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ABSTRACT: We consider a model for bioremediation of a pollutant by bacteria in
a well-stirred bioreactor. A key feature is the inclusion of dormancy for bacteria, which
occurs when the critical nutrient level falls below a critical threshold. This feature gives a
discrete component to the system due to the change in dynamics (governed by a system of
ordinary differential equations between transitions) at switches to/from dormancy. After
setting the problem in an appropriate state space, the control is the rate of injection of
the critical nutrient and the functional to be minimized is the pollutant level at the
final time and the amount of nutrient added. The existence of an optimal control and a
discussion of the transitions between dormant and active states are given.
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1. Introduction

The concept of bioremediation has become increasingly significant in the treat-

ment of environmental pollutant problems. The particular class of problems we now

have in mind fits the following scenario:

∗This paper has appeared in Mathematical Models and Methods in Applied Sciences,
Vol. 1, No. 6 (2001) pp. 933–949,



Some quantity of an undesirable pollutant is initially located with dif-

ficult access — e.g., an oil spill has soaked into the subsoil. Already

present in this location is a bacterial population which can potentially

metabolize† the pollutant, but which initially is in a dormant state, lack-

ing some critical nutrient. The introduction of this nutrient is expected

to re-activate the bacteria and so to induce the desired removal of the

pollutant.

For a mathematical model, the relevant continuous state variables here are:

α = available amount of critical nutrient

β = bacterial population (biomass)

π = amount of pollutant remaining.

Note that we must include the distinction between ‘dormant’ and ‘active’ states for

the biomass, say, by a (Boolean) indicator χ = {1 if ‘active’; 0 if ‘dormant’}. This

produces a hybrid state space: involving both discrete and continuous components.

This discontinuous alteration of states is the ‘modal switching’ of our title.

We defer consideration of a Distributed Parameter System (DPS) model, treat-

ing the spatial variation which is likely to be significant for a realistic in situ biore-

mediation problem. See the related work of Butera, Fitzpatrick and Wypasek [3], in

contaminant transport. Instead, for our present analysis, we treat a situation that

is closer to a well-stirred tank bioreactor, in which the pollutant and the bacteria

are present in spatially uniform, time-varying concentrations. Thus, α, β, π will be

functions of t only and the dynamics will involve ordinary differential equations be-

tween the state transitions. We note three recent papers involving optimal control

of bioreactors, [8], [16], [9]. Two of these papers treat DPS models; the interesting

feature of “well clogging” is treated in [16]. None of these papers considers the fea-

ture of dormancy which is a principalm concern here. A paper by Bruni and Koch

[2] treats a related idea of modeling the cell cycle with quiescent compartments.

See the work by Bellomo and De Angelis [1] and Firmani, Guerri, and Preziosi [5]

for modeling of the cellular interactions involved in immunology models involving

tumor dynamics. The work by Fister and Panetta [6] involves optimal control and

cell interaction in cancer chemotherapy.

It is clear from the above that determination of the rate u(·) of injection of

the critical nutrient as a function of time may be viewed as an optimal control

problem, namely, balancing the costs of this procedure against the benefit of reduced

pollutant. Feedback mechanisms are not easily implemented and we consider the

problem in ‘open loop’.

†This phrasing suggests that bacteria are directly consuming the pollutant, which, in turn,
might suggest that the growth rate of bacteria would depend on the availability of pollutant. While
consistently using this language here, we note that in our scenario the bacteria do not actually
consume the pollutant directly, but that the consumption of other nutrients by the bacteria leads
to the transformation of the pollutant into a less hazardous substance; this type of bioremediation
is more properly called “cometabolism.” We note, for example, that paraxylene is degraded by
metabolism while trichloroxylene is degraded by cometabolism [14], [17].



One notes that the modelling is somewhat uncertain due to the complexity of

the structures involved and parameters which are difficult to estimate. For our

present purposes we will, somewhat artificially, select a plausible structure which

exemplifies the rather interesting technical details which may arise. Chief among

these are

• the nature of the relevant cost functional, which might plausibly be a weighted

sum of the amount of pollutant remaining at the end of the time considered

and the total amount of nutrient added — effectively, the L1-norm of the

control function u, so one is working in a context involving a non-reflexive

Banach space and

• the discontinuous transitions between dormant and active states which dom-

inate our treatment of the model under consideration.

Our primary goal in this paper is to prove existence of an optimal control in

an application. In Section 2, we model the problem in greater detail, giving the

precise definition of solutions to our control system; existence of solutions is shown

in Section 3. Section 4 is devoted to a relevant compactness result; the existence of

an optimal control is then a corollary to that analysis. We will proceed in Section 5

to comment on some characterization of such optimal controls. Finally, in Section 6

we comment on some results and conjectures for related problems.

2. Modelling the problem

We are considering a finite horizon problem with a specified time interval [0, T ] and

with a given initial amount of pollutant. We seek to minimize the cost functional

J :=

∫ T

0

u(t) dt+ bπ(T ). (2.1)

We assume that the biomass may, at any time, be in either of two conditions

(modes): active or dormant. For present purposes we model the transitions as

governed entirely by the nutrient level and occurring ‘instantly’:

• if α drops below α∗, then the bacteria become dormant,

• if α rises above α∗, then the bacteria are reactivated,

where α∗ and α∗ are given constants with 0 < α∗ < α∗. We will discuss in more

detail later such limit cases as, e.g., α(t) falling to α∗ at t = τ and then rising or,

perhaps, remaining at α∗ on an interval [τ, τ ′].

