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Abstract
Despite the aphorism, “Nature does not make jumps,” it is frequently

useful to work, either descriptively or prescriptively, with simplified models
which involve switching between different modes of evolution. We describe
a variety of examples of such modeling with particular attention to some
situations in which the interpretation of the reduced model is a matter of
concern.
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1 Introduction

Mathematical models are always created, selected, and analyzed with a pur-
pose and we keep this functionality at the forefront of our present concern:
convenience is one of the major desiderata in the selection of appropriate
models and our present theme is the frequent convenience of involving dis-
continuities in our modeling despite the well-known aphorism, “Natura non
facit saltus.™

To this end, we begin by noting an important distinction between descrip-
tive? and prescriptive modes of modeling: the first is what a scientist does
in trying to understand the various patterns arising in the world; the second
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L“Nature does not make jumps” (attributed to Newton, Leibniz, Linnaeus,. .. )

2 Within this category we could further have distinguished between phenomenological
models and those ostensibly based on first principles. Noting that the latter still involve



is what a composer or an engineer does in designing artificial patterns for
various purposes. E.g., in viewing leonine behavior the first is the modality
of the naturalist while the second is the approach of a lion tamer.

We are led to ask, in each of these contexts, What are the characteristics
of a “good model”? For descriptive settings, a model is “good” if it simplifies
the real world enough to make analysis/computation feasible while retaining
enough of the complexity of the world for its predictions to give an accept-
able approximation of the real events one might observe within the range of
concern. For prescriptive settings, a model is “good” if the desired behavior
is attained within the formal framework of the model and if also the model
may feasibly be implemented in the real world. It is this last which links the
two contexts:

The prescriptive model must be a descriptive model of its implementation.
so, effectively, its interpretation must be much the same.

All this is very much a matter of scale. At the quotidian scale we may
think of our cycle of wakefulness and sleep as an alternation of characteristic
modes with discontinuous transitions so the precise time of awakening is a
significant and more-or-less predictable event. On a yearly scale, however,
these discrete events blur into the texture of our lives and we might work
with averages; on a scale of many years we might consider how these aver-
ages slowly change. On the longer scales the individual discontinuities have
disappeared, although they remain part of the underlying pattern. This al-
teration of viewpoint to consider long term averages will be considered more
technically later.

Conversely, in the natural world (neglecting quantum physics) disconti-
nuities typically arise similarly in a context of multiscaling: the apparent
discontinuity often can be resolved as a transition on a time scale finer than
the ‘normal’ time scale. One version of this multiscale consideration arises
in a singularly perturbed system of the form

i=f(r,y) ey=g(z,y) (1.1)

where we take y to be scalar-valued for expository simplification with z € R*.
If we can assume that the second (fast-scale) equation is everywhere stable

significant assumptions (that certain things can be neglected, that parameters remain
effectively constant, ...), we treat all descriptive model as convenient approximations after
neglecting measurement errors, unmodeled details, and uncertain small perturbations.



(i.e., dg/0y < 0) — so we have the approximation

0=g(z,y) (1.2)

for very small ¢ > 0 — and that we can solve (1.2) for y to get y = Y (x)
as an effective constitutive relation, then a standard singular perturbation
analysis shows that (1.1) tracks the reduced ordinary differential equation

= F(x):= f(z,Y(x)) (1.3)

and this is what one would see on the normal time scale. Note that y disap-
pears here, becoming a hidden variable which may conveniently be ignored
completely in our modeling effort.

It is possible, of course, that the solution set I' = {(z,y) : (1.2)} could be
both the graph of a function Y and also a smooth manifold in the xy-space,
yet contain a vertical segment — say, along the surface S = {z : {(z) = a}
— 50 Y becomes discontinuous there. This discontinuity, of course, appears
only in the limit € \ 0 so the model (1.3) is an idealization of (1.1): for very
small ¢ > 0 the transition across the apparent jump in Y is continuously
resolved, typically taking time O(e). Now, writing the continuous branches
of Y separately as Y} and Y3, the idealized limit model (1.3) becomes

i=F(z) j=jz)= { ; gﬂ gg; i . (1.4)

with F;(z) := f(z,Y(z)) = f(z,Y;(x)). Thus on the normal time scale what
one would see is a discontinuous modal switch 1 «~ 2 for j at the switching
surface S given by the threshold £ = a; cf., e.g., [5] for an analysis of such
models.

