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Abstract

This paper treats initial-boundary-value problems governing the motion
in space of nonlinearly viscoelastic rods of strain-rate type. It introduces
and exploits a set of physically natural constitutive hypotheses to prove
that solutions exist for all time and depend continuously on the data. The
equations are those for a very general properly invariant theory of rods that
can suffer flexure, torsion, extension, and shear. In this theory, the contact
forces and couples depend on strains measuring these effects and on the
time derivatives of these strains.

The governing equations form an eighteenth-order quasilinear parabolic-
hyperbolic system of partial differential equations in one space variable (the
system consisting of two vectorial equations in Euclidean 3-space corre-
sponding to the linear and angular momentum principles, each equation
involving third-order derivatives). The existence theory for this system or
even for its restricted version governing planar motions has never been stud-
ied. Our work represents a major generalization of the treatment of purely
longitudinal motions of [12], governed by a scalar quasilinear third-order
parabolic-hyperbolic equation. The paper [12] in turn generalizes an exten-
sive body of work, which it cites.

Our system has a strong mechanism of internal friction embodied in the
requirement that the constitutive function taking the strain rates to the
contact forces and couples be uniformly monotone. As in [12], our system
is singular in the sense that certain constitutive functions appearing in the
principal part of the differential operator blow up as the strain variables
approach a surface corresponding to a “total compression”.

We devote special attention to those inherent technical difficulties that
follow from the underlying geometrical significance of the governing equa-
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tions, from the requirement that the material properties be invariant under
rigid motions, and from the consequent dependence on space and time of
the natural vectorial basis for all geometrical and mechanical vector-valued
functions. (None of these difficulties arises in [12].) In particular, for our
model, the variables defining a configuration lie on a manifold, rather than
merely in a vector space. These kinematical difficulties and the singular na-
ture of the equations prevent our analysis from being a routine application
of available techniques.

The foundation of our paper is the introduction of reasonable consti-
tutive hypotheses that produce an a priori pointwise bound preventing a
total compression and a priori pointwise bounds on the strains and strain
rates. These bounds on the arguments of our constitutive functions allow
us to use recent results on the extension of monotone operators to replace
the original singular problem with an equivalent regular problem. This we
analyze by using a modification of the Faedo-Galerkin method, suitably
adapted to the peculiarities of our parabolic-hyperbolic system, which stem
from the underlying mechanics. Our constitutive hypotheses support bounds
and consequent compactness properties for the Galerkin approximations so
strong that these approximations are shown to converge to the solution of
the initial-boundary-value problem without appeal to the theory of mono-
tone operators to handle the weak convergence of composite functions.
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I. Introduction

1. Background

There is an extensive literature (some of which is cited in [12,20,40]) de-
voted to the analysis of the nonlinear scalar third-order quasilinear parabolic-
hyperbolic equation

(1.1) wtt = n(ws, wst, s)s

in which n is a strictly increasing function of its second argument. All but
a handful of these studies take n to be an affine function of its second
argument. Under different assumptions on the form of n, this equation can
describe longitudinal motions of a viscoelastic rod, shearing motions of a
viscoelastic layer, and longitudinal motions of a viscous gas [9,11,12].

The simplest example of a linear scalar parabolic-hyperbolic equation is wtt =

αwss + βwsst where α and β are positive constants. If β were 0, this equation

would reduce to the (hyperbolic) wave equation, and if α were 0, this equation

would reduce to the (parabolic) heat equation for wt. Hence the terminology.

In the present paper we study the generalization of (1.1) that describes
the spatial deformation of a nonlinearly viscoelastic rod. We employ a ge-
ometrically exact and properly invariant theory, which is the most general
theory of rods in which the stress resultants are the familiar contact force
and couple. Here the unknowns are a vector-valued function r and an or-
thonormal triple of vector-valued functions dk, k = 1, 2, 3. These quantities
satisfy the eighteenth-order system

ns = (ρA)(s)rtt,(1.2)

ms + rs × n = ∂t[(ρJpq(s))wqdp](1.3)

where n and m are vector-valued functions of rs, rst, dk, ∂sdk, ∂stdk, and s,
prescribed in a properly invariant form, where ∂tdk = w×dk, where ρA is a
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prescribed positive-valued function, where the ρJpq are the prescribed com-
ponents of a positive-definite symmetric matrix-valued function, and where
the summation convention is used. Heretofore there has been no existence
theory for such a system or for its planar version or for any constrained
version with nonlinear constitutive functions, obtained, e.g., by requiring
the rod to be inextensible or unshearable. Caflisch & Maddocks [15]
did however treat the planar motion of an inextensible unshearable elastic
rod with the bending couple depending linearly upon the curvature. It is
governed by a sort of semilinear hyperbolic system.

Our analysis consists in showing that some of the techniques developed
in [12] for (1.1) carry over without difficulty to our system, while the far
richer Euclidean geometry of our problem, with its concomitant require-
ments of invariance, provides new technical obstacles. In this connection it
is important to note that some techniques used in the analyses of simpler
versions of (1.1) are not applicable to systems. E.g., the maximum principle
for scalar parabolic equations (used in [18,38] to construct a priori esti-
mates) is not directly applicable to systems of parabolic equations related
to our systems. Likewise, the clever transformation of Andrews [2], which
was further exploited in [3,28], relies on the assumption that n(s, ws, ·) be
affine, and so is available for neither the general form of (1.1) nor the system
we treat here.

When a scalar-valued function n(y, ·, x) is affine, there is a scalar-valued partial
derivative gy such that n(y, ·, x) has the form

(1.4) n(y, z, x) − n(y, 0, x) = gy(y, x)z,

so that

(1.5) gy(ws(s, t), s)wst(s, t) = ∂tg(ws(s, t), s).