We note [13], [7] that exogenous dormancy is imposed by an unfavorable chemical

or physical environment: the uptake and the metabolism of organic compounds

sometimes stops in such settings. On the other hand, [4], [10] the resulting spores

will then germinate immediately on change to a favorable environment. We are

assuming here that the bioreactor is rich in all nutrients required for the bacteria



for growth with a single exception — whose supply we may then identify as ‘critical.’

The addition of quantities of this nutrient will then constitute the controllable aspect

of the dynamics. Implicit in this is that the pollutant will never itself be a ‘critical

nutrient’ for the bacteria.

We assume that in a ‘full transition cycle’ (active 7→ dormant 7→ active) a (fixed)

fraction (1 − ρ) of the bacteria fail to survive: the new value β(τ ′+) right after

reactivation at t = τ ′ ≥ τ is ρβ(τ−) where β(τ−) is the original value before

dormancy. For convenience, we will allocate this loss of biomass entirely to the

moment of transition to dormancy and take β(τ+) = ρβ(τ−), noting that the

value β(·) is irrelevant for our control problem during the dormant interval until

reactivation.

We are assuming here that there is a flux through the bioreactor with given

flow rate. We assume the bacteria and the pollutant are insoluble and remain

spatially fixed, but that the additive nutrient is soluble and is introduced by this

flux (nominally, at rate u = control) and also is carried in the outflow. When the

biomass is dormant, then the dynamics takes a very simple form:

α̇ = −λα+ u β, π constant (2.2)

where λ > 0 is a constant determined by the flow rate in relation to the volume

of the bioreactor. The constancy of β and π here is, of course, the meaning of

‘dormant’. When the bacteria are active, on the other hand, we have bacterial

growth with rate Γ and have metabolism at rates ϕ, ψ of the critical nutrient and

of the pollutant, respectively, so

α̇ = −λα− ϕβ + u β̇ = Γ π̇ = −ψβ. (2.3)

The injection rate u(·) is necessarily non-negative; we do note that it is quite

plausible (certainly as an idealization) to permit consideration of the injection of a

bolus of nutrient, so u(·) may contain δ-functions; this is very much a question of

time scales in the modelling, as any model we consider is an idealization of reality

and a fixed amount of injected nutrient will appear as a δ-function if it is being

injected in a time which is short compared to the time scale of normal interest. The

instantaneity of the state transitions is to be viewed similarly.

The (net) bacterial growth rate Γ which we consider is actually a balance between

multiplication and death. It is plausibly an increasing function of the concentration

of the critical nutrient: negative for α near the transition level α∗, but positive when

α would reach α∗. For simplicity we take Γ = γβ with γ = γ(α). This is consistent

with our underlying assumption that all other requirements for bacterial growth are

abundantly met (biomass much smaller than the environmental carrying capacity),

but we note that the alternative, saturation of Γ as the biomass might get closer to

the carrying capacity, would not significantly affect our arguments. The dormancy

phenomenon ensures that we need consider Γ only for α ≥ α∗ > 0 and it will follow

from the equations for α that α ≤ α0 +
∫ t

0
u, implying boundedness. One then easily



gets a bound for β for finite T ; a Monod model [11] or term Γ = γ(α)β/(k1 + β)

would, of course, bound β a priori.

It is plausible to take ϕ = ϕ(α) and ψ = ψ(α) — notationally suppressing

the implicit specification that the bacteria cannot consume nonexistent pollutant:

ψ = 0 when π = 0 — with ϕ(α), ψ(α) > 0 for α ≥ α∗, π > 0. For simplicity,

we assume the functions Γ, ϕ and ψ are smooth on the relevant domains (except

for the treatment of ψ at π = 0), although simple continuity (or weaker!) would

be sufficient for the existence arguments of Section 3. Note that with α(0) ≥ 0,

β(0) > 0, π(0) > 0 and λ, v, u ≥ 0, we can expect to have α(t), β(t), π(t) ≥ 0 for all

time and will show this as a mathematical consequence below.

3. The State Equation

Our goal in this section is to investigate our state equation, proving the existence of

a solution and establishing some properties of the solutions. First, let us note that

the cost functional we consider is coercive for the L1-norm — and, as has already

been mentioned, we intend to admit δ-functions in u(·). It is therefore convenient

to reformulate the dynamics in terms of

U(t) = cumulative nutrient provided = α0 +

∫ t

0

u(s)ds,

c(t) = nutrient consumed = U(t)− α(t),

χ = {0 during dormancy; 1 when active}.

Thus, an admissible control function U(·) will be any monotone (nondecreasing)

function on [0, T ]. We denote the set of all admissible controls by U . For any given

U(·) ∈ U , we expect c(·), β(·), π(·) to be continuous — except for the jumps in β(·)
at times of transition from active to dormant.