Note that some nonuniqueness can arise here since (1.4) leaves j undefined
on the switching surface I' = {z : {(x) = a}. If the mode j = 2 would be
directed away from the switching surface and the trajectory (in mode j = 1)
comes to the switching surface tangentially at a time ¢ and then veers away,
then there could be two quite distinct ‘solutions’ of the reduced equation
(1.4): one with the trajectory continuing past ¢ in mode j = 1 and the other
with the trajectory continuing past ¢ after a modal switch J : 1 ~ 2 at ¢.
The appropriate selection of ‘solution’ is not inherent in the reduced model
and we refer to any values of ¢ giving a possibility of this kind of behavior as
anomalous points.



The possible existence of anomalous points is one of the characteris-
tic technical difficulties of discontinuity modeling involving threshold-based
switching.

We discuss this further in Section 3.
A still more interesting possibility occurs when, for example, (1.1) might
be something like

t=flzy) ey=g@y)=+y—ylyl =¢&). (1.5
[We are here keeping y scalar while allowing x € R*; we assume the func-
tional £ is then ‘nice’, perhaps linear.] For this example, solving (1.2) is not
possible globally, but we obtain two stable branches?
—1—+/1—4¢

y=Yil) = U for ¢ = (o) < 1/4

1+ I+4E
2

(1.6)

y=Ys(x) = for £ > —1/4

What we would now see (on the normal time scale) is tracking of each reduced
ordinary differential equation

i = F(x) = f(z,Y(x)) (L.7)

to the extent possible, so F; and F; are distinct modes of the system. Of
course Y] and so Fj are undefined for {(z) > 1/4: something must happen
if (1.7) with j = 1 would make £ increase above 1/4. Noting that y = —1/2
at that moment and g(z,y) > 0 for y < 0, £ > 1/4, what happens is that y
increases ‘immediately’ to Y2(z). Thus, when the system is in the mode j = 1
the surface {x : {(x) = 1/4} is a switching surface: one has a (discontinuous!)
jump 1 ~ 2 of the modal index j as the trajectory would cross this surface
making & exceed the threshold value. Similarly, one has another switching
surface when in the mode j = 2 as j jumps 2 ~ 1 when £ drops below —1/4.
In this* reduced model we see that (1.3) becomes

&= Fi(z) j=W[) (1.8)

3 Joining these two branches is another branch: y = Y. (z) = 3 sgn(¢) (1 -1+ 4|§|).

Since this is unstable in forward time (0g/dy > 0 here), it would never actually be seen
on the normal time scale and we therefore disregard it.

40f course there are more complicated (and quite interesting) possibilities when y also
is no longer scalar-valued — e.g., canards (perhaps leading to mixed mode oscillations)
and the more general constructions of René Thom’s Catastrophe Theory (cf., e.g., [20])
— but we do not discuss these here.



with F;(z) := f(z,Y;(x)) as in (1.7). We might then recognize that this
relation W is just the elementary hysteron of [8] with thresholds wy = +1/4:
for an input function: ¢ — r(t) we construct the consequent® output function:
t— W by

1 if 7(t) < w_
W\ = 2 if r(t) > wy (1.9)

t switching rules when w_ <r <wy

where — at least for continuous inputs r(-) — these ‘switching rules’ require
that

t — W{r(-)] is piecewise constant —
changing 1 ~ 2 only when r = w, and 2 ~ 1 only when r = w_

(1.10)

Note that we now do nmot have a ‘differential equation with discontinuous
righthand side’ as in [5] because the relevant switching surface is now history
dependent (alternatively, because evolution of the state component j is here
given discretely by (1.10) rather than by a differential equation). The system
(1.8), (1.9), (1.10) is a ‘switching system’ in the sense of [15, 16].

Observe that the state of the system has been augmented from z to the
pair [z, j] — the modal index j must now be taken as a component of the state
since without it one cannot determine the source term in the heat equation
when w_ < u(t, P) < w; without recalling the past history: the elementary
hysteron W] is not actually a function, but an input/output relation.®

It is important to recognize that our switching rules (1.10) are indetermi-
nate when, as certainly seems possible, the input r(-) might reach a threshold
value non-transversely, i.e., r might rise to the upper threshold so r(t) = w,
but perhaps then drop without going above w, (or might drop to w_ but
then rise without going below). In such a context it is not clear whether
the model should require, permit, or forbid the corresponding transition. As
earlier with single switching surfaces, we class these values of t as anomalous
points.

>The initial data for x, j should, of course, be consistent with (1.9).

6Tt is interesting to note that (-) — W/[](-) can be meaningfully extended to classes of
discontinuous functions. Here, of course, where r = £ o z in (1.8), we always do have r(+)
continuous, so (1.10) applies. We may also note [8] that this map is rate-independent and
nondecreasing, but those properties are not relevant to our present concerns.