This identity played a crucial role in the analysis of Andrews, and related iden-
tities were central to the studies of Kanel’ [22] and MacCamy [27]. But the
analog of (1.5) is not generally available for systems generalizing (1.1) in which n
is replaced with a vector-valued function n, depending on s and on the vectors y
and z, that is affine in z. Such a function has the form

(1.6) n(y, z, x) − n(y, 0, x) = A(y, x) · z,

where A is a matrix-valued function, and A(y, x) ·z is the image of z under A(y, x).
(See the discussion of notation at the end of this section.) In general, A need not
be the Fréchet derivative of any vector-valued function g, i.e., there need not be
a g such that

(1.7) A(y, x) =
∂g

∂y
(y, x),

so that there need not be a g such that

(1.8) n(u(s, t), ut(s, t), s) − n(u(s, t), 0, s) = ∂tg(u(s, t), s).

Moreover, there is no compelling physical warrant for assumption (1.7) (although
one may wish to study such systems and may find that such assumptions are
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physically useful; cf. [41,42]). Thus, for systems, we would have to restrict our
material response significantly to get an analog of (1.5). In our study, we do not
restrict our attention to constitutive functions affine in the strain rate, and so have
no expectation of such a generalization of (1.5). Nevertheless, by using suitable
constitutive inequalities we can retain for our systems many of the advantages of
(1.4) and (1.5) for the scalar equation (1.1).

Some of the difficulties we face are analogs of those that arise in the mechanics
of rigid bodies: We employ a fundamental set of unknown vectors, the directors,
that form an orthonormal basis depending on position and time. We could rep-
resent this basis by a matrix with respect to a fixed orthonormal basis, i.e., by a
proper-orthogonal tensor field, which has the disadvantage that its nine compo-
nents are subject to six constraints. We could represent the basis by Euler angles,
which have the disadvantage that they have a unpleasant polar singularity. We
could use alternative representations that have the disadvantage that they are
subject to constraints and they have singularities. Instead, we use a coordinate-
free formulation involving the axial angular velocity vector w and its analog u for
the derivative with respect to the independent spatial variable. We thus follow the
lead of the formulation of rigid-body mechanics in terms of the angular velocity
vector [37].

It is worth noting that much of the mathematical and mechanical structure
of our equations is lost in the transition to equilibrium equations: The dynamical
equations, even for elastic rods, cannot be constructed by slapping acceleration
terms onto various legitimate equilibrium equations.

To avoid obscuring the central ideas of our approach, we limit our at-
tention in the main part of this paper to a specific class of boundary con-
ditions and to a reasonable set of constitutive restrictions, not seeking the
utmost generality. In Secs. 19 and 20, we indicate how our methods can
readily be extended to far more general circumstances. In Secs. 21 and 22
we discuss the analytical consequences of alternative formulations. The main
developments of purely mechanical interest are the discussion of constitu-
tive assumptions in Secs. 6 and 19, the treatment of the preclusion of total
compression in Sec. 10, and the treatment of the rotation of the directors
throughout the paper, but especially in Secs. 4 and 13. The technical as-
pects of the analysis that we employ are confined almost entirely to Part
IV.

2. Notation

We employ Gibbs notation for vectors and tensors: Vectors, which are el-
ements of Euclidean 3-space E

3, and vector-valued functions are denoted by
lower-case, italic, bold-face symbols. The dot and cross product of (vectors)
u and v are denoted u · v and u × v . A tensor is a linear transformation of
E

3 to itself. The value of a tensor A at a vector v is denoted A ·v (in place
of the more usual Av) and the product of A and B is denoted A · B (in
place of the more usual AB). The transpose of A is denoted A∗. We write
v ·A = A∗ ·v . The dyadic product of vectors a and b (used but rarely here)
is the tensor denoted ab (in place of the more usual a⊗b), which is defined
by (ab) ·v = (b ·v)a for all v . Thus (ab)∗ = ba . Since the space of tensors
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has bases consisting of dyadic products, we define the cross product u ×A

of a vector and a tensor by defining it for A = ab by u × (ab) := (u ×a)b.

Lower-case Latin indices, except for s and t, range over 1,2,3, and such
twice-repeated indices are summed from 1 to 3. Lower-case Greek indices
range from over 1,2, and such twice-repeated indices are summed from 1 to
2.

Triples of real numbers are denoted by lower-case, sans-serif, bold-face
symbols. E.g., the triple (u1, u2, u3) of components of a vector u with respect
to a certain nonconstant basis is denoted u. We set u·v := uivi, |u| =

√
ukuk,

u × v := (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). The matrix of a tensor A

with respect to a specified basis is denoted A. Its action on a triple u is
denoted A · u. The dot product and norm for other n-tuples are treated
analogously.

The (Gâteaux) differential of u 7→ f (u) at v in the direction h is
d
dtf (v + th)

∣

∣

t=0
. When it is linear in h , we denote this differential by

∂f
∂u

(v) · h or fu(v) · h . We often denote the function u 7→ f (u) by f (·).
The partial derivative of a function f with respect to a scalar argument t
is denoted by either ft or ∂tf . Obvious analogs of these notations will also
be used. The operator ∂t is assumed to apply only to the term immediately
following it. The ordinary derivative of a function f with respect to its single
argument t is denoted by either ft or dtf .

For any vector-valued functions f and g and scalar-valued functions x
and y we define

(2.1)

〈x, y〉 :=

∫ 1

0

x(s)y(s) ds,

〈f , g〉 :=

∫ 1

0

f (s) · g(s) ds, 〈f , y〉 ≡ 〈y, f 〉 :=

∫ 1

0

f (s)y(s) ds.

We use analogous notation for n-tuples. We use Fubini’s Theorem without
comment.

We let c, ε, and C denote typical positive constants that are supplied
as data or that can be estimated in terms of data. Their meanings usually
change with each appearance (even in the same equation or inequality. C
may be regarded as increasing and c and ε as decreasing with each ap-
pearance). Similarly, t 7→ γ(t) and t 7→ Γ (t) denote typical positive-valued
continuous functions depending on the data. Tacit in the statement of an
inequality of the form ‖u‖ ≤ C is an assertion that there exists a positive
number C such that this estimate holds.

