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Abstract

1. Introduction
We consider a model [1] of a nonlinearly viscoelastic rod moving in 3-

dimensional space, taking into account not only longitudinal and transverse
motions, but also shear and torsional motion: One may visualize this, dis-
cretized, as a chain of hard vertebrae connected by a viscous springy material.
This paper is related to the forthcoming [3] much as [9] was related to [2]. The
papers [2] and [9] treat the purely longitudinal motion of a straight rod. As in
[9], we show that the attainment of optimality for certain control problems is
intimately related to the considerations involved in showing the existence of so-
lutions, in particular, to the requirement that a subsequential limit of solutions
to some approximating problems should be solutions of a desired limit problem.
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For the model we consider, the ‘geometric state’ at each point of the ref-
erence configuration (which we take parametrized by s ∈ [0, 1]) consists of the
position r = r(t, s) in 3-dimensional space and the orientation of the vertebral
cross-section. The latter may be specified by a pair of ‘directors’ — an orthonor-
mal basis {d1, d2} for the plane of the cross-section, which is then extended to
a properly oriented basis for IR3. This specification is equivalent to specification
of a 3 × 3 rotation matrix D = D(t, s) ∈ SO(3) (i.e., D is orthogonal with de-
terminant +1) which transforms the fixed coordinate system to this one. Thus,
the relevant space (pointwise) is M = IR3 × SO(3) and the actual geometric
state is a function q, e.g., q(t·) ∈ C1([0, 1] →M).

Our present model presents a significant new difficulty which does not arise
for the restricted version of [2], [9]: this state space is here a manifold rather than
a linear space. More precisely, since most of our analysis works with velocities
(momenta) and local strains which lie in the tangent space, we note that SO(3)
is 3-dimensional, so the tangent space to M is pointwise isomorphic to IR6

and the tangent space to X0 is isomorphic to a fixed linear space of IR6-valued
functions — but the relation to that fixed space is varying and derivatives of
that relation complicate our analysis.

Of course, the analytic difficulties already ocurring in [2], [9] also continue
to be relevant in the present more general setting:

• Preclusion of ‘total compression’: Locally, the rod material should be
bounded away from passing through itself. This consideration constrains
the domain of the constitutive function σ and ensures that it cannot pos-
sibly be uniformly Lipschitzian; at the same time we also avoid imposing
on σ any growth rate for the response to large extensions (stretching).

• Nonlinearity of the viscous dissipation: We assume a strong monotonicity
in the response to strain rate, but no such strong structural condition will
be imposed regarding the dependence of this on the strain itself.

2. Formulation
It will be desirable to treat both the constitutive relations and the velocities

in the coordinatization given pointwise by D(t, s). Thus we introduce v, p ∈ IR3

such that
rs = Dv rt = Dp. (2.1)

Since D = D(t, s) ∈ SO(3), both derivatives Ds, Dt involve skew-symmetric
matrices and so can be represented on IR3 by cross products: we define v, w ∈ IR3

so
Ds = D[u×] Dt = D[w×] (2.2)

where [u×], [w×] are interpreted as 3× 3 matrices. Then the vectors

η =

(
u

v

)
ξ =

(
w

p

)
(2.3)
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in IR6 represent velocity and strain, respectively, in the pointwise coordinatiza-
tion. With a little manipulation, equality of mixed partials gives

ηt = ξs +Aξ with A = A(η) :=

(
u× 0
v× u×

)
. (2.4)

All the physics and the particularity of the situation then reside in specifi-
cation of the inertia matrix M and the constitutive function

σ̂ : IR6 × IR6 −→ IR6 : y, z 7→ σ = σ̂(y, z). (2.5)

It is our choice of the pointwise coordinatization which makes M a material
property along the rod, which we assume homogeneous1 for simplicity and en-
sures the appropriate frame indifference for the contact forces given by σ. Set

M =

(
J 0
0 ρI

)
B = B(ξ) :=

(
−[Jw]× 0

0 ρp×

)
, (2.6)

(where the scalar ρ is linear mass density and the3× 3 matrix J is the density
of moment of inertia). Standard continuum mechanics gives

Mξt = [σ]s −A∗σ −Bξ + f with σ = σ̂(η, ηt). (2.7)

[Here f corresponds to any external body forces and, for present purposes, we
assume f = 0.] We note that ρ > 0, J is positive definite, and B is skew; the
dissipativity of the stress-strain relation given by (2.5) is indicated by (3.2),
below. For future reference we also note that

[Mξt +Bξ] = D∗[DMξ]t (2.8)

For a more detailed discussion of this derivation, see [1], [3], although the nota-
tion here is rather different.