2 Some examples

Once one raises the issue, the ubiquity of discontinuities is evident: in na-
ture one sees the Earth’s surface, solidification interfaces, crack propaga-
tion, flame fronts, shock waves, austenite-martensite transitions, nerve im-
pulses, active/dormant transitions, births and deaths, etc.; in design one
sees switches, fuses, relays, valves opening/closing, stopping times, OS inter-
rupts, A/D conversion, etc. These are both spatial and temporal, both fixed
(as traffic lanes or sampling times or grid geometries) and variable (as free
boundaries or thermostatic control). We explore some general considerations
in the context of a few examples. For some expository consistency, we will
concentrate on event-driven temporal discontinuities and particularly modal
switching induced by reaching thresholds.

Example 2.1.  We begin with consideration of a (trivial?) Calculus prob-
lem: dropping a ball. Every freshman knows that the relevant ordinary
differential equation is 4 = —g, but the range of validity of this standard
model ends at the ball’s collision with the floor. The usual treatment of the
bouncing ball consists of repeatedly restarting the ODE with an ad hoc deter-
mination of the new (upward) velocity following each impact: e.g., Newton’s
Law of Restitution posits that this velocity” is simply proportional to the
pre-impact velocity so the interimpact time intervals decrease geometrically
and the bouncing terminates in finite time. This situation, in which one
has a limit of discontinuity times, is called a Zeno point and must again be
resolved phenomenologically.

The possible existence of Zeno points is one of the characteristic techni-
cal difficulties of discontinuity modeling.

We note that more general problems of impact dynamics, modeling sys-
tems of colliding rigid bodies, have now become a very active area of re-
search. Typically, these formulations (involving, e.g., complementarity and
quasivariational inequalities) permit proof of existence using available tech-
nical tools, but uniqueness often remains open and one must be quite careful
in formulating concepts of well-posedness: consider the case of a grazing im-
pact. [Related, but slightly different in not involving inertia, are sweeping
processes; cf., e.g., [10] and the play operator of [8].]

"Note that this also corresponds to energy absorption per impact proportional to the
ball’s pre-impact kinetic energy.



Example 2.2. We next turn to a biological example involving dormant
bacteria already present in the soil being resuscitated by the renewed avail-
ability of some critical nutrient; presumably an earlier event was the tran-
sition from an ACTIVE to this DORMANT state when supply of this nutrient
was interrupted. These transitions are far from instantaneous, but may be
treated that way in a longer term ecological context. Quite standard models
in Population Biology consider the bacteria in the ACTIVE state, consuming
nutrients, reproducing, etc., but for these bacteria the range of validity of
this standard model does not include population dynamics when the nutrient
availability fluctuates below a threshold and including this thus constitutes
an extension of the model to settings in which such transitions occur.

Note that it is possible to have anomalous points where, e.g., the bac-
teria are in their ACTIVE state and the nutrient concentration drops to the
threshold value but perhaps then rises without going below it. In the context
of such non-transversal behavior it is not clear whether the model should re-
quire, permit, or forbid an ACTIVE ~ DORMANT transition.

This is a descriptive model, as described above. Of course, in the context
of some localized pollutant the existence of such a population of (dormant)
bacteria might suggest a possibility of using them for bioremediation with
some of the critical nutrient supplied to resuscitate the bacteria and to main-
tain their activity while they break down the pollutant. If the pollutant is
undesirable but the nutrient expensive, this leads to an optimal control prob-
lem [11] balancing these considerations and this must involve in its dynamics
the alternating states of the bacteria, especially if one might anticipate future
re-occurrences of the pollution. The model, discontinuity and all, has now
become a prescriptive model.

A quite different biological problem involving switching is the considera-
tion of such population control policies as ‘one family, one child’. Having such
a law in force or not constitutes a choice of modes and the passing/repeal of
such a law is a control discontinuity by modal selection. Whether or not this
prescriptive model corresponds with useful accuracy to a descriptive model
would then depend on the significance of the implementation transient, in-
cluding anticipation of the transition, delayed effects of existing pregnancies,
etc.

Example 2.3.  For a thermostat to turn the furnace ON involves a course
of comparatively rapid changes within the thermostat and within the fur-
nace. Nevertheless, considering all this as ‘switching instantaneously’ is a



convenience in keeping our attention focused on the normal time scale. It is
not immediately obvious how best to model a thermostat in its interaction
with the ambient temperature distribution.