Throughout our exposition we use without comment the Hölder in-
equality, the Cauchy-Bunyakovskĭı-Schwarz inequality, and the inequality

for arithmetic and geometric means: 2|ab| ≤ ηp|a|p

p + |b|q

qηq for real a, b and

for positive ε, p, q with p−1 + q−1 = 1. If we take η to be small, then we
can replace ηp with ε, and use the convention just discussed to write this
last estimate as |ab| ≤ ε|a|p + C|b|q.
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We use only real function spaces. For each nonnegative integer k, Ck[0, T ]
denotes the space of functions that are k times continuously differentiable on
the interval [0, T ], C0,α[0, T ] denotes the space of functions that are Hölder
continuous with exponent α ∈ (0, 1] on the interval [0, T ], Hk(0, 1) denotes
the Sobolev space of functions defined on the interval (0, 1) whose distri-
butional derivatives of order k are integrable to the pth power, H0(0, 1) =
L2(0, 1), and L∞(0, T ) denotes the space of essentially bounded functions
on [0, T ]. We use the same notation for spaces of vector-valued functions;
the interpretation will be clear from the context.

We denote the norm on a Banach space X by ‖·,X‖, but omit X when
it is a Cartesian product of L2(0, 1). If X is a Banach space of functions
on the interval (0, 1) and if Y is a Banach space of real-valued functions
on the interval [0, T ], then as usual Y(0, T,X) denotes the Banach space of
mappings [0, T ] ∋ t 7→ w(·, t) ∈ X with norm

∥

∥ [t 7→ ‖w(·, t),X‖ ],Y
∥

∥. In
particular, the square of a norm of w in H1(0, T,H1(0, 1)) is

‖w,H1(0, T,H1(0, 1))‖2(2.2)

=

∫ T

0

{‖w(·, t),H1(0, 1)‖2 + ‖wt(·, t),H1(0, 1)‖2} dt

=

∫ T

0

∫ 1

0

[w(s, t)2 + ws(s, t)
2 + wt(s, t)

2 + wst(s, t)
2] ds dt.

3. Symbols

The following table lists the principal symbols used, their meanings, and
where they are defined.

A See ρA.
C Positive constant depending only on data. Sec. 2.
c Small positive constant depending only on data. Sec. 2.
dk Orthonormal basis giving the orientation of cross sections. (4.1), (4.2).
d◦

k Initial function for dk. (7.3).
dN

k Galerkin approximation of dk. (13.8).
ek Standard basis for R

3. Sec. 2.
f Body force per unit reference length of the base curve. (5.1).
H Energy-like form based on accelerations and strain rates. (11.2).
Jkl See ρJkl.
J See ρJ .
J See ρJ.
K Kinetic energy. (9.1a).
KN Kinetic energy for the Galerkin approximation. (14.2).
l Body couple per unit reference length of the base curve. (5.2).
M Square root of the dissipative stress power. (9.5a).
MN Galerkin approximation of M . (14.2).
mk Components of m with respect to the basis dk. (5.3).
m Contact couple vector. (4.3).
m ≡ (m1,m2,m3). Triple of components of m with respect to basis dk. (5.3).
m̂ Constitutive function for m. (5.3), (5.5).
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mD Constitutive function for dissipative part of m̂. (5.3), (5.6).
m̄ Boundary value of m . (7.1c).
mN Galerkin approximation of m. (13.14).
mN

D Galerkin approximation of mD. (13.14).
nk Components of n with respect to the basis dk. (5.3).
n Contact force vector. (4.3).
n ≡ (n1, n2, n3). Triple of components of n with respect to basis dk.(5.3).
n̂ Constitutive function for n. (5.3), (5.5).
nD Constitutive function for dissipative part of n̂. (5.3), (5.6).
n̄ Boundary value of n . (7.1c).
nN Galerkin approximation of n. (13.14).
nN

D Galerkin approximation of nD. (13.14).
p ≡ rt. Velocity of material points on the base curve. (4.4).
p ≡ (p1, p2, p3). Triple of components of p with respect to basis dk. (4.4).
pa Coefficients of Galerkin approximate of p. (13.1).
p◦ Initial function for p. (4.4).
pN Galerkin approximation of p. (13.1).
q± Constitutive functions. (19.18).
R ≡ dkek. Orthogonal tensor taking triples z to vectors z . (4.6).
RN Galerkin approximation of R. (13.13).
r Position of material points on the base curve. (4.1).
r◦ Initial function for r . (7.3).
s Arc-length parameter of base curve (4.1).
T Arbitrary fixed time. Theorem 8.1.
t Time. (4.1).
uk Components of u with respect to the basis dk. (4.4).
u Strain vector accounting for flexure and torsion. (4.3).
u ≡ (u1, u2, u3). Triple of components of u with respect to basis dk. (4.4).
u̇ Argument of constitutive functions occupied by ut. (5.5a)
u◦ Initial function for u. (7.5).
uN Galerkin approximation of u . (13.10).
uN Galerkin approximation of u. (13.12).
vk Components of rs with respect to the basis dk. (4.4).
v ≡ rs. Strain vector accounting for shear and extension. (4.4).
v ≡ (v1, v2, v3). Triple of components of rs with respect to basis dk. (4.4).
v̇ Argument of constitutive functions occupied by vt. (5.5a)
v◦ Initial function for v. (7.5).
vN Galerkin approximation of v . (13.9).
vN Galerkin approximation of v. (13.12).
W A Hilbert space of H1 functions. (7.9).
wk Components of w with respect to the basis dk. (4.4).
w Angular velocity of the triad dk. (4.3).
w◦ Initial function for w . (7.3).
w ≡ (w1, w2, w3). Triple of components of w with respect to basis dk. (4.3).
wa Coefficients of Galerkin approximate of w . (13.1).
wN Galerkin approximation of w . (13.1).
X N Projector onto span{x1, . . . , xN}. (13.6).
Y N Projector onto span{y1, . . . , yN}. (13.6).
x Argument of constitutive functions occupied by s. (5.5a).
xa Normalized derivatives of the shape functions ya. (13.3).
ya Shape functions for Galerkin approximation. (13.3).
β Constitutive function associated with coercivity. (19.3).
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Γ Positive-valued function of t depending only on the data, bounded on
bounded intervals. Sec. 1.