For definiteness, we consider the problem boundary conditions corresponding
to having one end rigidly fixed:

q = (D, r)
∣∣∣
s=0

≡ (D∗, r∗) = const. ∈M

and with the contact load specified at the other end:

[Dσ]
∣∣∣
s=1

= ν = ν(t).

Here we abused notation slightly in also usingD for the 6×6 matrix

(
D 0
0 D

)
.

It follows that we have for (2.7) the boundary conditions

ξ
∣∣∣
s=0

= 0, σ̂(η, ηt)
∣∣∣
s=1

= D∗
1ν (2.9)

1This makes M constant, although our derivation would admit a possible (suppressed)
dependence on s. We comment that C1 dependence on s, for M and also for σ̂, would be
easy to handle and, with moderate care, one can even treat piecewise continuous material
properties.
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with D1(t) := D(t, 1). [Note that, without retaining D as a separate variable,
we can recover D1 as needed from η by solving the SO(3)-valued ordinary
differential equation in s:

Ds = D[v×] D
∣∣∣
s=0

= D∗ (2.10)

for each fixed t and evaluating at s = 1.] With these boundary conditions the
weak form of (2.7) with f = 0 becomes

〈ζ,Mξt〉+ 〈ζs +Aζ, ϕ′(η) + σD(η, ηt)〉 = −〈ζ,Bξ〉+ [D1ζ(1)] · ν (2.11)

for all suitable IR6-valued test functions ζ. [Note that 〈·, ·〉 is a product pivoting
on the usual L2 inner product: 〈f, g〉 =

∫ 1

0
f · g ds; later we will also use 〈f〉

(without the comma) for
∫ 1

0
f ds.]

We adjoin to this the initial conditions

ξ
∣∣∣
t=0

=
◦
ξ η

∣∣∣
t=0

=
◦
η (2.12)

and, assuming suitable regularity, note that
◦
ξ,
◦
η can be obtained as in (2.1),

(2.2), (2.3) from q, qt

∣∣∣
t=0

, which are presumably given.
As formulated above we are considering, as a system for the unknown vari-

ables ξ, η (which are be taken in some appropriate spaces of IR6-valued functions
on Q = QT = [0, T ]× [0, 1]):

(2.4) and (2.7) with (2.9) and (2.12) [and (2.10)] (2.13)

with the functions
◦
ξ,
◦
η, ν (and D∗) as data. Using (2.10) we obtained D as part

of the solution process for (2.13), so forces and velocities could be converted to
the fixed (laboratory) coordinate system, if desired. Obviously, one can recover
r also by using r∗ and integrating Du in s for each t — or, using the original
initial data, integrating Dp in t for each s.

3. Energy
Our fundamental structural hypotheses regarding the constitutive function σ̂

are hyperelasticity of the equilibrium response and uniform monotonicity with
respect to the second variable. Thus we first assume that the equilibrium re-
sponse is given by a potential (stored energy function):

σ̂(η, 0) =
dϕ

dy
= ϕ′(y) where ϕ : IR6 → [0,∞] (3.1)

[Note that there is no suggestion that ϕ should have any convexity property.] We
then introduce σD(y, z) := σ̂(y, z)− σ̂(y, 0) and assume a uniform dissipativity
condition:

[z1−z2]·[σ̂(y, z1)−σ̂(y, z2)] = [z1−z2]·[σD(y, z1)−σD(y, z2)] ≥ µ|z1−z2|2 (3.2)
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where µ > 0 is a fixed constant; note that, if we assume — as we do, henceforth,
for simplicity — that σ̂ is at least of class C1 where finite, then (3.2) is equivalent
to having (pointwise in y, z ∈ IR6)

∂σ̂

∂z
=
∂σD

∂z
≥ µ (3.3)

with the inequality in the sense of quadratic forms so the 6 × 6 matrix σD
z

is (uniformly) positive-definite. [We note that (3.2) gives, in particular, z ·
σD(y, z) ≥ µ|z|2 since σD(y, 0) = 0.] This will permit us to get a fundamental
estimate for

E = E(t) := 1
2 〈ξ,Mξ〉+ 〈ϕ(η)〉+

∫ t

0

〈ηt, σ
D(η, ηt)〉 (3.4)

— which we recognize as the sum of kinetic energy, potential energy, and also
cumulative dissipative work.