In terms of the new variables, we now have, between modal transitions:

ċ = λ(U − c) + χϕβ, β̇ = χΓ, π̇ = −χψβ (3.1)

with χ indicating the mode as above and with

Γ = Γ(U − c, β), ϕ = ϕ(U − c), ψ = ψ(U − c). (3.2)

We assume that Γ(·, ·), ϕ(·), ψ(·) are positive smooth (e.g., C1) functions of their

arguments for α ≥ α∗ > 0 and π > 0. It would be reasonable to expect that

the constitutive functions Γ, ϕ, ψ would each be nondecreasing in α, since this only

means that consumption and reproduction would not become more difficult (per

bacterium) if more of the critical nutrient is available; we will find it convenient

later to require for Theorem 6 that Γ, ψ be increasing functions of α, but will not

impose this as a requirement for the time being. We require that

γ̂ := sup{|Γ(α, β)/β| : α∗ ≤ α ≤ U(T )} (3.3)



is finite and set ϕ̂ := max{ϕ(α) : α∗ ≤ α ≤ α∗}. One might also permit some other

dependencies, but we will simply take these as in (3.2).

We must now be somewhat more precise about the transition rules; compare

[15]. Consider, first, the case when we are in the ‘dormant’ mode at time τ−,

so U(τ−) − c(τ) ≡ α(τ−) ≤ α∗. We will see that c(·) is nondecreasing with

0 = c(0) ≤ c(t) ≤ U(t), so α can increase only by control action: increasing U

faster than c, perhaps admitting a jump in U . If τ is such that α(τ+) ≥ α∗, then

we permit a transition to the active mode (with (c, β, π) continuous at τ) with the

transition mandatory if α(τ+) > α∗ or if continuation of the dormant mode would

have α(·) increasing above α∗ for t near τ+. Although we will later see that, for

the cost functionals we consider, it can never be desirable to do so, it is admissible

in principle that we might have α(τ+) = α∗ and then control so that α(t) ≡ α∗

on some interval by taking u(t) = U̇(t) = λα∗ on this interval: we then consider

it a further aspect of control to determine the length of this interval before either

making the transition or having α again drop strictly below α∗.

Next, consider the case in which we are in the ‘active’ mode at time τ−, with

U(τ−)− c(τ) ≡ α(τ−) = α∗. We now permit a transition to dormancy and require

this transition if α would fall below α∗ as t increases past τ . At such a transition

time, c, π are to remain continuous, but β(τ+) = ρβ(τ−) with ρ ∈ (0, 1) given.

Again, it would be admissible to control so that α(t) ≡ α∗ on some interval, by

taking the control

u(t) = U̇(t) = λα∗ + ϕ(α∗)β∗(t)

on this interval — obtaining β∗ by solving: β̇ = Γ(α∗, β) — and, as above, we

then take the possibility and timing of a transition to dormancy to be a further

element of control. Note that if we have a transition to dormancy at time τ , then

it is admissible (if one were to have a jump of at least (α∗ − α∗) in U) to have

an immediate reactivation — this transition ‘back’ to the active mode is formally

taken as subsequent to the transition to dormancy (although the transition times

are numerically the same) and we do impose the loss of biomass associated with the

full cycle.

Summarizing, a ‘solution’ of the system for a given admissible control function

U ∈ U consists of a (possibly empty, but finite) set of transition times (0 ≤ τ1 ≤
τ2 ≤ · · · ≤ τN ≤ T ) alternately to active and dormant modes (for definiteness, we

always assume that the system is dormant at t = 0 so τ1 is a transition time to the

active mode) and the functions c, β, π subject to the defining conditions:

[C1] On each open interval (0, τ1), · · · , (τN−1, τN ), (τN , T ), the functions c, β, π

satisfy the differential system (3.1).

[C2] The functions c, β, π are continuous with c(0) = 0, β(0) = β0 > 0, π(0) =

π0 > 0 — except that for transition from active to dormant we have β(τ2k+) =

ρβ(τ2k−).



[C3] At a transition time τ , we have

U(τ)− c(τ) =: α(τ) ≥ α∗ (activation: τ = τ2k+1),

U(τ−)− c(τ) =: α(τ−) = α∗ (transition to dormancy: τ = τ2k).

[C4] While active we have α(t) ≥ α∗; during dormancy, α(t) ≤ α∗.

Our main result of this section is the following.

THEOREM 1: Let U(·) ∈ U be any admissible control. Then the system has

a solution in the sense above — which, moreover, satisfies

0 ≤ c(t) ≤ U(t), ∀t ∈ [0, T ]. (3.4)

c(t) ↑, π(t) ↓; β(t), π(t) > 0, t ∈ [0, T ], (3.5)

and

τ2k+2 − τ2k+1 ≥ ∆ :=
α∗ − α∗

λU(T ) + ϕ̂β0eγ̂T
, (3.6)

implying N ≤ 1 + [T/∆].

Proof: For a given admissible control U(·) and some T ′ ≤ T , suppose (c, β, π)

with transition times 0 ≡ τ0 ≤ τ1 ≤ · · · τk is a ‘restricted solution’ of the dynamic

system, i.e., satisfying the differential equations (3.1) and switching rules, on the

restricted segment [0, T ′]. We first prove the a priori properties (3.4), (3.5), and

(3.6) for such a solution. The existence of a solution on [0, T ] will then follow easily

by continuation in t and induction on k.

When the mode is ‘active’, we have α(t) := U(t) − c(t) ≥ α∗ > 0. Thus,

c(t) ≤ U(t) in any active intervals and at the beginning t = τ∗ of any interval of

dormancy (noting also that c(0) = 0 ≤ U(0) for the case τ∗ = 0). Suppose there

were some t̄ at which c(t̄) > U(t̄). Then there would be some t̂ < t̄ with c(t̂) = U(t̂)

and with c(t) > U(t) for t ∈ (t̂, t̄]. Since U(·) is nondecreasing, we must then have

c(t̄) > U(t̄) ≥ U(t̂) = c(t̂) while, on the other hand,

c(t̄)− c(t̂) =

∫ t̄

t̂

ċ(t)dt = −λ
∫ t̄

t̂

[U(t)− c(t)]dt < 0.