The simplest model takes the furnace operation (j = 0 for OFF, j = 1
for ON) as j = w(u(t, P)) where u is the temperature distribution — here
evaluated at the thermostat location P — and w is a convexified (set valued)
step function

1 if r < w,
w(r) = 0 ifr>w, (2.1)
0,1] ifr =w,

with w, the setpoint for the thermostat. Indeed, the author’s initial interest
in problems of this kind was stimulated by [6], which used this model. Their
numerical simulations seemed to show that one always would settle down to
a periodic ON/OFF cycle. However, while one can easily show that a ‘periodic
solution’ always exists for that model, the mathematical system supports a
constant solution with u(t, P) = w, and w € (0, 1) so the furnace would be
(nonphysically) ‘partly ON’; it remains open whether, using this model, there
always exists a nontrivial periodic solution with {0, 1}-valued w.

Refining the modeling slightly, one notes that actual thermostats have
a slight separation between the switching thresholds w. for ON and OFF and
we take j = 2 — W{u(-, P)] where W is the elementary hysteron defined by
(1.9), (1.10). Since this model is threshold-based, one must again deal with
the possibility of anomalous points. On the other hand, with appropriate
regularity one can bound u(-, P) and so bound from below the length of
each interswitching interval in terms of the threshold separation (w; — w_),
ensuring that Zeno points could not arise here.

An interesting thermostat model in [3] involves temperature control for
an automobile engine: coolant is circulated within the engine (mode j = 0)
but is diverted by a valve to flow also through the radiator (mode j = 1)
when the sensor temperature exceeds a threshold. A crude caricature of such
a model (not that of [3]) might be

T'(t) = a(t) = AT(t) — Tt —0),  §(-) = WI[T()] (2.2)

with po = 0. [Here a gives engine-generated heat; for the radiator we are
using a quasi-steady state heat transfer model for simplification, avoiding
a diffusion/conduction partial differential equation.] Note that the lower-
temperature mode (j = 0) is modeled in (2.2) by an ordinary differential

8



equation, while the radiator mode requires a delay differential equation with
0 the circulation time through the radiator: a relevant descriptor of the
continuum component of the state thus switches between finite dimensional
and infinite dimensional spaces.

As prescriptive models we have many systems of such a general form: a
sensor controlling modality, typically by a relay-operated switch. For many
of these it would be wasteful to have rapid switching back and forth between
the modes® and the slight separation between the switching thresholds is
deliberately introduced for just this reason; compare the discussion in [18] of
optimizing this. A related strategy for ensuring separation of the switching
times is simply to introduce a ‘dead time’ so as to enforce a lower bound T,
on the length of interswitching intervals. As a prescriptive model we might
formulate this by introducing a new mode (say, j = *) involving a new
variable 7. Suppose, for example, we would have had an index j switching:
1 ~ 2 at a time t, — e.g., as a sensor value r(-) reaches its threshold w.
We would now have a jump j : 1 ~ * at t, and would also reset 7: - ~ 0
then. In this mode j = % the continuous part of the system evolves as in
the mode j = 2 (adjoining d7/dt = 1 to the dynamics), but with a different
switching rule: the rule now is simply that (regardless of r(-)) we switch from
j = * when 7 rises (necessarily transversely) to its threshold 7,. At that time
it would, of course, be a design decision whether we should switch j from *
to 1 or to 2, somehow depending on 7(-) over [t.,t, + 7.]. We do note that
this is a bit different from most® of our previous treatments in that we not
only have a discontinuous change of mode, but also a discontinuity of the
continuous component of the state itself, not just its derivative, on resetting

8E.g., for a thermostatically controlled oil furnace one has, on the more rapid time
scale, an inevitable loss of fuel in the transient as the furnace is turned ON; somewhat less
so as it is turned OFF. Similar considerations apply to a thermostatically controlled air
conditioning compressor and a fortiori to the compressors of Example 2.5.

Wasteful or not, we also note the occurrence of these “chattering modes” in the
implementation of sliding mode control; cf., e.g., [21]. Of course, in some applications such
a rapid alternation may be precisely the point of the design, as with a buzzer.

9The exceptions being the bouncing ball of Example 2.1 (for which the velocity — a
component of the continuous part of the state — jumps discontinuously when the ball
bounces, reversing its direction) and the model (2.2) above (with the continuous part of
the state switching between R and R x X with X = C([—4,0]) an infinite dimensional
space of ‘histories’ — assuming the interswitching times will be long enough to permit
resetting this to 0 as an acceptable approximation on switching: 0 ~ 1 so we need not
remember histories through an interval j = 0).



the ‘clock variable’ 7.