γ Small positive-valued function of t depending only on the data. Sec. 1.
δ Difference operator. (18.1).
ε Small constant depending on the data. Sec. 2.
ζ Strain variables with ζ3 := v3 − Υ (u1, u2, s). (6.5).
ζ̌ Function delivering ζ from η. (6.5).
η ≡ (v, u). (4.2).
η̇ Argument of constitutive functions occupied by ηt. (5.5a)
η◦ Initial value of η. (7.5).
ηN ≡ (vN, uN). Galerkin approximation of η. (13.8).
η♯ Cut-off strain. (12.3).
Λ Positive-definite square root of the symmetric part of ση̇ . Hypothesis 6.11.
κ Inverse of σ̂(η, ·, x). (11.28).
νa Eigenvalues associated with shape functions. (13.2).
ρA Mass per unit reference length. (5.1).
ρJkl Mass moments of inertia of a cross section with respect to dk. (5.2).
ρJ Tensor of mass moments of inertia of a cross section. (5.2).
ρJ Matrix of mass moments of inertia of a cross section. (5.2).
σ ≡ (n,m). (5.3).
σ̂ Constitutive function for σ. (5.6).
σD Constitutive function for dissipative part of σ̂. (5.6).

σ̌ Constitutive function depending on ζ, ζ̇. (6.6).
σ♯ Cut-off constitutive function. (12.4).
Υ Function associated with the Jacobian of deformation. (4.14).
Φ Total stored energy. (9.1b).
ΦN Total stored energy for the Galerkin approximation. (14.2).
ϕ Stored-energy function for elastic part of constitutive equations. (5.6).
ψ Function describing strong dissipation near a total compression. (6.10).
χ ≡ (v1, v2, u). (12.2), (19.1).
Ω Work of the dissipative part of the stresses. (9.1c).
ΩN Galerkin approximation of Ω. (14.2).

II. Governing Equations

We give a brief coordinate-free formulation of the classical form of geo-
metrically exact equations of motion for a rod that can suffer flexure, ex-
tension, torsion, and shear. For full details and motivations, see [7, Chap.8̃].

4. Geometry of Deformation

The motion of a rod is defined here by three vector-valued functions

(4.1) [0, 1] × R ∋ (s, t) 7→ r(s, t), d1(s, t), d2(s, t) ∈ E
3

with {d1(s, t),d2(s, t)} orthonormal. The function r(·, t) may be interpreted
as the configuration at time t of the curve of centroids of a slender 3-dimen-
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sional body. The vectors d1(s, t) and d2(s, t) may be interpreted as charac-
terizing the orientation of the material section at s at time t. In particular,
d1(s, t) and d2(s, t) may be regarded as characterizing the configurations
at time t of a pair of orthogonal material lines of the section s. We assume
that s is the arc-length parameter of the reference configuration of r , and
we scale the length so that 0 ≤ s ≤ 1. We set

(4.2) d3 := d1 × d2.

Since {dk(s, t)} is a right-handed orthonormal basis for E
3 for each (s, t),

there are vector-valued functions u and w such that

(4.3) ∂sdk = u × dk, ∂tdk = w × dk.

Since the basis {dk} is natural for the intrinsic description of deforma-
tion, we decompose relevant vector-valued functions with respect to it:

(4.4) v := rs = vkdk, p := rt = pkdk, u = ukdk, w = wkdk

(so that vk := v · dk, etc.). We take {ek} to be the standard basis for R
3:

(4.5) e1 = (1, 0, 0), etc.

We adopt the notation that the triple (z1, z2, z3) of components of a vector z

with respect to the orthonormal basis {dk} is denoted by the corresponding
bold sanserif symbol:

(4.6)
(z1, z2, z3) ≡ z ≡ zkek ≡ z · dkek ≡ (ekdk) · z =: R∗ · z ,

z = z · ekdk ≡ (dkek) · z =: R · z.

(Here we have used the dyadic notation described in the first paragraph of
Sec. 1. Note that R is an orthogonal transformation (from R

3 to E
3), so

that its inverse is its transpose R∗. In view of (4.3), it satisfies

(4.7) Rt = w ×R

(see the first paragraph of Sec. 2 for notation), so that

(4.8) zt = R·zt+w×z , ztt = R·ztt+2w×(R·zt)+wt×v+w×(w×z )

for any function z .

Of course, the specification of the dk is equivalent to the specification of the

proper-orthogonal (rotation) tensor R (cf. [33]). We suppress the role of R, limit-

ing its use to a notational device, because the form of the constitutive equations

invariant under rigid motion is most easily expressed in terms of components of

the stress resultants with respect to the base vectors dk, and because in more

general theories of rods, the dk need be neither orthonormal nor three in number.

The equality of mixed partial derivatives of r and of the dk, together
with the use (4.8), yields the compatibility conditions

(4.9) ps = vt = R · vt + w × v , ws = ut + u ×w = R · ut.
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Equation(4.3)2, equation of (4.9)2, and identity (4.8)1 each have the
form

(4.10a) yt = w × y + f .

We need some simple estimates for the solution of this equation. Let Ψ

be the fundamental tensor solution of homogeneous version of (4.10a) with
Ψ(0) = I . Equation (4.7) implies that R is a fundamental tensor solution,
so that Ψ(t) = R(t) ·R(0)−1. The solution y of (4.10a) is given by

(4.10b) y(t) = Ψ(t) · y(0) + Ψ (t) ·
∫ t

0

Ψ (τ)−1 · f (τ) dτ.