This contradiction proves (3.4). This result is hardly surprising: it merely says that

one cannot consume more nutrient than has already been put in.

Next, observe that β > 0 always: we have β(0) > 0 and |β̇/β| ≤ γ̂ between modal

transitions (while, at the finitely many transitions to dormancy, we have a jump

reduction in β but always by a fixed fraction so β remains positive there as well).

It follows that c is nondecreasing (as ċ = λ(U − c) + χϕβ ≥ 0) so, c(t) ≥ c(0) = 0

and it then follows that

0 ≤ U(t)− c(t) =: α(t) ≤ U(t) ≤ U(T ).



By the definition of γ̂, we have χΓ ≤ γ̂β so β ≤ β0e
γ̂T . If we are to have an

activation at time τn and a transition back to dormancy at τn+1, then (since U is

increasing and α(τn+) ≥ α∗, α(τn+1) ≤ α∗), we must have

α∗ − α∗ ≤ c(τn+1)− c(τn)

=

∫ τn+1

τn

{λ[U(s)− c(s)] + ϕ(U(s)− c(s))β(s)} ds

≤ [λU(T ) + ϕ̂β0e
γ̂T ](τn+1 − τn).

Condition (3.6) follows, bounding N , as noted; the monotonicity of π(·) is clear.

With these observations in hand, we obtain existence of a solution by proceeding

stepwise, terminating when t = T . To show existence it is sufficient — and simplest

— to describe the particular solution, which is obtained by always making a modal

transition as soon as possible. We may have U(·) begining with an immediate jump

to (at least) α∗, giving τ1 = 0; otherwise there is an initial interval of dormancy

until the (first) moment τ1 at which — whether by a jump or by having the increase

of U be more rapid than the increase of c — one has α = U − c ≥ α∗, if this ever

does occur. The system then satisfies the ‘active’ equation in (3.1) until a time τ2
at which U − c = α∗ and one switches to ‘dormant’ mode with a jump decrease in

β, and so on. We have already seen that the number of transitions is necessarily

finite so this provides a solution in the sense defined earlier.

From Theorem 1 we see that for any U(·) ∈ U , if (c, β, π) is a corresponding

solution, then any active intervals (except possibly the last) are nontrivial: the

length of such an interval is at least ∆ > 0. Note if α∗ were equal to α∗, we would

lose the significance of (3.6) providing a finite bound for N.

A key feature of our treatment of the transitions is that the rules allow some

non-uniqueness of the solutions so one would not have well-posedness in the usual

sense. Indeed, in this section we might have taken the constitutive functions Γ, ϕ

and ψ only to be continuous and one would then have the additional possibility of

non-uniqueness through bifurcation within the modal intervals. One does, however,

have a closure property: the limit of solutions is a solution as one might vary the

data or the control function; compare the more detailed discussion in [15]. Aspects

of this dominate the discussion in [15], etc., and this property is essential to our

principal result on the existence of optimal controls. We will discuss this issue in

the following section.

4. Existence of Optimal Controls

The standard argument for existence of optima is to restrict consideration to a set

of controls for which one has compactness in some sense (such that some minimiz-

ing sequence ‘converges’) and then, from this, to deduce adequate convergence of

the state and the cost functional. Here, the compactness will be given by Helly’s

Theorem (cf., e.g., [12]), but the nature of our dynamics (specifically, the possibil-



ity of discontinuous modal transitions) makes the subsequent treatment somewhat

delicate.

THEOREM 2: Let Uν ∈ U be a pointwise convergent sequence of controls such

that Uν(t)→ Ū(t) for each t ∈ [0, T ] with Ū ∈ U . Let (cν , βν , πν) be corresponding

solutions of the system with transition times 0 ≡ τν0 ≤ τν1 ≤ · · · ≤ τνNν ≤ T .

Then there exists a subsequence, again indexed simply by ν, and limits

(c̄, β̄, π̄) with transition times 0 = τ̄0 ≤ . . . ≤ τN ≤ T such that, as ν →∞,
Nν = N for some fixed N ≥ 0
τνn → τ̄n for each n = 1, . . . , N
(cν , πν)→ (c, π) uniformly on [0, T ]
βν → β uniformly on compact sets in each (τn, τn+1),

(4.1)

[If desired, this subsequence can be chosen so the convergence: τνn → τ̄n will be

monotone for each n.] Finally, (c̄, β̄, π̄) is a solution corresponding to the con-

trol Ū(·).

Proof: By the Dominated Convergence Theorem, we also have L1 convergence

of Uν to Ū ; as Uν(T ) → Ū(T ), these are uniformly bounded so all the estimates

obtained in the proof of Theorem 1 will hold uniformly in ν — in particular, one

has a bound on N = Nν = (number of transitions) so we may again extract a

subsequence with each Nν = N for some fixed N . Since [0, T ] is compact, we

may extract a further subsequence such that, for each given n = 1, 2, · · · , N , either

τνn ↓ τ̄n or τνn ↑ τ̄n. Next, note that we have bounds (uniformly in ν, t) for ċν , β̇ν

and π̇ν on the modal intervals. Thus {cν , βν , πν} is equicontinuous there so, for

some further subsequence, we have uniform convergence of cν → c̄, and πν → π̄ on

[0, T ]; and the convergence of βν → β̄ uniformly on each compact sub-interval of

(τ̄n, τ̄n+1). [We have abused notation slightly by continuing to index simply by ν

through all the subsequence extractions.]

