equations (4.1-i,ii), but a comment is needed
as to how we obtain the data for (4.1) from (1.2) — the constitutive functions
f̃j and the input data ṽ∗ are given on the image Q̃0 by (1.5) but we must

construct f̃j on Q̃ \ Q̂ and ṽ∗ for τ = −s̄ ≤ τ < −s to consider (4.1) on Q̃ —
and must do this in such a way as to match (1.2) on the segment {τ = −s}
corresponding to the initial segment {t = 0} for Q0.

We first observe that if ̃ and the constitutive functions are defined
on the triangle ∆ = {(τ, s) ∈ Q̃ : τ ≤ −s} ⊂ Q̃ \ Q̃0, then the ordinary
differential equation

dṽ/ds = −f̃̃(·, ṽ) ṽ(τ,−τ) =
◦
v (−τ) (4.13)

can be solved on [s,−τ ] for each τ ∈ [τ ,−s) to obtain ṽ on ∆ and so the
required ṽ∗(τ) = ṽ(τ, s) on [τ ,−s).

To this end, we begin by taking s∗ as in (1.3) and then defining ̃ on
∆ as 1 for s < s∗ and as 0 for s > s∗, so consistent with (1.3) on {τ = −s}.
With f̃j > 0 on ∆, as we will assume, this ensures that

ṽ(τ, s) > ṽ(τ,−τ) = ṽ∗(−τ) ≥◦
v (s∗) ≥ α−

(so ϕ̃−(τ) ≥ s∗) for −s∗ ≤ τ ≤ −s, consistent with the choice of ̃ = 1 in
this part of ∆. For τ ≤ τ < −s∗ we wish to choose f̃0(τ, s, r) > 0 so the

solution of (4.13) satisfies α− ≤ ṽ(τ, s∗) ≤ α+ — possible for
◦
v (−τ) < α+

when −tau > s∗. [It is not too difficult to see that this extension of f̃j to
∆ can be done so as to maintain continuity.] Since we have arranged that
α+ ≤ ṽ(τ, s∗) here, we will have σ(τ) ≡ s∗ on [τ ,−s∗] from (3.7) so our choice
of ̃ on ∆ is consistent with (4.1-ii).
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It is now clear that the solution of (4.1) resulting from this construc-
tion will give the desired solution of the original problem (1.1)-(1.2) when
restricted to Q̃0 and (1.4) used in reverse. On reversing (1.4) we see that
Theorem 4.1 also shows well-posedness for the convection/reaction/switching
problem (1.1)-(1.2).

5 Solving the fully coupled system

We now turn to consideration of our final result: well-posedness for the fully
coupled system discussed in Remark 1.1. Following that discussion, we take
the system — after the substitution (1.4) — to have the form (1.12), i.e.,

i .
∂v

∂s
= −fj(t, x, v, w), v

∣∣∣
s=s(y)

= v∗(t, y)

ii . j(·, x) = W [v(·, x)],

iii .
∂w

∂t
− Lw = gj(t, x, v, w).

(5.1)

on Q = [τ , τ̄ ] × Ω with Ω as in (1.9) so x = [s, y] with s(y) ≤ s ≤ s̄(y)
for y ∈ Y ⊂ Rm−1. To the system (5.1) we then adjoin initial conditions
on Ω at t = τ :

w(τ , x) =
◦
w (x) j(τ , x) =

{
1 if s(y) ≤ s < σ0(y)
0 if σ0(y) < s ≤ s̄(y).

(5.2)

Remark 5.1. We introduce the Banach space W of RK-valued functions on
Ω determined by the norm

‖w‖W = sup
y∈Y

{∫ s̄(y)

s(y)

|w(s, y)| ds

}
(5.3)

(where | · | denotes any convenient norm on RK). We then assume that
L in (5.1-iii) is a densely defined linear operator on this space W (with
any relevant homogeneous boundary conditions included in this definition)
which is the infinitesimal generator of a C0 semigroup S(·) on W . Note that
standard semigroup theory then gives existence of constants M, δ such that

‖S(t)w0‖W ≤ Meδt ‖w0‖W . (5.4)
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We will further assume that the function
◦
w of (5.2) is in W .