Example 2.4.  Quite different is the treatment (in [14], etc.) of magnetic
hysteresis. We might consider a ferromagnetic material with magnetic do-
mains of varying alignment, each reversing its orientation according to the
external field when the relevant component of that field reaches an appropri-
ate threshold. For a 1-dimensional model, the magnetization of each of these
is effectively given by an elementary hysteron with thresholds corresponding
to the alignment, but this is at a finer spatial scale than desired. Making
the transition to a macroscopic model, we then have the Preisach model of
magnetic hysteresis in which observable magnetization is given by averaging
over the ensemble of elementary hysterons parametrized by w = (w_,w;) —

W.lr()] = /H Wolr ()] (o), (2.3)

integrating with respect to the relevant ensemble distribution (measure p
over the Preisach half-plane H = {w : w_ < w,}).

Essentially similar models are used to describe a variety of disparate
situations (cf., e.g., [13]). For example such a model has been developed
independently by hydrologists to describe the hysteresis in soil wetting by
groundwater: in that setting the underlying fine structure is the network of
interstitial pores which behave differently when wet or dry. In these models
(provided the measure p is non-atomic) the hysteresis remains but the dis-
continuity appearing in the fine structure disappears from the macroscopic
model — while remaining essential to understanding (2.3) and its rationale.

Example 2.5. Next we consider a network of gas pipelines for which
there are several interesting modeling considerations. A comparatively simple
model for the gas flow dynamics is given by the isothermal Euler equations

pi+ (pv)s =0 (pv)i + (pv® +ap)s = f (2.4)

where, with suitable normalization, s is distance along the segment (a single
pipe) and the unknowns p, v are gas pressure and velocity; here f = f(p,v) is
a friction term from pipeline roughness. Besides initial data, (2.4) reqires in-
put data where u is directed into the segment. [A primary source of technical
difficulty here is the generation of shocks — discontinuities in the pressure
— but these are not the discontinuities with which we are concerned here.|
Of course, the pipeline network lives on a graph — so one has many copies
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of (2.4) coupled through the attendant nodal conditions for input/output,
even assuming we may take the flow direction along each edge as known.
We avoid formulating the full system of equations here — especially as we
immediately proceed to complicate it further.!?

While this system would be formidable enough, we are concerned that
the friction may cause an unacceptably great loss of pressure so, in prac-
tice, compressors are introduced at some of the nodes. While necessary, the
compressors are fueled by using some of the gas at considerable cost — so,
prescriptively, each of the compressors must be switched ON and OFF ‘as
needed’. This switching is the discontinuity under consideration. One would
then have a difficult optimization problem to determine when to switch,
presumably preceded by a well-posedness argument for the model. Of par-
ticular interest is the possibility of decentralized feedback control, in which
each compressor has access to one or more pressure sensors and switches ON
and OFF depending on the vector of sensor values entering some regions; for
a single sensor one expects this action to be given by thresholds so the state
of each compressor would be determined from this sensor value by an ele-
mentary hysteron. [Note that we now have several of these hysterons coupled
through the system, so we must be concerned for their interaction.]

We also note that very similar considerations are involved in the use of
signal lights to control traffic flow, etc.

Example 2.6.  An optimal stopping time problem has the following form:
monitor some — possibly stochastic — situation (state x) with the option
of stopping at any time and obtaining a final value V* = V*(¢, x) evaluated
at the stopping time. The value V' at earlier times is then taken to be the
expectation of V* (conditioned on the current ¢,x), assuming one follows
the optimal causal policy — then implicitly determined as: stopping when
V(t,z) = V*(t,z). In operation one has a discontinuous change of mode
at this stopping time, but the analysis simply consists of determining the
deterministic function V' from the stochastic evolution of z for comparison
with the given function V*.

While this stopping is certainly a switching from one mode to another,
one may have a more general opportunity of modal control, selecting from a

10 recalling the dictum (attributed to the philosopher Hannah Arendt) that,
“There is no situation, however complicated, which cannot, by looking at it correctly, be
made even more complicated.”
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discrete set of available modes'! with some switching cost ¢;. Then the value
function V*further depends on the current modal index j as a component of
the state. Thus we would write V* = V*(¢, z) and optimal switching would
mean making the transition j ~ k when V(t,z) = V;*(t, z) — ¢jx. Once these
switching surfaces are specified, the controlled evolution is again a switching
system in the sense of [15], [16]. Due to the switching cost the switching
surfaces for j ~ k and for k ~ j are separated; compare the analysis of [4].