We must now verify that {τ̄1, . . . , τ̄N}, together with the limit functions (c̄, β̄, π̄)

satisfy the set of conditions defining a solution of the system associated with the

limit control function Ū .

To verify [C1], we note that in integrated form we have — e.g., for [s, t] within

any active interval as (τν1 , τ
ν
2 ) —

cν(t) = cν(s) +

∫ t

s

{λ[Uν(r)− cν(r)] + ϕ(Uν(r)− cν(r))βν(r)} dr (4.2)

for τ̄1 < s < t < τ̄2 for ν ≥ ν̄ taking ν̄ large enough to ensure that this implies also

that τν1 < s < t < τν2 . Observe that, by our construction, cν , βν converge uniformly

to c̄, β̄ on [s, t] and Uν → Ū (pointwise, hence L1) with the integrand bounded

uniformly in ν. Thus, (4.2) gives, in the limit,

c̄(t) = c̄(s) +

∫ t

s

{λ[Ū(r)− c̄(r)] + ϕ(Ū(r)− c̄(r))β̄(r)} dr (4.3)



which, in view of the arbitrariness of s, t, gives the appropriate differential equation

for c̄ on (τ̄1, τ̄2). Essentially the same argument can be used to verify the equations

for β̄ and for π̄ on this interval — and again for each of these functions on each of

the relevant intervals (where nonempty) as appropriate.

Condition [C2] concerning the initial conditions is immediate, as the initial con-

ditions are independent of ν. To look at the correct jumps for β̄ at t = τ̄2k, we

introduce

β̂ν(t) = ρ−kβν(t), τν2k < t ≤ τν2k+1

so β̂ν is continuous across the transitions to dormancy. Thus, for some subsequence

and some β̂, we have β̂ν → β̂ uniformly in any closed interval [τ̄2k − ε, τ̄2k + ε] with

ε > 0 small enough that τ̄2k−1 < τ̄2k − ε. Note that

β̂(t) = ρ−kβ̄(t) for τν2k < t ≤ τν2k+1

so the jumps in β̄ at τ̄2k are correct.

The most delicate (and original) aspect of this analysis is the treatment of [C3],

[C4]. To verify [C3] for n odd, note that for arbitrary ε > 0 we have

Uν(τνn) ≥ cν(τνn) + α∗ ≥ c̄(τ̄n) + α∗ − ε,

for large enough ν since the uniform convergence cν → c̄ with τνn → τ̄n gives

cν(τνn)→ c̄(τ̄n). By assumption, Ū is continuous to the right so we also have

Ū(τ̄n) ≥ Ū(τ̄n + δ)− ε for 0 < δ ≤ δ(ε)

and Uν(τνn) ≤ Uν(τ̄n+δ) by the monotonicity of each Uν and taking ν large enough

that τνn ≤ τ̄n + δ. Combining these gives

c̄(τ̄n) + α∗ − ε ≤ Uν(τνn) ≤ Uν(τ̄n + δ)→ Ū(τ̄n + δ) ≤ Ū(τ̄n) + ε,

so Ū(τ̄n) ≥ c̄(τ̄n)+α∗−2ε for arbitrarily small ε > 0, whence Ū(τ̄n)− c̄(τ̄n) ≥ α∗ as

desired. The argument for n even is similar, but slightly more delicate as we need

equality. Given ε > 0, we have, for large ν,

Uν(τνn−) = cν(τνn) + α∗ ≤ c̄(τ̄n) + α∗ + ε.

By monotonicity, Uν(τ̄n − δ) ≤ Uν(τ̄νn−) for any δ > 0 with ν so large that τνn >

τ̄n − δ. Thus we have Ū(τ̄n − δ) ≤ c̄(τ̄n) + ε for δ > 0 so as δ → 0 we have

Ū(τ̄n−) ≤ c̄(τ̄n)+α∗+ε for arbitrary ε > 0, whence Ū(τ̄n−)− c̄(τ̄n) ≤ α∗. To show

equality, we choose δ > 0 so that for large ν one has τ̄n − δ < τνn so the systemν is

‘active’ at τ̄n − δ whence by [C4]ν we have

Uν(τ̄n − δ)− cν(τ̄n − δ) ≥ α∗.

Now first taking ν → ∞ and then δ → 0+ (noting the continuity of c̄) we obtain

Ū(τ̄n−)− c̄(τ̄n) ≥ α∗ and so [C3].



The argument for [C4] is much like the final part of the argument above. For

any (fixed) t during what is to be an ‘active’ interval for the limit problem (so

τ̄n < t < τ̄n+1, with n odd), we will have τνn < t < τνn+1 (so systemν is also active)

for large enough ν. By [C4]ν we then have Uν(t) − cν(t) ≥ α∗ and letting ν → ∞
gives [C4] here. Similarly, for t in the interior of a dormant interval, we have systemν

dormant at t for large ν whence Uν(t) − cν(t) ≤ α∗ and we get [C4] here as well

when ν →∞.

This completes our verification of [C1]–[C4] in the limit.

This theorem provides the requisite form of ‘well-posedness’ under pointwise

convergence of control functions and the existence of an optimizer for J is then

immediate.