As usual, we take ζ = ξ in (2.11) to obtain the desired estimate. Using (2.4),
noting that ηt · ϕ′(η) = dϕ(η)/dt, and computing dE/dt from (3.4), we see that

E(t) = E(0) +
∫ t

0

D1ξ · ν(τ) dτ. (3.5)

We are able to apply the Gronwall Inequality to obtain a bound for E(t) once
we estimate |D1ξ(1)| = |ξ(1)| ≤ ‖ξ‖∞ in terms of E . Without full details, this
proceeds as:

‖ξ‖∞ ≤ ‖ξs‖1 = ‖ηt −Aξ‖1
≤ C [‖ηt‖+ ‖η‖‖ξ‖] ≤ · · ·

where ‖ · ‖p is the Lp(0, 1)-norm and ‖ · ‖ = ‖ · ‖2. Since M is positive definite
and ηt · σ dominates |ηt|2, our estimate for E(t) gives:

ξ is bounded in L∞(→ L2),
〈ϕ(η)〉 is bounded pointwise in t ∈ [0, T ],
ηt · σ is bounded in L1(Q) so ηt in L2(Q),
so η is bounded in L∞(→ L2),
and ξ is bounded in L2(→ H1) and in L2(→ L∞).

(3.6)

in terms of the L2(0, T )-norm of ν(·))

4. Total compression
So far we have not said much about the potential ϕ(·), other than non-

negativity, but we now note on geometric grounds that its domain A cannot be
all of IR6. This easiest to see when the rod is straight and it is obvious that, if the
longitudinal component of r were not increasing in s (making the correspond-
ing component of v positive), then the rod material would be interpenetrating
itself. For a physical rod with some (very small) cross-sectional diameter h,
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one similarly sees that the vertebrae of our discretized visualization should not
interpenetrate by having |Ds| too large when the longitudinal component of v
is (positive but) small. We control this by introducing an auxiliary function
ψ : IR6 −→ [0,∞] which blows up as its argument approaches the boundary
of A so A =

⋃
cAc where Ac := {y ∈ IR6 : ψ(y) ≤ c}.

One natural extension of our considerations in [2], taking advantage of the
formulation there in terms of an inequality, is to impose as a possible hypothe-
sis the assumption (perhaps restricting the choice of the representing ψ and its
relation to the constitutive function σ̂) that:

There is some γ in IR6 of the form (0, γ) with γ ∈ IR3 and some β ∈ IR such
that

ψ′(y) · z ≤ γ · [σ̂(y, z)] + β (4.1)

for all z and for all y ∈ A \ Ac where c is large enough that
◦
η (s) ∈ Ac for

each s.
We show that this hypothesis, together with (3.6), uniformly bounds the solution
pointwise against total compression:

η(t, s) ∈ Ac for some c, (4.2)

i.e., ψ(η(t, s)) ≤ c for 0 ≤ s ≤ 1, 0 ≤ t ≤ T . It would be convenient if we could
have (4.1) with ψ coercive, so this would simultaneously show a bound on |η|,
but we do not require this and do not expect it.

The key to the argument is the form of γ, with the observation that, although
our model does not give D[σs − A∗σ] = [Dσ]s, the form of A is such that this
does hold as an identity for the “lower components.” Thus,

γ · σ
∣∣∣
s

= (Dγ)
∣∣∣
s
·
[
ν −

∫ 1

s
(σs −A∗σ)

]
= (Dγ)

∣∣∣
s
·
[
ν −

∫ 1

s
(DMξ)t

]
.

(4.3)

The argument now proceeds as in [2]: if we ever were to have ψ(η)
∣∣∣
(t,s)

> c we

could find 0 < τ < t ≤ T with

ψ(η)
∣∣∣
(τ,s)

= c and ψ(η)
∣∣∣
(t,s)

> c for τ ≤ t ≤ t.