Since R is orthogonal, so is Ψ . From this formula for y then follows the
bound

(4.11) |y(t)| ≤ |y(0)| +
∫ t

0

|f (τ)| dτ

(which is the same bound as that obtained by taking w = o in (4.10a). It is
sharper than the bound derivable from the differential inequality dt|y |2 ≤
|y |2 + |f |2, which is obtained by taking the dot product of (4.10a) with
y . The sharper bound simplifies some of our formulas. Though not crucial
here, it would be crucial in an analysis requiring detailed decay rates).

We set

(4.12) η := (v,u) ≡ (v1, v2, v3, u1, u2, u3).

The components of η are the strain variables corresponding to the motion
(4.1). For each fixed t the function η(·, t) determines r(·, t), d1(·, t), d2(·, t)
(the configuration at time t) to within a rigid motion and thus accounts
for change of shape. The strains v1 and v2 measure shear, v3 measures
dilatation, u1 and u2 measure flexure, and u3 measures torsion.

It follows from (4.9) that

(4.13) ηt ≡ (vt,ut) = (ps + u × p − w × v, ws − w × u, ).

We shall freely switch between the pair (v,u) and its single symbol η, using
whichever leads to a more compact or illuminating expression in each par-
ticular circumstance. We shall not need the second form of (4.13); it could
be used to show that the governing equations could be cast with all the
time derivatives on one side.

Let us interpret our kinematic variables as corresponding to general-
ized coordinates arising from the imposition of a fairly general family of
constraints on the deformation of a 3-dimensional rod-like body. Then a
rod-theoretic analog of the 3-dimensional requirement that the Jacobian of
the deformation be positive (so that orientation is preserved) is that there be
a function (u1, u2, s) 7→ Υ (u1, u2, s) (depending only on the flexural strains
and s) for which Υ (0, 0, s) = 0, Υ (u1, u2, s) > 0 for uαuα > 0, and such that

(4.14) v3 > Υ (u1, u2, s).
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(See [7, Secs. 8.6, 14.2]. If these constraints ensure that plane sections remain
plane and undeformed, then the function Υ (·, ·, s) is convex and homoge-
neous of degree 1, so that for each s, the surface v3 = Υ (u1, u2, s) is a
cone in (u1, u2, v3)-space. E.g., for a rod with a circular cross section at s
of radius h(s), the function Υ reduces to Υ (u1, u2, s) = h(s)

√

(u1)2 + (u2)2

[7, Sec. 8.7].) We adopt (4.14) as an essential restriction on the deformation.
A consequence of it is that

(4.15) v3 ≡ rs · d3 > 0.

This condition implies that (i) |rs| ≡
√
vkvk > 0, so that the local ratio of

deformed to reference length of the axis cannot be reduced to zero, and (ii) a
typical section s cannot undergo a total shear in which the plane determined
by d1(s, t) and d2(s, t) is tangent to the curve r(·, t) at r(s, t). The general
condition (4.14) further ensures that two distinct material cross sections
cannot intersect within a deformed configuration of the rod-like body. We
say that a total compression occurs when (4.14) is violated.

5. Mechanics and Material Behavior

In the configuration at time t, the resultant contact force and contact
couple exerted by the material of (s, 1] on the material of [0, s] (for 0 < s ≤
1) are respectively denoted n(s, t) and m(s, t). At (s, t) the rod is subjected
to a body force of intensity f (s, t) and body couple of intensity l(s, t) per
unit reference length at (s, t). Then the classical equations of motion (under
the interpretation that r is a suitably weighted material curve of centroids
[7, Ex. 8.4.8]) have the form

ns + f = ρArtt,(5.1)

ms + rs × n + l = ∂t(ρJ ·w) := ∂t(ρJpqwqdp)(5.2)

≡ ρJ ·wt + w × (ρJ ·w).

Here (ρA)(s) is the prescribed positive mass density per reference length at
s, the (ρJγδ)(s), γ, δ = 1, 2, are the prescribed components of the positive-
definite symmetric 2 × 2 matrix of mass-moments of inertia of the section
s. The positive-definite symmetric 3 × 3 matrix ρJ := (ρJpq) is defined by
ρJγ3 = ρJ3γ = 0, ρJ33 = ρJγγ , and ρJ := ρJpqdpdq. (Thus ρJ depends
on t, but ρJ does not.) It is reasonable to assume that ρA, ρJpq are piece-
wise continuous. (The jumps that these functions may suffer reflect abrupt
changes in the geometry of the cross sections or in the density distribution
of a rod interpreted as a 3-dimensional body.) For simplicity of exposition,
however, we take ρA, ρJpq to be continuous; the straightforward adjustments
for piecewise continuous functions are left to the interested reader. (If r is
not the weighted curve of centroids, the resulting equations of motion are
somewhat more complicated, but the analysis is only more difficult from the
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viewpoint of notation. Moreover, the general case can be reduced to that
treated here by a suitable change of variables.)

Since the treatment of nonzero loads is standard, we take f = o = l to
simplify our presentation. Thus (5.1), (5.2) reduce to (1.2), (1.3).

The reference values of the dk can be chosen so that the matrix ρJ is diagonal,
but if the geometry of the cross sections in the reference configuration were to
change abruptly, then the reference values of the dk that effect this diagonalization
might be discontinuous, whence we could expect the dk to be discontinuous. Even
though we take ρJ to be continuous, for the purpose of generalizing our results to
handle the more complicated case, we do not insist that ρJ be diagonal.

The complications caused by the acceleration terms on the right-hand side of

(5.2) are even worse than those that arise in Euler’s equations of motion for a

rigid body.

Constitutive equations. Let

nk := n · dk, mk := m · dk,(5.3)

n := (n1, n2, n3), m := (m1,m2,m3), σ := (n,m).

n1 and n2 are the shear forces, n · rs/|rs| is the tension, m1 and m2 are
the bending couples, and m3 is the twisting couple. σ is the set of stress

resultants. We set

(5.4) σ · η := n · v + m · u = nkvk +mkuk, etc.

We limit our attention to rods that are viscoelastic of strain-rate type (of
complexity 1), which have the defining property that there is a constitutive
function

(5.5a) (η, η̇, x) 7→ σ̂(η, η̇, x)

such that

(5.5b) σ(s, t) = σ̂
(

η(s, t),ηt(s, t), s
)

.