It is unnecessary to specify initial data
◦
v for v since, given (5.2),

we can obtain this by solving (5.1-i) at t = τ . We will assume that this

induced
◦
v and the σ0 of (5.2) are consistent with (3.1-i), i.e., that α− ≤◦

v
(σ0(y), y) ≤ α+ for each y. Of course, the specification in (5.2) of j at t = τ
has really meant specification of the initial data σ(τ , y) = σ0(y) for the family
of double obstacle problems we encounter from consideration of the family
— parametrized by y ∈ Y — of simple problems (5.1-i,ii) as in Section 4. As
in the hypotheses for Theorem 4.1, we ask that the input boundary data v∗

should be continuous in t for each y and now also ask that v∗ be uniformly
bounded in y for each t.

For the constitutive functions fj : R+ × Ω × R × RK −→ (0,∞) and
gj : R+×Ω×R×RK −→ RK (j = 0, 1), we assume continuity and — compare
(4.6) — the existence of positive constants β, λ, K such that, uniformly,6

i . f1(·, r, ω) ≥ β > 0 when r ≥ α−

ii .
|fj(·, r, ω)− fj(·, r′, ω′)| ≤ λ[|r − r′|+ |ω − ω′|]
|gj(·, r, ω)− gj(·, r′, ω′)| ≤ λ[|r − r′|+ |ω − ω′|]

iii .
|f1(·, r, ω)− f0(·, r, ω)| ≤ K
|g1(·, r, ω)− g0(·, r, ω)| ≤ K

(5.5)

Theorem 5.2. Assume the data v∗, σ0,
◦
w and the constitutive functions fj, gj

are given as in Remark 5.1 above. Then the problem (5.1)-(5.2) has a unique
solution [v, w, j], depending continuously on the data.

Proof: We obtain the solution as the unique fixpoint of a contractive
mapping F on the Banach space CW = C([0, T ] → W) of continuous W-
valued functions on [τ , τ̄ ] for which, with our choice of the parameter γ to be
made later, we will use the exponentially weighted norm

‖w‖C = sup
0≤t≤T

{
e−γ(t−τ)‖w(t, ·)‖W

}
. (5.6)

6The a priori boundedness in (5.5-iii) might, for example, be an inherent property of
fj , gj as functions but might alternatively be deduced — e.g., using suitable estimation to
restrict the arguments v, w to compact sets.
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To construct F we proceed as follows

• Given ŵ ∈ CW , find v̂, σ̂, ̂ by solving (5.1-i,ii) as in Theorem 4.1, inde-
pendently for each y — using v∗(·, y) as boundary data, σ0(y) for s∗,
and using fj(t, s, y, r, ŵ(t, s, y)) for f̃j(t, s, r) in (4.1-i).

• Having obtained v̂, ̂ as above, solve wt = Lw + g(·, w) with the inital

data
◦
w, taking g(·, ω) = g̂(·)(·, v̂(·), ω), to obtain w =: F(ŵ).

It is clear that a fixpoint of this map will provide a solution of (5.1)-(5.2)
as desired so contractivity of F : CW → CW (with respect to the metric
‖·‖C for any suitable choice of γ) will imply existence of a unique solution
and, by standard perturbation results for contractive mappings, will also
show the continuous dependence on the data. We proceed, then, to estimate
‖F(ŵ)−F(ŵ′)‖C for ŵ, ŵ′ in CW .