Integrating [ψ(η)]t = ψ′ · ηt and using (4.1) gives

ψ
∣∣∣
(t,s)

≤ c+
∫ t

τ

(
β + (Dγ)

∣∣∣
s
·
[
ν −

∫ 1

s

(DMξ)t

])
and we note that the right side of this is uniformly bounded in terms of the
bounds in (3.6) once we note, e.g., that |(Dγ)t| ≤ ‖ξ‖∞|γ|.

5. Two optimal control problems

6



At this point we see how state compactness can be provided either directly
by a constraint or indirectly through a term in the objective function to facilitate
the argument for existence of an optimal control. The two examples we consider
here each refer to boundary control — considering the system (2.13) with fixed
initial data and fixed r∗, D∗, but with the endpoint contact force ν(·) taken as
a control. Each requires that the state reach a target:

(q, qt)
∣∣∣
t=T

∈ S (5.1)

where S is a suitable closed set in the appropriate space.

EXAMPLE 5.1: Minimize the time T required to control the state to
the given target set as in (5.1), subject to a control constraint: |ν(t)| ≤ 1 and a
state constraint:

η(t) = η(t, ·) ∈ K (5.2)

for each t ∈ [0, T ].

EXAMPLE 5.2: With T fixed, find a control ν(·) minimizing the cost

J =
∫ T

0

[
‖η(t, ·)‖2V + |ν(t)|2

]
dt (5.3)

subject to (5.1).

For Example 5.1 we assume that the constraint set K lies in L∞([0, 1] → IR6),
uniformly avoids total compression: η(t, s) ∈ Ac for some c, and is compact with
respect to the topology of pointwise ae convergence,

For Example 5.2 we assume that the space V is embedded into L∞([0, 1] →
IR6) and compactly embedded into L2 and also assume that σ̂ satisfies the con-
dition (4.1).
For each of the examples we assume that the choice of target set S is consistent
with the problem: there is at least one admissible control (and T for Exam-
ple 5.1) such that (5.1) is satisfied. We will also assume a linear growth rate for
σ̂

|σ(y, z)| ≤ C[|y|+ |z|] for all z ∈ IR6, y ∈ Ac. (5.4)

It then follows, for each of these examples, that there will be a minimizing
sequence {νk} with a corresponding sequence of solutions [ηk, ξk] of (2.13).
Without loss of generality, we may assume that νk ⇀ ν∞ in L2(0, T ) and
then must show that there is a (possibly subsequential) limit [η∞, ξ∞] of the
solutions in a sense which permits us to conclude that [η∞, ξ∞] satisfies (2.13)
and gives the terminal condition (5.1) at T . In each case, the key will be to
show the convergence: ηk

t → η∞t in L2(Q).
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Note that the L2(0, T )-bound on {νk} makes (3.6) applicable and ensures
(4.2) for Example 5.2 as well. With (5.4) we then also have a bound in L2(Q)
for {σk := σ̂(ηk, ηk

t )}. This bounds [σk]s in L2(→ H−1) and (Ak)∗σk, Bkξk

are bounded in L2(→ L1) so ξk
t is bounded in L2(→ [some space]). Given the

bound on ξk in L2(→ H1), we may apply the Aubin Compactness Theorem [4]
to see that {ξk} lies in a compact subset of L2(→ Hr[0, 1]) for any r < 1: we
may assume ξk → ξ∞ there for some ξ∞. We also have Bk → B∞; since {ξk}
is uniformly bounded in L∞(→ L2), the same bound holds for ξ∞, etc.

We may also assume ηk
t ⇀ η∞t for some η∞t ∈ L2(Q) so also ηk ⇀ η∞ with

(η∞)t = η∞t . We now set σ∞ := σ̂(η∞, η∞t ), noting that, while we can assume
weak convergence for σk, it is not clear at this point that the limit would be
σ∞.

We next need ηk → η∞, e.g., strongly in L2(Q). For Example 5.1 we adapt
an argument from [8]. Let K∗ be the set K, topologized in L2(0, 1). Since
the K-topology gives pointwise ae convergence and K∗ is bounded in L∞(0, 1),
use of the Dominated Convergence Theorem gives continuity of the identity:
K → K∗. Thus, K∗ is also compact. Boundedness of {ηk

t } shows {ηk} equicon-
tinuous from [0, T ] to K∗ so the Arzelá-Ascoli Theorem gives precompactness in
C([0, T ] → K∗) and we therefore have ηk → η∞ there and a fortiori in L2(Q).
For Example 5.2 the assumed compact embedding: V ↪→ L2(0, 1) and bound-
edness of ηk

t makes the Aubin Theorem [4] applicable and we again get strong
L2(Q)-convergence ηk → η∞ and Ak = A(ηk) → A∞ = A(η∞). With (5.4), we
now note that Krasnosel’skĭı’s Theorem on the continuity of Nemitskĭi operators
(cf., e.g., [7]) then gives strong L2(Q)-convergence:

σ̂(ηk, η∞t ) → σ̂(η∞, η∞t ), (5.5)

with the second argument held fixed as η∞t .
Finally, we wish to show that we have convergence to the correct limit:

σk = σ̂(ηk, ηk
t ) → σ∞ = σ̂(η∞, η∞t ), (5.6)

which, with our results above, would show that ξ∞ is the solution of (2.13)
corresponding to the (weak limit) control ν∞(·). Fairly standard arguments
then show that this control is admissible with respect to the constraints and is
then the desired optimal control.

To see (5.6) we use (2.11) for each k with ζ = ζk = ξk− ξ∞ so ζk → 0. Note
that ζs +Akζ is then [ηk

t − η∞t ] + [(Ak −A∞)ξ∞]. Thus, integrating (2.11) and
noting that ξk = ξ∞ at t = 0, we obtain

1
2 〈ζ

k,Mζk〉
∣∣∣
T

+〈ηk
t − η∞t , σ̂((ηk, ηk

t )− σ̂(ηk, η∞t )〉Q
=
∫ T

0
Dk

1ζ
k(1) · νk − 〈ζk, Bkξk〉Q

− 〈(Ak −A∞)ξ∞, σk − σ∞〉Q − 〈ζk,Mξ∞t 〉Q
− 〈ηk

t − η∞t , σ∞〉Q − 〈ηk
t − η∞t , σ̂(ηk, η∞t )− σ̂(η∞, η∞t )〉Q.

(5.7)
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From (3.2) we have

µ‖ηk
t − η∞t ‖2Q ≤ 〈ηk

t − η∞t , σ̂(ηk, ηk
t )− σ̂(ηk, η∞t )〉Q

and we wish to show that the right-hand side goes to 0 as k → ∞. Since we
have ζk → 0 in suitable spaces and ηk

t − η∞t ⇀ 0 and (3.6) and (5.6), each
term on the right of (5.7) goes to 0 so ηk

t → η∞t in L2(Q). Now, however, we
have [ηk, ηk

t ] → [η∞, η∞t ] in L2(Q → IR12) and can again use Krasnosel’skĭı’s
Theorem, in view of (5.4), to conclude (5.6).

Thus, we have shown:
THEOREM 5.1: Under the hypotheses noted above — compactness and
compression avoidance for K, consistency of the target set S, and the growth
condition (5.4) on the constitutive function — and with suitably regular initial
data, the optimization of Example 5.1 attains its minimum: There exists a
minimum-time control.

THEOREM 5.2: Under the hypotheses noted above and with suitably
regular initial data, the optimization of Example 5.2 attains its minimum: There
exists an optimal control.

6. A further condition and estimate
To show the existence of an optimal control without externally imposing

compactness on η as in the first two examples, we must obtain compactness
otherwise. This will force us to impose a further condition on the constitutive
function σ̂(·, ·) and also to require more regularity of the control.

We will impose the same auxiliary constitutive condition as is to be used
in [3] for obtaining existence of solutions — a generalization of the condition
used in [2], there weakening a condition on ∂σ̂/∂y used similarly in [5]. We now
control the η-dependence in terms of the viscous dissipativity σD by requiring:

| [σD
z (y, z)]−1/2σ̂y(y, z) | ≤ λ[1 + z · σD(y, z) + ϕ(y)] (6.1)

for some constant λ. The condition (6.1) is to hold for all z ∈ IR6 and for all
y ∈ Ac; we may permit λ to depend on c here. [Note that (3.3) already ensures
existence of the positive definite matrix [σD

z (y, z)]−1/2 appearing here.]
The significance of (6.1) appears in obtaining an estimate for an artificial

pseudo-energy H, imitating (3.4):

H = H(t) := 1
2 〈ξt,Mξt〉+

∫ t

0

〈ηtt, σ
D
z (η, ηt)ηtt〉. (6.2)