THEOREM 3: There is an optimal control, i.e., J attains its minimum J̄
over admissible control functions U(·) and corresponding solutions, subject to the

system dynamics as described above.

Proof: Take a minimizing sequence {Uν} with associated solutions {(cν , βν , πν)}
(and transition times {τνn}). Since Uν(T ) ≤ J = J ν → J̄ and each Uν(·) is

nondecreasing, by Helly’s Theorem we have existence of a subsequence such that

Uν(t)→ Ū(t) pointwise everywhere on [0, T ] with Ū admissible, nondecreasing, and

Ū(0) = α0. By Theorem 2, we can extract a subsequence for which Uν , cν , βν , πν

are suitably convergent to Ū , c̄, β̄, π̄, in such a way that (c̄, β̄, π̄) (and {τ̄n}) provide

a solution for the admissible control Ū . Clearly, the convergence of πν(T )→ π̄(T )

and of Uν(T )→ Ū(T ) ensure that, in the limit, J = J̄ , i.e., that Ū (together with

auxiliary choices, if any, used to get this solution) is an optimal control.

5. Characterization

In this section, we derive necessary conditions satisfied by the controls we consider.

These are not intended be the full set of ‘first order (necessary) conditions for

optimality’, which we hope to discuss in more detail in a subsequent paper, but

only some preliminary comments on the characterization of optimal controls and

optimally controlled solutions, especially with regard to the ‘switching structure’.

In what follows, we let (Ū , c̄, β̄, π̄) be optimal with transition times satisfying

τ̄0 ≡ 0 ≤ τ̄1 ≤ τ̄2 ≤ · · · ≤ τ̄N ≤ T.

[By our convention, the bacteria are dormant in [τ̄2k, τ̄2k+1) and are active in

[τ̄2k+1, τ̄2k+2) for each k ≥ 0.]; we also denote ᾱ = Ū − c̄.
Our first result is that the optimal control Ū is continuous at t = T , i.e.,

Ū(T−) = Ū(T ). [To see this, suppose Ū(T−) < Ū(T ). We then define U(t) to

be the same as Ū(T ), except redefined at t = T so U(T ) = Ū(T−). Then Ũ ∈ U
and (c̄, β̄, π̄) is a solution of the state equation under the control Ũ . Clearly,

J (Ũ) = J (Ū)− [Ū(T )− Ū(T−)] < J (Ū),



which contradicts the assumed optimality of Ū .] This result is not very surprising,

since the possible jump at time t = T in the control U does not play any role in

reducing the pollutant π at t = T so an optimal control Ū will not incur the cost

of such a jump. The following result is more interesting.

THEOREM 4: Let the situation be as described above. Then (except possibly

at the beginning or end) there are no non-trivial dormancy sub-intervals, i.e.,

τ̄2k = τ̄2k+1, ∀k ≥ 1 with 2k < N. (5.1)

In addition, if τ̄1 > τ̄0 := 0 then Ū(t) = 0 on t ∈ [0, τ̄1) and if N = 2M with τ̄N < T

then Ū(t) = Ū(τ̄N ) on t ∈ [τ̄N , T ].

Proof: Suppose for some k ≥ 1 with 2k < N , we have τ̄2k < τ̄2k+1. Note that

the bacteria are dormant in [τ̄2k, τ̄2k+1) and active on [τ̄2k−1, τ̄2k) and [τ̄2k+1, τ̄2k+2).

Pick any τ̂ ∈ (τ̄2k, τ̄2k+1). One has

c̄(τ̂) < c̄(τ̄2k+1), β̄(τ̂) = β̄(τ̄2k), π̄(τ̂) = π̄(τ̄2k).

Now define

Ũ(t) =

 Ū(t) on [0, τ̂),
Ū(t− τ̂ + τ̄2k+1)− c̄(τ̄2k+1) + c̄(τ̂) on [τ̂ , T + τ̂ − τ̄2k+1),
Ū(T )− c̄(τ̄2k+1) + c̄(τ̂) on [T + τ̂ − τ̄2k+1, T ],

c̃(t) =

{
c̄(t) on [0, τ̂),
c̄(t− τ̂ + τ̄2k+1)− c̄(τ̄2k+1) + c̄(τ̂) on [τ̂ , T + τ̂ − τ̄2k+1),

β̃(t) =

{
β̄(t) on [0, τ̂),
β̄(t− τ̂ + τ̄2k+1) on [τ̂ , T + τ̂ − τ̄2k+1),

π̃(t) =

{
π̄(t) on [0, τ̂),
π̄(t− τ̂ + τ̄2k+1) on [τ̂ , T + τ̂ − τ̄2k+1).

Note that on [T+ τ̂− τ̄2k+1, T ], we could solve the differential equations with U = Ũ

to obtain c̃(·), β̃(·) and π̃(·). Thus (Ũ , c̃, β̃, π̃) is admissible and

Ũ(T ) = Ū(T )− c̄(τ̄2k+1) + c̄(τ̂) < Ū(T ),

π̃(T ) ≤ π̃(T + τ̂ − τ̄2k+1) = π̄(T ),

which contradicts the optimality of (Ū , c̄, β̄, π̄):

J (Ũ) = Ũ(T ) + ω(π̃(T )) < Ū(T ) + ω(π̄(T )) = J (Ū).

