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Introduction

We consider the use of bacteria for removal of some undesirable pollutant
(or conversion to an innocuous form: cometabolism) — i.e., bioremediation.
For some further exposition of the nature and significance of bioremediation
as a practical application we refer the reader, e.g., to [2], [6] or the talk [4]
of the present conference. Our present concerns, however, will be purely
mathematical — an analysis dominated by the dynamical discontinuities
implied by the characteristic feature of this model: at any moment ¢ the
bacteria at a given point & may be either in an active or a dormant mode.

The state of the system is thus a hybrid: partly continuous, partly dis-
crete. The concentrations, 5, w, of bacteria and pollutant are continuous-
valued components of the state, as is the concentration « of some ‘critical
nutrient’. On the other hand, there is a state component Y, taking discrete
values {0, 1}, which indicates the mode: 0 for ‘dormant’, 1 for ‘active’.

An idealized version of the modal transitions (compare [1]) is given by
the switching rules:

e If the bacteria are active (y = 1) and the concentration « drops below
some minimum «, (with a, > 0), then they become dormant.
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e If the bacteria are dormant (x = 0), they will be re-activated when «
rises above o* (with o* > ).

It is clear that y can take either value (depending on the preceding history)
when a, < a < a, so x is not simply a function of @ and must be introduced
as an additional (discrete) state component, along with the more traditional
continuous components «, 3, 7.

We note that the rules above define the ‘elementary hysteron operator’
(W : a(-) — x) as treated, e.g., by Krasnosel’skii and Pokrovskil [3]; see
also [8]. It should be noted that W] is generally well-behaved and isotone
as a map from, e.g., Lipschitzian inputs to piecewise constant outputs —
but is inherently multi-valued in certain anomalous cases (e.g., if x = 0 and
« rises to o but not above; cf., e.g., [7]) which will not affect our present
analysis..

We consider a fixed interval [0,77] in time. The one-dimensional spatial
region [0, ¢] initially contains some pollutant (distribution mp) and also some
bacteria (), which are present but dormant. We are assuming that the bac-
teria are fixed in position and, for simplicity, will assume that the activity of
the biomass is controlled by availability of a single critical nutrient (concen-
tration «, initially 0). This nutrient is supplied (as a control, at rate u(-))
first to re-activate the bacteria and then keeping them active to reduce the
pollutant. Our principal technical concern will be the existence and charac-
terization of solutions for specified u(-) with the existence of optimal controls
following easily from that for, e.g., the problem of minimizing J = [cost of
nutrient] — [value of pollutant removal].

We assume that the nutrient is soluble in, e.g., an underwater groundflow
of given velocity v = v(t) > 0, so we are injecting nutrient into this flow at
x = 0, the left boundary. The pollutant may or may not also be carried by
the flow (with mobility 0 < g < 1). Thus, we have the system:

a; +va, = Dag, —oxf
{—Dax—l—voz:u atx =0
Do, =0 at x =/

(1.1) Be =T(o B)x

Uv’ +,UU7TJ; - D/]Txx - 77ZJX/6
—Aﬁm—l—,umr:fr at =0
Dﬂ-m:O at x =/
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Here, the coefficients ¢, > 0 represent the respective rates at which (when
active) the bacteria consume nutrient and pollutant; we take these as depen-
dent only on « except that 1) becomes 0 at m = 0. The bacterial growth
rate [' may be taken simply as v(«)f or, e.g., as Monod kinetics, limiting 3.
We assume that D,ﬁ >0, that 0 <v < v <9, and that 0 < 8 < 3y < B
at t = 0. Etc. Note that 7(-) > 0 is a known input and that u(-) > 0 is our
control function (although in taking v as time-dependent we anticipate some
possibility that this too might be controlled).

In this paper we concentrate on the extreme case of negligible diffusion
but first note that the other extreme would be ‘perfect mixing’ (e.g., for
small /), giving a lumped parameter model:

where the term ‘—Aa’ corresponds to flowthrough of nutrient, the control u
now appears in the equation, and we have taken p = 0, 7 = 0. This problem
has already been treated in [5], showing: existence of solutions for any non-
decreasing U(t) = [ u; computational approximation; existence (with some
characterization) of optimal controls, e.g., minimizing J = [U(T") + br(T)].