To this end, we differentiate (2.11) with respect to t, getting

〈ζ,Mξtt〉+ 〈ζs +Aζ, [σ̂(η, ηt)]t〉 = −〈Atζ, σ〉 − 〈ζ, [Bξ]t〉+ ζ(1)] · [D∗
1ν]t , (6.3)
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and take ζ = ξt. Note that then ζs+Aζ = ηtt−Atξ and [σ̂(η, ηt)]t = σ̂y ηt+σD
z ηtt

so

H ′(t) = 〈ζ,Mζt〉+ 〈ηtt, σ
D
z ηtt〉

= [ζ,Mξtt〉+ 〈ηtt −Atξ, σt〉] + 〈Atξ, σt〉 − 〈ηtt, σ̂yηt〉
= −〈ηtt, σ̂yηt〉+ 〈Atξ, σt〉

− 〈Atζ, σ〉 − 〈ζ, [Bξ]t〉+ ζ(1)] · [D∗
1ν]t .

(6.4)

We first wish to control the term 〈ηtt, σ̂y ηt〉 and of course the hypothesis (6.1)
is precisely designed for this estimation, since we can take

ηtt · σ̂y ηt =
(
[σD

z ]1/2ηtt

)
·
(
[σD

z ]1/2σ̂y ηt

)
.

With this in hand, it is rather messy, but not especially difficult, to estimate the
remaining terms in terms of H and (3.6), noting that the boundary term now
involves the t-derivative ν′. These estimates enable us to apply the Gronwall
Inequality to (6.4) and so provide the desired bound on H(t). We may conclude
that

ζ = ξt is bounded in L∞(→ L2),
ηtt is bounded in L2(Q) so ηt is bounded in L∞(→ L2),
whence ξs is also bounded in L∞(→ L2),
so ξ is bounded in L∞(→ H1) ↪→ L∞(Q),
and ξt is bounded in L2(→ H1) and in L2(→ L∞).

(6.5)

in terms of the H1(0, T )-norm of ν(·) and, of course, the initial data and the
parameters of our previous estimates. For more detail, we again refer to [3].

We now seek to extract the necessary compactness from this. Note, first that
the last line of (6.5) can be improved, using a result from [10], [8] somewhat as
for Example 5.1: we actually have ξ in a compact subset — uniformly fixed,
again in terms of the H1(0, T )-norm of ν(·), etc. — of C(Q). Next, we consider
(2.7) as an ordinary differential equation in s (at each t) for σ = σ(t, ·) =
σ̂(η(t, ·), ηt(t, ·)):

σs −A∗σ = Bξ +Mζ with σ
∣∣∣
s=1

= ν(t). (6.6)

In view of (6.5), this ensures that σ(t, s) is bounded uniformly in (t, s) ∈ Q;
indeed, the set of functions {σ(t, ·) : t ∈ [0, T ]} is equicontinuous and so lies in
a fixed compact set in C([0, 1]).

Next we note that

ηts = ξss + [Aξ]s [σ̂(η, ηt)]s = σ̂y ηs + σD
z ηts

so, multiplying (2.7) by −ξss and integrating, we obtain

−〈ξss,Mξt〉+ 〈ηts, σ
D
z ηts〉 = −〈ηts, σ̂yηs〉+ “other terms”.
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Integrating the first term by parts gives

1
2 〈ξs,Mξs〉t + 〈ηts, σ

D
z ηts〉

= [ηt −Aξ] ·Mξt

∣∣∣
s=1

− 〈ηts, σ̂yηs〉 + “other terms”.
(6.7)

To estimate ηt(t, 1) (and η(t, 1), which we need to bound A(η)), we proceed as
follows: first,

ϕ(η)
∣∣∣T
0

+ µ‖ηt‖2L2(0,T ) ≤
∫ T

0

σ(η, ηt) · ηt dt ≤ K
√
T ‖ηt‖L2(0,T )

(as ϕ ≥ 0 and |σ| ≤ K) so ηt(·, 1) is bounded in L2(0, T ) whence η(·, 1) is
bounded. Since η ∈ Ac, we have a bound on ϕ′ as well as on ϕ at s = 1 so
we can consider the structural description of σ̂ as giving an ordinary differential
equation in t for η along s = 1:

σD(η, ηt) = σ(t)− ϕ′(η) η
∣∣∣
t=0

=
◦
η (1). (6.8)