In the case τ̄1 > τ̄0 = 0, if Ū(t̄) > 0 for some t̄ ∈ [0, τ̄1), we take τ̂ ∈ (t̄, τ̄1) and

repeat this argument with similar contradiction. In the case N = 2M and τ̄N < T ,

if Ū(τ̄N ) < Ū(t̄) for some t̄ ∈ (τ̄N , T ] (as Ū(T−) = Ū(T ), we may assume t̄ < T ),

then we take τ̂ ∈ (t̄, T ) and repeat the argument to get a contradiction again. This

completes our proof.



THEOREM 5: Suppose we additionally assume that Γ is nondecreasing and ψ

increasing as functions of the argument α. Then, under optimal control, transition

to dormancy can only (possibly) occur to give a terminal dormant interval: an

‘internal’ transition to dormancy can never occur.

Proof: Suppose, to the contrary, we were to have an optimal controlled solution

with one or more internal transitions to dormancy — by the previous theorem,

necessarily with immediate transition back to activity by an impulsive control. Let

τ be the last such pair of transition times: τ = τ̄2k−1 = τ̄2k (with k > 1, so this

is preceeded by an active interval) and let T1 be the end of the active sub-interval

initiated at τ , i.e., T1 = T if the system remains active until then (N = 2k), but

T1 = τ̄2k1 if there would be a final interval of dormancy.

We wish to compare the presumed optimal (Ū , c̄, β̄, π̄) with what would occur

if we were to use ‘the same control’ (in a sense to be described below) on [τ+, T1]

without the transition cycle to dormancy at t2k−1 with immediate re-activation;

by our definition of the control structure, this alternative would also constitute an

admissible control. As in the earlier arguments, if we can show that the alternative

would lead to a decrease of J , then we will have shown that this last transition pair

could not have occurred under optimal control — and so, recursively, that there are

no internal transition pairs.

It is easiest to make the comparison after making a change of variable for time

during the active sub-interval [τ+, T1], introducing a new ‘time variable’ s = s(t)

by setting

ṡ = β(t) so s(t) =

∫ t

τ

β(t̂) dt̂ (5.2)

for this sub-interval. We set s∗ = s(T1), using β̄ in (5.2), so the sub-interval

has become [0, s∗]; abusing notation slightly, we continue to write (U,α, . . .) for

the control and state variables, now considered as functions of s ∈ [0, s∗] — and,

similarly, (Ū , ᾱ, . . .) for the optimal set.

We now use a subscript s to indicate differentiation with respect to s. In this

context, on the active sub-interval (0, s∗] the dynamics is given by

(α− Ū)s = −ϕ(α)− λ/β, βs = Γ(α, β)/β, πs = −ψ(α) (5.3)

both for the optimal controlled solution and for our comparison solution, which we

denote by (α̃, β̃, π̃). Note that we are taking the control function Ū to be the same

in each case as a function of s — although, since β̃ 6= β̄ in (5.2), the relation of s

to t will be different and the control function Ũ will not generally be the same as

the original putative optimal control Ū as a function of t. What is really different

in the comparison case, however, is the initial condition at s = 0, corresponding to

the optimal controlled solution at t = τ+. If we set

α‡ = α
∣∣∣
t=τ

β‡ = β
∣∣∣
t=τ−

, π‡ = π
∣∣∣
t=τ

,



then the initial conditions for (5.3) will be:

ᾱ(0) = α‡ β̄(0) = ρβ‡ π̄(0) = π‡

α̃(0) = α‡ β̃(0) = β‡ π̃(0) = π‡.
(5.4)

From (5.3) with (5.4) we now observe that α̃ > ᾱ and β̃ > β̄ on (0, s∗] whence

π̃ < π̄ on (0, s∗]. To see this, we first note that β̄(0) < β̃(0) because of the assumed

failure of a fraction (1−ρ) of the bacteria to survive the switching cycle (supposedly)

involved in the optimal controlled solution, so there is a maximal ŝ in [0, s∗] with

β̃ > β̄ (and λ/β̃ < λ/β̄) on [0, ŝ). Using this in the first equation of (5.3) then gives‡

α̃ > ᾱ on (0, ŝ]. It follows that γ(α̃) ≥ γ(ᾱ) on [0, ŝ] so β̃ > β̄ there — whence, by

the maximality of ŝ, we must have ŝ = s∗. Since we have assumed ψ(·) is (strictly)

increasing, we then have −ψ(α̃) < −ψ(ᾱ) on (0, s∗] so π̃ < π̄ there; in particular,

π̃ < π̄ at the end of the interval.

We can now obtain the ‘actual’ alternative control function Ũ (as a function

of t) by solving ds̃/dt = β̃(s̃) with s̃(τ) = 0 and then setting

Ũ(t) =

{
Ū(t) for 0 ≤ t ≤ τ
Ū(τ + s̃(t) for τ ≤ t ≤ T2

where s̃(T2) = s∗. Since β̃ > β̄ on the interval, a comparison with (5.2) shows that

T2 < T1 ≤ T . We extend Ũ as constant (equal to Ū(T ), of course) on [T2, T ] and

note that

π̃
∣∣∣
t=T
≤ π̃

∣∣∣
t=T2

< π̄
∣∣∣
s=s∗

= π̄
∣∣∣
t=T

so (2.1) gives J̃ < J̄ . This shows that the original scenario could not have been

optimal, as assumed.