Formulation, Solutions

Taking D,D = 0 in (1.1) to consider pure convection, the system be-
comes:

o +va, = —pxf
(2.1) B =T(a B)x
T+ pom, = —PxpB

with va = v at x = 0 and (if g > 0) pvr = 7 — as well as initial data for
a, B, m. To this we adjoin the switching rules: x = Wa], independently for
each z € [0, /], with x = 0 at £ = 0. As noted, this contitutes the significant
mathematical novelty of this model — which does not fall within the types
treated in [8] but which may be viewed as the free boundary problem of
determining the region R = {(¢,z) : x(¢t,z) = 1} in which the bacteria are
active.

Our first observation is that the final equation in (2.1) decouples, along
with (2.2), so the dynamics — in this case, the determination of R for a fixed
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control function u — will be given entirely by the first two equations of (2.1)
together with the switching rules, although the equation for 7 is, of course,
relevant for the optimization of, e.g.,

(2.2) T = /OTu(t) dt—b/R@Z)ﬁdxdt.

In considering the dynamics it is convenient to use the coordinate sys-
tem [7, 2| where
2.3) T—T(m)-—/tds—x
2 S o w(s)
This is only relevant for 7 > 0 since x = 0 (so nothing happens) before that.
Since 7 increases with ¢ at each x, the switching rules can equivalently be
expressed in terms of the 7-history of «. Using (2.3), the relevant portion of

(2.1) becomes
va, = —pxfB (va=uatx=0)
UBT - F(%B)X

Assuming y = 1 on (0, z) for some fixed 7, this gives

(2.4)

(2.5) a(t,x) = {u — /Ox gpﬂ] Jv

whence « is a nonincreasing function of z (with o < w/v). Given a bound
on u, we have o uniformly bounded (so ¢(«) is bounded above and below by
compactness) and then have § bounded above and below (away from 0, using
that By > 8 > 0). We also immediately obtain uniform Lipschitz continuity
of a with respect to x and of 8 with respect to 7.

As ¢p is bounded away from 0, it is possible to define a pair of func-
tions X*(7), X.(7) by solving oo = a*, o, respectively, in (2.5):

X X.
(2.6) ppdr =u— a, ofdr =u — a,.
0 0

Imposing a further admissibility requirement on the control w(-): that it
satisfy a specified Lipschitz condition (with respect to ¢ and so also 7), it then
follows from (2.5) that a is Lipschitz continuous jointly in (7,z) (although
this will also require some analysis of the geometry of R) whence, by the
Implicit Function Theorem, X*, X, are Lipschitz continuous in 7; we also
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note that X, — X* > const. > 0. Causally in 7, we now construct a new
function X as the output of a variant of the hysteretic ‘play operator’ of 3],
taking the double input: [X,, X*|: imagine an inertial mass point (so it stays
stationary where possible) which is ‘pushed’ up by the graph of X* and down
by the graph of X, as needed to maintain X* < X < X.. We note that this
operator: [X* X,| — X is nonexpansive with respect to any weighted sup
norm on C[0, 7] with nonincreasing weight.

An analysis of our switching rules shows that, since « is nonincreasing
in z, the set-valued function R(z) := {7 : x(7,2) = 1} must also be non-
increasing. The construction by way of (2.6) is now the heart of our char-
acterization of R, since it is easily seen that this X provides the suitable

boundary: R
(2.7) R=A{(r,z):x < X(1)}.

Noting that there is no difficulty in obtaining |«, 5] from (2.4) if y is
given, we can consider the map:

X (giving) x) (2'_4}) [, O] (21—@ (X, X,] — X.

The nonexpansivity of the play operator, as above, ensures that this map can
be made contractive by the usual trick of selecting a suitable exponentially
weighted norm for C[0,7]. Thus, there is a unique solution which, as we
easily verify, depends continuously on u(-) € C[0,7]. As our admissibility
assumption on u(-) gives compactness, we then easily obtain existence of an
optimal control for (2.2) by considering a minimizing sequence.
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