Throughout this paper, superposed dots, like that over η in (5.5a), have no
operational significance; in (5.5a) the η̇ merely identifies the second argu-
ment of σ̂, which is typically occupied by the time derivative ηt. The last
argument of σ̂ in (5.5a) is denoted x so that we can distinguish between
the partial derivative ∂xσ̂

(

η(s, t),ηt(s, t), s
)

with respect to the last argu-

ment and the total partial derivative ∂sσ̂
(

η(s, t),ηt(s, t), s
)

, which must
be computed by the chain rule. The domain of the constitutive function
(5.5a) is defined by (4.14). This form of the constitutive equations ensures
that the material response is unaffected by rigid motions. For simplicity
of exposition we assume that the constitutive function σ̂ is continuously
differentiable in η and η̇. It is reasonable to assume that this function is
piecewise continuous in x. Possible jumps in the dependence of σ̂ on x would
reflect abrupt changes in the geometry or in the material properties of the
3-dimensional body modelled by our theory. For simplicity of exposition,
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however, we take σ̂ to be continuously differentiable in x. (If this function
were only uniformly continuously differentiable on a finite number of disjoint
open intervals whose closures cover [0, 1], then we would have to relate our
analyses on each such interval of continuity by connection formulas coming
from a weak formulation of the governing equations.)

We assume that the equilibrium (or elastic) response σ̂(·,0, s) of σ̂(·, ·, s)
is the derivative of a stored-energy function ϕ(·, s) with respect to η, so that
σ̂ admits the following decomposition into equilibrium and dissipative parts:

(5.6) σ̂(η, η̇, x) = ϕη(η, x) + σD(η, η̇, x) where σD(η,0, x) = 0.

Of course, the constitutive functions depend on the choice of a reference
configuration. Since our analysis is global, in particular, not limited to a
neighborhood of an equilibrium configuration (which could be taken to be
a reference configuration), we do not make the dependence on the reference
configuration explicit.

The governing partial differential equations. We now recast our gov-
erning partial differential equations as a vectorial system of first order in
the time derivative. Equations (4.3)–(4.9), (5.1), (5.2) imply that

∂tdk = w × dk,(5.7a)

vt = ps,(5.7b)

ut = ws − u ×w ,(5.7c)

ρApt = ∂s(n̂kdk),(5.7d)

∂t(ρJ ·w) = ∂s(m̂kdk) + v × n̂kdk,(5.7e)

where the arguments of m̂k and n̂k are η,ηt, s. If we take these arguments
to be

(5.8) v · dl, u · dl, ps · dl − (w × v) · dl, ws · dl, s,

then the equations have a general conservation form with all the time deriva-
tives on the left-hand side. Note that the ordinary differential equation
(5.7a) preserves the dot products dk ·dl and therefore ensures that {dk(s, t)}
is an orthonormal basis for all s, t if {dk(s, 0)} is an orthonormal basis for
all s.

6. Constitutive Restrictions

We impose the very mild requirement that the stored-energy function
be bounded below (without loss of generality by 0) and become infinite at
infinite strains:

6.1. Hypothesis.

(6.1) ϕ(η, x) ≥ 0, ϕ(η, x) → ∞ as |η| → ∞ uniformly in x.
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We require that effects of internal friction grow with the strain rates:

6.2. Hypothesis. There is a positive number c such that

(6.2) [σ̂(η, η̇1, x) − σ̂(η, η̇2, x)] · [η̇1 − η̇2] ≥ c|η̇1 − η̇2|2

for all values of the variables that appear.

This monotonicity condition ensures that the response be truly dissi-
pative (uniformly in η) and that the governing equations of motion have
a parabolic character. Inequality (6.2) is responsible for the regularity of
solutions, and, in particular, for the absence of shocks, which are typically
present in analogous problems for elastic rods (in which σ̂ depends only
on η). Of course, we can replace σ̂ in (6.2) with σD. Since the constitutive
function σ̂ is assumed to be differentiable in η and η̇, (6.2) is equivalent to

(6.3) ξ · σ̂η̇(η, η̇, x) · ξ ≡ ξ · σD

η̇(η, η̇, x) · ξ ≥ c|ξ|2 ∀ ξ.

Condition (6.2) clearly implies that

(6.4) σD(η, η̇, x) · η̇ ≥ c|η̇|2.

In the 3-dimensional nonlinear theories of elasticity and viscoelasticity, the

Strong Ellipticity Condition, which is the generalization of the monotonicity con-

dition, is most easily represented in terms of constitutive functions in which the

invariance under rigid motions is suppressed. A virtue of our formulation of rod

theory is that the invariant constitutive equations (5.5) admit the elegant form

(6.2) of the monotonicity condition.

To describe the behavior of the constitutive functions for strains near
those for a total compression, we introduce new strain variables by the
change of variables
(6.5)
ζ = ζ̌(η, x), ζ̌3(η, x) := v3 − Υ (u1, u2, s), ζ̌j(η, x) := ηj , j = 1, 2, 4, 5, 6.

(Υ was defined in (4.14).) Note that for each x the mapping ζ̌(·, x) has an
inverse, which is denoted by η̌(·, x) and that (4.14) confines ζ to the region
ζ3 > 0. Furthermore, ζ̌3(0, x) = 0, so that bounding ζ3 away from zero
bounds |η| away from zero. We define

(6.6) σ̌(ζ, ζ̇, x) := σ̂(η̌(ζ, x), η̌ζ(ζ, x) · ζ̇, x)

and define the dissipative part σ̌D of σ̌ as in (5.6).
We require that the resultants become infinite at a total compression:

(6.7) |σ̌(ζ, ζ̇, x)| → ∞ as ζ3 ց 0.

A reasonable specialization of (6.7) is that

(6.8) ň3(ζ, ζ̇, x) → −∞ as ζ3 ց 0.
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A much stronger restriction than these is the requirement that

(6.9) ϕ(η, x) → ∞ as ζ3 ց 0.