At our first step we obtained v̂, σ̂ and v̂′, σ̂′ (independently for each y ∈ Y )
as in Theorem 4.1 — having conceptually replaced (5.1-ii) by (3.7) with
(4.4). We now follow the well-posedness estimation there; note that we have
assumed (5.5) to give (4.6). In comparing the problems, we have ε0 = 0 and
ε1 = 0 for (4.7) since we are keeping the data fixed and have

|f̃j(·, r)− f̃ ′
j(·, r)| = |fj(·, r, ŵ(·))− fj(·, r, ŵ′(·))|

≤ λ|ŵ(·)− ŵ′(·)| =: ε̂(·) so∫ s̄(y)

s(y)

ε̂(·) ds ≤ ε2(t) := λ‖ŵ(t, ·)− ŵ′(t, ·)‖W ≤ λeγ(t−τ) ‖ŵ − ŵ′‖C

for each t, y by the definitions of ‖·‖W and ‖·‖C . By (4.8) and (4.10) we then
conclude that

|σ̂(t, y)− σ̂′(t, y)| ≤ C eγ(t−τ) ‖ŵ − ŵ′‖C
|v̂(t, s, y)− v̂′(t, s, y)| ≤ C eγ(t−τ) ‖ŵ − ŵ′‖C

(5.7)

for a constant C independent of ŵ, ŵ′ and γ — indeed, C depends only on
the constants β, λ, K of (5.5) and a bound ` on [s̄(y)− s(y)]. From (5.7) we
have ‖v̂ − v̂′‖C ≤ `C ‖ŵ − ŵ′‖C .

We now continue to the second step of the construction of F and wish to
apply (5.4) to the representation

[w − w′](t) =

∫ t

τ

S(t− τ) [g(τ)− g′(τ)] dτ,
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obtaining

‖w(t)− w′(t)‖W ≤
∫ t

τ

Meδ(t−τ) ‖g(τ)− g′(τ)‖W dτ. (5.8)

Here, of course, g(τ) = g̂(τ,·)(τ, ·, v̂(τ d), w(τ, ·)) and correspondingly for g′ so
we proceed to use (5.7) to estimate g − g′ — much as for (4.11) so similarly
taking ∆ = {1 where ̂ 6= ̂′; 0 where ̂ = ̂′}, etc. We then have

|g(·)− g′(·)| =
∣∣g̂(·, v̂, w)− g′̂′(·, v̂′, w′)

∣∣
≤ |g̂(·, v̂, w)− g̂(·, v̂′, w′)|

+ |g̂(·, v̂′, w′)− g̂′(·, ṽ′, w′)|
≤ λ(|v̂ − v̂′|+ |w − w′|) + K|∆|

whence, by the definition of ‖·‖C and (5.7),

‖g(τ)− g′(τ)‖W ≤ sup
y∈Y

{∫ s̄

s

[λ(|v̂ − v̂′|+ |w − w′|) + K|∆|] ds

}
≤ λ‖v̂ − v̂′‖W + λ‖w − w′‖W

+ K sup
y∈Y

{|σ̂(τ, y)− σ̂′(τ, y)|}

≤ eγ(τ−τ) [C ′‖ŵ − ŵ′‖C + λ‖w − w′‖C ]

with C ′ = (λ` + K)C. Inserting this in (5.8) gives

e−γ(t−τ)‖w(t)− w′(t)‖W
≤ Me−γ(t−τ)

∫ t

τ

eδ(t−τ) eγ(τ−τ) [C ′‖ŵ − ŵ′‖C + λ‖w − w′‖C ] dτ

=

∫ t

τ

e−(γ−δ)(t−τ) dτ M [C ′‖ŵ − ŵ′‖C + λ‖w − w′‖C ]

‖w − w′‖C ≤ MC ′

γ − δ −Mλ
‖ŵ − ŵ′‖C

so ‖F(ŵ)−F(ŵ′)‖C ≤ (1/2)‖ŵ − ŵ′‖C if one takes γ ≥ δ + Mλ + 2MC ′.
From our earlier observations this completes the desired well-posedness

argument for (5.1).

20



References

[1] M.A. Krasnosel’sk̆ıi and A.V. Pokrovskĭı, Systems with Hysteresis,
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