One variant of this is the familiar ‘change point problem’ of Statistics
and we consider an example of this. Suppose a machine tool rapidly produces
widgets with some small (acceptable) rate of random defects, e.g., observed
by sampling the product output and testing. At some point the tool may
itself become defective (by wear or a drill bit chipping or ...) and the defect
rate jumps to an unacceptable level. Without modeling any causes for such a
change, the problem is to detect this as soon as possible so as to stop the ma-
chine for repair. Sounding such an ‘alarm’ is our control action and we must
do this balancing the cost of delay against the cost of a false alarm (since the
observed product defects themselves arise randomly). The solution to this
problem is to keep a running estimate of the probability that the change has
already occurred and sound the alarm when this reaches'? some threshold,
whose optimal setting would depend on the level and variance of the obser-
vation process as well as on the relative costs. Since the sampling also has a
cost, a possible variant of this (compare [12]) might be to ‘declare an ALERT’
at a lower threshold with an intermediate control action of sampling more
frequently, with subsequent switching actions either to ALARM or back to the
less frequent sampling. Again we have a threshold-based discontinuity.

1A once-familiar example might have been shifting gears in driving an automobile.
Some other examples of this are the population control policy of Example 2.2, the use of
signals in traffic control, shifting a shared resource from one task to another with a loss of
time for setup (as, e.g., in [7]), etc.

12 Again one would have the possibility of anomalous points. Although the the pre-
scriptive nature of this together with the discreteness both of ‘observed defects’ and of
the sampling times might seem to permit us to resolve this somewhat arbitrarily here, we
note that this would be at the cost of returning from the continuous-time model to a dis-
crete event system: the sequential decision procedure of which it is a somewhat simplified
reduction.

12



3 Discussion

We said in the Introduction that the predictions of a good prescriptive model
must, for some implementation, give an acceptable approximation of the real
events one might then observe within the range of concern, i.e.,

The prescriptive model must be a descriptive model of its implementation.
The converse of this, especially to the extent that the fine structure (e.g.,
action on a faster time scale) is unmodeled, is that

Fvery descriptive model may be viewed as a prescriptive model
whose prescriptive objective is precisely to approximate real events accept-
ably:.

We will proceed somewhat anecdotally'® in considering the appropriate
interpretation of ‘solution’ for models such as those we have been discussing
— systems with threshold-based event-driven discontinuities. Since the evo-
lution is determined pointwise in ¢, it is sufficient to consider local analyses of
possible scenarios in the neighborhood of a single solution trajectory; since
interpretation is clear during interswitching intervals,'* we need only con-
sider the occurrence and nature of ‘jumps’ (modal transitions). Note that,
as occurred in several of the examples in Section 2, a modal transition may
involve not only a jump in the mode index j : 7 ~ k, but also a jump in the
continuum component:!?

o =X(t—) N x(tA) =" = Fjp(zy). (3.1)

Suppose we have a sensor £ (i.e., £ : X — R) with critical threshold a
so S ={x € X :{(r) = a} is a switching surface. In this case, that is to
mean that a solution [x,j| may not have j = 1 when £(x) > a and may be

13This is to avoid the flavor of footnote !9 involved in introducing the technical detail
required by a model (e.g., more-or-less following [15, 16]) general enough to handle the
variety of examples of the previous section,

14 We assume the evolution is there given by some well-posed system: ordinary differen-
tial equation, integrodifferential equation, delay differential equation, or partial differential
equation as appropriate to the model.

15 Here (with S; ; the switching surface {x € X; : £; x(z) = a;} where switching j: j ~ k
is permitted), we assume a continuous function: Fji : X; D Sjx — Xk : 2 — z* such
that each z* can be used as initial data in modey.

Note that we are permitting the continuum state spaces to be different for different
modes, as occurs, e.g., for (2.2) in Example 2.3. Even if X; = X} we note that, as in
the case of the bouncing ball of Example 2.1, we need not have continuity at ¢, of the
continuum component x(-) which would require that Fj (z.) = z, for z, € S .

13



permitted to jump j: 1 ~ 2 when x = z, € S; we then follow footnote!® in
taking «* = F} 5(x.) as initial value at ¢, in mode,, obtaining a solution X(-)
on some nonempty interval [t.,?;). Now suppose we have a solution [x(-), 1]
on a time interval [ty,t.) giving x(t,) = z, so o(t) = £(x(t)) < a on [t t.),
rising to a at t,; further, we assume that the differential equation defining
mode; permits use of x, as initial data at ¢, for a solution x (so we might
view X as a potential extension of x). If 0 now crosses'® the threshold, then
our switching rules require that we must have the jump j: 1 ~ 2 at ¢,.

If, however, o = £(x(+)) < a on some nonempty interval [t,,;), then we
have an anomalous point with two distinct apparently acceptable extensions
of x past t, so we have two candidate solutions:

) [x,1] on [to,ts) ) [x,1] on [to, )
x,jl1 = { %2 on [t 1) and [x,]]s = { 1] (3.2)

To resolve the question of which is actually to be accepted means determining
what we are to mean in speaking of “a solution” in the model.