We have shown that, for this particular problem, the switching structure under

optimal control is fairly trivial and one might well ask why it was important to

consider at all the full set of complications attendant on treatment of this as a

hybrid system. We may note that more complicated structures seem likely to occur

(as noted in the next section) for related problems, but a more direct answer would

be that our treatment is strongly affected by the possibility of repeated transitions,

which could not be ruled out even here without an argument embedded in this

general hybrid setting.

6. Further remarks

We begin by noting that several variants of (2.1) might also be of interest. For

example, if one would consider termination of nutrient injection (so u(t) ≡ 0 for

‡This would be easy if Ū were smooth. One could set ∆(s) := β̃(s) − β̄(s) > 0, set β(s; η) :=
β̄(s) + η∆(s) for 0 ≤ s ≤ 1, solve the differential equation using β = β(·; η) to get α(s; η), and
differentiate with respect to η to see that z = ∂α/∂η satisfies zs = −ϕ′(α)z+ (λ/β2)∆ (z(0) = 0)
so z > 0 for s > 0 — with a uniform positive lower bound since we consider ϕ′(α) on a compact
set. We can then get the present case by a limit argument.



t > 0) but permit the system to continue until, at some time T ′ ≥ T , one had

transition to permanent dormancy, one might use π(T ′) rather than π(T ) in (2.1).

A further variant would be the use of an increasing function ω : IR+ → IR+ of the

amount of residual pollutant as a generalization of the term bπ.

Somewhat more interesting for consideration is the time-optimal problem:

Fix an ‘acceptable pollutant level’ π∗ > 0 and, defining T as the time at which

π(T ) ≤ π∗ (for some specified ‘acceptable pollutant level’ π∗), determine the control

so as to minimize

J = J2 :=

∫ T

0

u(t) + aT + b

∫ T

0

π(t), subject to π(T ) ≤ π∗ (6.1)

with a, b ≥ 0 given.

Note that the first term in J is, in this case as for (2.1), the cost of adding nutrient

— taken as simply proportional to the total amount added.

For this case we can again prove existence of optimal controls by an argument

rather similar to that given for the Corollary following Theorem 2.

COROLLARY: There is an optimal control, i.e., J2 attains its minimum over

admissible functions U(·) and corresponding solutions, subject to the system dy-

namics as described above.

Proof: For the cost functional J2 we must modify the previous argument slightly,

since we then have T ν instead of T . The simplest approach is to fix T ∗ bounding

T ν for some minimizing sequence {[Uν , T ν ] , · · ·} and define Uν(t) := Uν(T ν) for

T ν < t ≤ T ∗ such that {Uν(T ∗)} is bounded. By Theorem 1 we may extend the

solution {· · · , cν , βν , πν} to [0, T ∗] and then proceed with our previous argument —

now with the prior extraction of a subsequence so T ν → T̄ . The argument ensures

that we have a solution in the limit — as a solution on [0, T ∗] but this certainly

means that the restriction to [0, T̄ ] is a solution there. It is then clear that

J2(Uν)→ J2(Ū).

Hence J2 attains its minimum using this limit control.

We must still verify satisfaction of the constraint. The uniform convergence

and uniform continuity imply πν(T ν) → π̄(T̄ ) so the constraint: π̄(T̄ ) ≤ π∗ will

also be satisfied in the limit, provided it is satisfied for each ν. We conclude by

returning to show that it was, indeed, possible in this setting to have a minimizing

sequence as assumed. To see this, a single exemplar satisfying the constraint will

be sufficient. We proceed by choosing some fixed ᾱ > α∗ and defining the control

U as starting with an initial jump at t = 0 to ᾱ (so τ1 = 0) and then keeping

α(t) ≡ ᾱ (i.e., U(t) = c(t) + ᾱ) while solving the ‘active’ equation in (3.1) forward

‘as long as necessary’. Note that this gives γ ≡ γ(ᾱ) so β(t) = β0e
γ(ᾱ)t and we

have ċ = λᾱ + ϕ(ᾱ)β so there is no difficulty with this construction. As this gives

ψ(ᾱ, π) ≥ ψ∗ > 0, we have π̇ bounded from above strictly below 0 here and so



are assured that π must decrease to π∗ at some stopping time. This completes the

proof.

It would also be of interest to consider an infinite horizon problem with the

continued introduction of further pollutant (at some deterministic or stochastic

rate) and corresponding modification of the equations. We conjecture that optimal

control for that problem would be asymptotically periodic with repeated transitions

between the dormant and the active states.

Also of possible future interest would be the consideration of a class of models

in which the flow rate through the reactor (determining λ in the system dynamics)

would also be controllable. One might also have coupling with a holding tank for

incoming pollutant prior to the bioreactor — with mobility (some solubility,. . . )

for the pollutant and then a capacity limit for the holding tank and a cost for any

pollutant in the outflow. We defer consideration of these and other possibilities to

a future time.

Finally, we remark on the possibility of constructing a discretization scheme to

compute approximate solutions of the system. The difficulty in this is closely related

to the possibility of bifurcation in the solution — there are situations which can

occur in which arbitrarily small perturbations of the dynamics (comparable, e.g.,

to discretization error) can lead to the possibility of a significant change in some

transition and so to significant changes in the subsequent evolution. The best one

can hope for is that limits of solutions for the discretization will be solutions of our

system and that, conversely, every solution of the original system can be obtained

in this way. It is, in fact, possible to construct such a scheme, but consideration of

the details will also be deferred.
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