This condition can be used to show that total compression cannot occur for reason-
able equilibrium problems (cf. [4,7,32]). The energy estimate (9.14) below imme-
diately shows that for any fixed t, the set of s on which there is a total compression
must have measure 0. But (6.9) has never been shown capable by itself of pre-
venting total compression everywhere for dynamical problems. For this purpose
we require here that viscous effects become infinitely large in a suitable way at a
total compression. We do not impose (6.9).

There are several versions of constitutive hypotheses that enable us to give

a precise expression to this requirement and to complementary requirements at

large strains. We face two difficulties:

(i) The weakest hypotheses, which accommodate the richest variety of constitutive

response, are not easy to state and provide the most challenges to analysis.

(ii) There are several closely related systems of constitutive hypotheses that sup-

port the analysis. They differ in whether constants that enter the inequalities are

defined for all of certain collections of strain variables or depend on bounds for

these collections. By using a uniform version of one hypothesis we can get bounds

on strains that enable us to use a weaker non-uniform complementary hypotheses

for the subsequent development. We accordingly can start this process with dif-

ferent choices of uniform hypotheses.

Since many of these issues were treated in great detail in [12], we content our-

selves in the main part of this paper with applying the mathematically simplest

hypotheses to a problem with a specific set of boundary conditions. This policy

enables us to focus on the novel aspects of our analysis. We defer to Sec. 19 a

discussion of the manifold variants of our constitutive functions that also support

the analysis.

Our crudest (but most transparent) constitutive restriction ensuring that
frictional effects become infinitely large at a total compression and that (6.8)
hold for δ̇ < 0 is that

6.10. Hypothesis. There are numbers ε ∈ (0, 1) and A ≥ 0, and there is

a continuously differentiable function ψ on (0, ε) with ψ(ζ3) → ∞ as δ → 0
such that

(6.10)
ň3(ζ, ζ̇, x) ≤ −ψ′(ζ3)ζ̇3 +Aψ(ζ3) ∀ ζ3 ∈ (0, ε), ∀ ζ1, ζ2, ζ4, ζ5, ζ6, ζ̇, x.

With scarcely more generality, ψ and A could be allowed to depend on s. If

A = 0, then for problems of free motion, the methods of Sec. 10 can immediately be

used to show that (6.10) gives a positive lower bound for ζ3 that is independent

of t. The requirement that (6.10) hold for all values of ζ̇3 unduly restricts the

growth of the constitutive functions for large ζ̇3. In Sec. 19, we shall formulate a

refinement of Hypothesis 6.10 that does not suffer from this disadvantage.

The following hypothesis says that when the strains are suitably con-
trolled, the “elasticity” ∂σ̂/∂η is dominated by the “viscosity” ∂σ̂/∂η̇. For
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this to occur, the viscosities must depend appropriately on the strains. This
dependence is the underlying theme of our constitutive restrictions.

6.11. Hypothesis. Let Λ be the positive-definite square root of the (positive-
definite) symmetric part of σ̂η̇. For each c > 0 there is a number C such

that

(6.11)
|Λ(η, η̇, x)−1 · σ̂η(η, η̇, x) · η̇|2

≤ C [1 + σD(η, η̇, x) · η̇ + ϕ(η, x)] when ζ3 ≥ c.

Our basic constitutive hypotheses are Hypotheses 6.1, 6.2, 6.10, 6.11,
namely, those that are numbered. It is important to note that these hy-
potheses are consistent. Since we characterize total compression by the sin-
gle limit that ζ3 ց 0, a proof of consistency follows that of the Note Added

in Proof of [12]. (For exhibiting a set of constitutive functions that meet
these hypotheses it suffices to take these functions to be uncoupled in the
sense that σ̌3 depends only on ζ3, ζ̇3, while the remaining σ̌i respectively
depend only on ζi, ζ̇i, i.e., σ̌1 depends only on ζ1, ζ̇1, etc. Cf. (6.6).) Hy-
pothesis 6.11 generalizes to our vectorial setting those hypotheses given in
the Note, which, as noted there, are much weaker than the fundamental
condition introduced by Dafermos [18].

7. Boundary and Initial Conditions. Weak Formulation

In the main part of this paper, we limit our attention to a single set of
simple boundary conditions, commenting on other possibilities in Sec. 20.
We assume here that the end s = 0 of the rod is fixed at the origin and that
it is welded to a fixed plane spanned by vectors d◦

1 (0) and d◦
2 (0). Thus, the

classical forms of these boundary conditions are

(7.1a)
r(0, t) = o,

dk(0, t) are prescribed constant orthonormal vectors d◦
k (0)

so that

(7.1b) p(0, t) = o, w(0, t) = o.

We assume that the end s = 1 is free and is subject to a given applied force
n̄ and to a given applied couple m̄ :

(7.1c) n(1, t) = n̄(t), m(1, t) = m̄(t),

with

(7.2) n̄ , m̄ ∈ H1
loc[0,∞).

The classical form of the initial conditions are
(7.3)
r(s, 0) = r◦(s), dk(s, 0) = d◦

k (s), rt(s, 0) = p◦(s), w(s, 0) = w◦(s)
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with

(7.4) p◦(0) = o, w◦(0) = o

for compatibility. Let η◦ := (v◦,u◦) be defined in terms of the initial data
(7.3) by

(7.5) ∂sd
◦
k = u◦jd

◦
j × d◦

k , v◦k := r◦
s · d◦

k .

Using (4.13) we find that the initial value of ηt ≡ (vt,ut) is given by

(7.6) ηt(·, 0) = (p◦
s + u◦ × p◦ − w◦ × v◦, w◦

s − w◦ × u◦).