Although the considerations are intertwined, the appropriate interpreta-
tion of ‘solution’ for the idealized model is a modeling decision rather than
a question decidable purely by mathematical analysis of the idealized model
in isolation and we argue that one should accept both. This resolution of the
problem comes from our goal for a “good model” — to be useful by predicting
“what one would see on our normal time scale in the real world.” Our insight
then comes from footnote? — we must allow for small perturbations of the
idealized (reduced or prescriptive) model so our uncertainty is real: even if we
were to restrict consideration to a small perturbation of the threshold value
alone, each of [x,j]; and [x,j]s is a limit of potentially observable real-world
evolutions; consideration, e.g., of small uncertainty in the initial data would
lead to similar conclusions. We see that our uncertainty is inherent in the
sensitivity of the situation at the anomalous point and reliable approximate
prediction of the actual outcome is here impossible from the information
available. Given this, we may ask: How can the model continue to be useful?
Unable to say, “This is what will happen,” we nevertheless can say usefully:

“Here is the set of alternatives: each of these might happen and we can
neglect all other scenarios.”

It would perhaps be interesting to treat the uncertainty as random, much

16 By this we mean only that £(X(t,)) > a for some sequence t,, \ t..
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as a coin toss, with some attempt to assign meaningful nonzero probabili-
ties to the alternatives, but we do not pursue that possibility here. We do,
however, regard these considerations as reason to choose an inclusive inter-
pretation of ‘solution’. Note that in the context of forced switching (as, e.g.,
in footnote ') one has the unique solution [x, j]; of (3.2) since the condition
of footnote'® makes it impossible for [x, j]» to be a limit of suitable approx-
imants so the rejection of [x,j]s as a solution is again consistent with our
principle of interpretation.

We may refer to a solution of the model as a regular solution if it involves
neither Zeno points nor anomalous points. Such a solution on [0, 7] is then
characterized by

e the set of switching times 0 <t; < ... <ty <T (to =0, tn1=T)

e the index values j = j°,...,7" on the N + 1 interswitching intervals:
Ik = [tk;thrl] for k = O, Ce ,N

e the trajectories x; : Zx — &jx on these interswitching intervals — for
comparisons it is convenient to rescale each Zj to [0, 1].

With N and (j*) locally fixed, we then topologize these solutions {[x,j]} by

(tr)N e RY x o (xp)0 € T C((0.1] — Xpn). (3.3)

We then have local'” well-posedness regular solution under such reasonable
hypotheses as in footnotes 4 1% :

Theorem 3.1. Near a reqular solution, one has unique regqular solutions
(with N and (%) locally fized) for sufficiently close data with convergence
of the data giving corresponding convergence of the solutions in the sense
of (3.3). More generally (still excluding Zeno points, but now admitting
anomalous points), the solution set depends upper semicontinuously on the
data, in that every limit of solutions is a solution and every solution without
Zeno points is such a limit of reqular solutions.

1"We can take perturbation of the ‘data’ to include not only change in the initial x(0) €
Xjo but also small structural change in the dynamics within each mode, changes of the
switching surfaces (perturbing the relevant sensor functions and corresponding thresholds),
and change of the transition functions Fjx jk+1
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This analysis excludes a quite interesting situation arising for problems
of forms related to (1.4): the hypothesis in footnote!® may fail in that one
may be unable continue after a modal jump, using the available component
x* = x, as initial data in the new mode. We are discussing here a differen-
tial equation x = F(x) with F' : X — X discontinuous across a switching
surface S. Writing this as in (1.4), we assume that each Fj is continuous up

to the common boundary S and that
Il'Fl(.ﬁE*) > 0 > Il'FQ(.’L'*)

— which just means that each of these direction fields points towards the
switching surface so, starting at z,, neither of the modal equations has a
solution in the appropriate halfspace for that mode: one cannot leave S.
For interpretation we think of this as a prescriptive model and consider how
it might be implemented. The simplest possibility corresponds roughly to
(1.1) so y is re-introduced, giving an interpolation between F; and Fy within
a fuzzy ‘thickening’ (width O(e)) of the switching surface and one moves
within this fuzzy ‘surface’. We refer to this interpolatory implementation
as blending Fy, F5. It is easy to see what the limit motion will be in this
case as € — (: since one cannot leave S, the components normal to S must
cancel when averaged on the normal time scale and this determines the unique
convex combination of Fy, F» tangential to S. Indeed, one would expect that
any plausible implementation'® here would give a velocity in the convex hull
of {F;} and then necessarily be tangential to S (so normal to n). This sliding
mode is thus uniquely determined and is the idealization of the approximating
chattering mode given by anyimplementation; although (1.4) does not specify
any dynamics when on S, the idealized approximation to “what one would
see” is clearly! given by the sliding mode so our interpretation principle
makes this ‘the solution’ in such situations. Cf., e.g., [5, 21].