Using (3.3) we can solve (6.8) to express this as an ordinary differential equation
in standard form: ηt = Γ(η, σ − ϕ′) with Γ well-behaved. Thus, with η, σ, ϕ′

bounded, we have ηt bounded pointwise along s = 1. This permits estimation of
the first term on the right of (6.7); the second term is estimated by again using
(6.1) as earlier; the “other terms” also can be estimated as desired. Applying
the Gronwall Inequality now shows that

ξs is bounded in L∞(→ L2),
ηts is bounded in L2(Q),
so ηt is bounded in L2(→ H1),
and ηs is bounded in L∞(→ L2),
so η is bounded in L∞(→ H1) ↪→ L∞(→ C[0, 1])

(6.9)

in terms of the H1(0, T )-norm of ν(·), etc. As earlier, the results of [10], [8]
then give η in a fixed compact subset of C(Q). Since (6.5) bounded ηtt in
L2(Q) and we have here bounded ηt in L2(→ H1), application of the Aubin
Theorem also gives ηt in a fixed compact subset of L2(→ C[0, 1]); recall that we
have an L∞(Q) bound for ηt without compactness. Thus we have the desired
compactness results:

ξ, η are in fixed compact subsets of C(Q),
ηt is in a fixed compact subset of L2(→ C[0, 1]).

(6.10)

REMARK 6.1: We should note that in applying the Gronwall Inequality
for the estimation above we implicitly needed H(0) < ∞, i.e., ζ = ξt

∣∣∣
t=0

must

be in L2([0, 1] → IR6). To get this initial datum, we consider (2.7) at t = 0,

so we are using the initial data
◦
ξ,
◦
η,

◦
ηt with

◦
ηt obtained from considering (2.4)
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at t = 0. This L2 regularity of ζ(0, ·) is thus really a restriction on the admissible

initial data
◦
ξ,
◦
η.

We may also remark that, although we have not pursued this here, the
techniques used in [9] can also be adapted to this more general setting to weaken
the regularity imposed above on the control ν(·): we here required that ν′ should
be in L2(0, T ) and a more careful analysis shows that it is sufficient for our
purposes to require only that ν′ be in L4/3(0, T ) — and even that could be
further weakened to permit jumps in ν at a finite number of specified times.

7. Optimal control
Finally, we consider (2.13) without the external imposition of compactness

as in Examples 5.1 and 5.2, e.g., we consider

EXAMPLE 7.1: With T fixed in (2.13), find a control ν(·) which mini-
mizes the cost

J =
∫ T

0

[
|ν(t)|2 + |ν′(t)|2

]
dt (7.1)

subject to (5.1).

and wish to prove
THEOREM 7.1: Under the hypotheses (3.2), (4.1), (6.1), and the con-
sistency of the target set S (and with suitably regular initial data), the cost
functional J in (7.1) attains its minimum: There exists an optimal control for
Example 7.1.

As for the previous examples, there is a minimizing sequence {νk} with a
corresponding sequence of solutions [ηk, ξk] of (2.13). We necessarily have {νk}
bounded in H1(0, T ) so, without loss of generality, we may now assume that
νk ⇀ ν∞ in H1(0, T ) and then must show that there is a (possibly subsequen-
tial) limit [η∞, ξ∞] of the solutions in a sense which permits us to conclude that
[η∞, ξ∞] satisfies (2.13) and gives the terminal condition (5.1) at T .

From our results in Sections 3, 4, 6, the hypotheses (3.2), (4.1), (6.1) ensure
that {[ηk, ηk

t , ξ
k]} uniformly avoid total compression, i.e., ηk(t, s) ∈ Ac with c

independent of t, s, k, and will lie in a suitable fixed compact set so, possibly
extracting a subsequence, we may assume that ηk → η∞, ηk

t → η∞t , ξk → ξ∞

as in (6.10). Since we have ηk, ηk
t pointwise L∞-bounded, any growth condition

on σ̂ would be moot, so we can again apply Krasnosel’skĭı’s Theorem [7] to see
that σk := σ̂(ηk, ηk

t ) → σ̂(η∞, η∞t ) =: σ∞ in, e.g., L2(Q). As in Section 5, this
ensures that [η∞, ξ∞] satisfies (2.13) and we have (5.1); in view of the weak
lower semicontinuity of J , this shows that ν∞ is an optimal control.
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