Suppose, however, in this type of problem we might have two sensor
functions £, n, each taken with threshold 0, and so switching surfaces S¢, S,

18 One implementation of particular interest to us might be a splitting of S into two
slightly separated switching surfaces, using the elementary hysteron W[¢(x)] with thresh-
olds wi = a + . Because of the O(¢g) separation, we then have a sequence of switchings
with O(e) interswitching intervals. Our earlier analysis of W assumed we had occasional
switching, but here we have frequent switching on the ‘normal time scale’ which then in-
volves ‘long term averages’ when compared to the time scale of the individual switchings.

19 While mathematically correct, it is precisely an apparent failure of this in an ex-
perimental setting [9] which interested the author in the analysis below of intersecting
switching surfaces as a plausible explication [17, 18].
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intersecting to partition X into four regions (j = 1,2, 3,4 corresponding to
the quadrants of R? with &, n used as coordinates); one would have vector
fields {F;} defined on each of the regions and we now consider the case in
which these all point ‘inward’. We would then seek a sliding mode within
the codimension 2 intersection &, = S¢ NS, and, by essentially the same
logic as above, we would expect this to be a convex combination of the four
fields {F;} and tangential to S, i.e., both to S¢ and to S,. Unfortunately,
this gives only three linear conditions and the recipe no longer suffices to
determine the four needed coefficients — although the sliding mode may still
be uniquely determined if the fields {F}} are suitably related.

What now happens is that the selection of sliding mode (when this exists
at all) is no longer determinable from the reduced model alone, but needs
some additional information about the fine structure: a residue of model
reduction as in [18]. [It is just this ambiguity which seems to permit the
apparent recipe failure of footnote '.] We know [17] that if one of the sensors
gives much more rapid switching than the other, then time scale separation
permits analysis as sequential consideration of two single-sensor problems.
If they operate on comparable time scales, we know [1] how to compute the
sliding mode if we know that the implementation is done by some form of
‘blending’.

Perhaps the most interesting implementation possibility is the use of a
pair of elementary hysterons to split each of the switching surfaces so, on the
rapid ‘switching time scale, one has a dynamical system alternating among
the four modes. The desired coefficients for the convex combination are easily
seen to be the (long-term average) fractions of total time which the system
spends in each of the modes. It is by no means obvious that the long-term
dynamical behavior should ensure the existence of such fractions, but it is
shown in [2] that such existence does hold generically for these situations —
although there seems no easy recipe to compute the coefficients.

[Similar questions might be raised in a setting with more than two switch-
ing surfaces intersecting in this way, but the results of [1, 2] noted here use
essentially 2-dimensional arguments and this generalization remains open.
Further, no such results are presently available for other than the blending
and hysteretic implementations.]

While we are speaking of such things, we recall our interest in the exis-
tence of periodic solutions for systems with threshold-based discontinuities.
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For stable ‘linear’ systems
x=Axtu + = W[((,x)] (3.4)

with o := ((, A"'u) > w > 0 we know [16] that there is a compact attractor
and that a periodic solution exists for the thresholds wy = +w when w is close
enough to o; existence may be conjectured for the more interesting situation
of small w, but this seems open except for special cases (e.g., if dim X' = 2).
On the other hand, an example is given in [16] of a more nonlinear system
with X = R? for which the trajectories always alternate modes, going back
and forth between two disks, but for which there cannot be any periodic
solution. Clearly there are many open problems in looking at the long-term
dynamical behavior of systems with threshold-based discontinuities

We have seen that in considering models involving discontinuities in their
temporal fine structure (as the sliding modes above) the discontinuities dis-
appear as such, but determine the macroscopic behavior. As a final remark,
we note another setting, related to Example 2.2, involving a continuum of
switching. Here we again have a bacterial population with hysteretic switch-
ing between ACTIVE and DORMANT states governed by the concentration «
of a critical nutrient. Now, however, we take this population as spatially
distributed with the nutrient carried by a known groundwater flow across
a 1-dimensional interval. The switching of the bacteria is given by our ele-
mentary hysteron W independently at each spatial point — with bacteria
growing and metabolizing nutrient when ACTIVE. The resulting convec-
tion/reaction/switching system can then be analyzed [19] as a free boundary
problem for the space-time region in which the bacteria are ACTIVE. Inter-
estingly, the question of treating anomalous points becomes irrelevant here
(as these can only occur within the boundary of that region, without affect-
ing the region itself) so one obtains well-posedness in the usual sense for this
problem.
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