7.7. Hypothesis. The initial values r◦ and d◦
k of r and dk lie in H2(0, 1),

the initial values p◦ and w◦ of rt and w lie in H1(0, 1), and the initial values

rtt(·, 0) and wt(·, 0), which are defined by the partial differential equations

(5.7d,e), lie in L2(0, 1), i.e.,

(7.8a)
‖ρArtt(·, 0)‖ : = ‖∂sn̂k(η◦,ηt(·, 0), ·)d◦

k‖ ≤ C,

‖ρJ ·wt(·, 0)‖ : = ‖m̂k(η◦,ηt(·, 0), ·)d◦
k + r◦

s × n̂k(η◦,ηt(·, 0), ·)d◦
k‖ ≤ C.

The initial value ζ3(·, 0) =: ζ◦3 , induced by (7.3), has a positive lower bound:

(7.8b) inf{ζ◦3 (s) : s ∈ [0, 1]} > 0

(so that initially there is no total compression).

The initial-boundary-value problem. Our initial-boundary-value prob-
lem for a viscoelastic rod consists of the kinematic relations (4.3)–(4.9), the
equations of motion (5.1), (5.2), the constitutive equations (5.5) or (5.6),
the boundary conditions (7.1), and the initial conditions (7.3).

In accord with the boundary conditions (7.1b) we define
(7.9)

W := {x ∈ H1(0, 1) : x (0) = o} or W := {x ∈ H1(0, 1) : x(0) = o},

the slight distinction being obvious from the context.

The weak formulation. A weak version of (5.7) subject to boundary
conditions (7.1) may be formally obtained by multiplying the equations of
(5.7) by test functions x and y , depending only on s and vanishing at 0,
and in the case of the momentum equations (5.7d), (5.7e) by integrating by
parts. (The weak forms of the momentum equations correspond exactly to
the Principle of Virtual Power [7, Chaps. 2, 8, 12, 16], which is not merely a
formal mathematical artifice, but rather a general expression of fundamental



Nonlinearly Viscoelastic Rods 19

laws of mechanics.) This process yields

∫ 1

0

vt · x ds =

∫ 1

0

ps · x ds = −
∫ 1

0

p · xs ds,

(7.10a)

∫ 1

0

ut · x ds =

∫ 1

0

(ws + w × u) · x ds = −
∫ 1

0

[w · xs + (u ×w) · x ] ds,

(7.10b)

∫ 1

0

ρApt · y ds−
∫ 1

0

n · ys ds+ n̄(t) · y(1) ≡ −
∫ 1

0

[n − n̄(t)] · ys ds

(7.10c)

∫ 1

0

(ρJ ·w)t · y ds =

∫ 1

0

[−m · ys + (v × n) · y ] ds+ m̄(t) · y(1)

(7.10d)

≡ −
∫ 1

0

[m − m̄(t)] · ys − (v × n) · y ] ds,

where x (1) = o, y(0) = o, n(s, t) := n̂k(η(s, t),ηt(s, t), s)dk(s, t), etc. The
dk are solutions of the initial-value problem for ∂tdk = w × dk. In fact,
we do not use the weak forms of the compatibility equations, (7.10a) and
(7.10b); instead, we define v and u to be solutions of the compatibility
equations (4.9), treated as ordinary differential equations in t. (The weak
forms (7.10a) and (7.10b) would play a fundamental role in the treatment of
the corresponding conservation laws for elastic rods. These forms are used
to introduce artificial dissipative mechanisms to control shocks, which can
be a tricky process for elastic rods [6].)

By using a version of the Fundamental Lemma of the Calculus of Vari-
ations, in particular, by taking y to be piecewise affine approximations to
characteristic functions, we find that (7.10c,d) imply the integral forms of
(5.7d,e):

∫ s2

s1

ρApt ds = n

∣

∣

∣

∣

s2

s1

,(7.11a)

∫ s2

s1

(ρJ ·w)t ds = m

∣

∣

∣

∣

s2

s1

+

∫ s2

s1

v × n ds,(7.11b)

for almost every s1, s2 ∈ [0, 1], for s1 = 0, for s2 = 1, and for almost every
t ∈ [0, T ]. If s2 = 1, we replace the boundary terms with their prescriptions
from (7.1c). Conversely, the density of linear combinations of these y ∈
L2(0, 1) shows that (7.11) implies (7.10c,d), so that these two systems are
equivalent.

We can replace the test functions y in (7.10c,d) with functions of both
s and t in suitable function spaces, because arbitrary functions in these
spaces can be approximated by finite linear combinations of products of
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functions of s with functions of t. Likewise, we can take the time derivative
of (7.10c,d) and then replace the y ’s with functions of s and t, obtaining

∫ 1

0

ρAptt · y ds = −
∫ 1

0

[nt − n̄t] · ys ds,(7.12a)

∫ 1

0

(ρJ ·w)tt · y ds = −
∫ 1

0

[mt − m̄t(t)] · ys − (v × n)t · y ] ds.(7.12b)

III. A Priori Estimates

8. Plan of the Analysis

In the next section we begin the analysis of our initial-boundary-value
problem leading to our fundamental existence theorem:

8.1. Theorem. Let T be a fixed positive number. Let the initial data satisfy

Hypothesis 7.7. Let the boundary data have the form (7.1), satisfy (7.2), and

be compatible with the initial conditions. Then there is a unique solution

(v ,u ,p,w) of (7.10) with

(8.2) v ,u ∈ C1(0, T, C0[0, 1]), p,w ∈ C0(0, T, C1[0, 1])

satisfying these initial conditions and boundary conditions pointwise and

satisfying the equivalent systems (7.10) and (7.11).

The existence theory carried out in Part IV below shows that if the data
are sufficiently regular, then so are the solutions as long as they exist. For
the purpose of obtaining estimates, we may accordingly take the strain η

and the strain-rate ηt to be continuous. We then obtain bounds for these
quantities in Secs. 9–11. We avoid inconsistency in the existence theory by
seeking solutions that satisfy these bounds. For simpler systems of differen-
tial equations, we could alternatively regard the estimates of Secs. 9–11 as
purely heuristic substitutes for the estimates needed for the Galerkin ap-
proximations of Part IV. For our problem, there are important differences
in the roles and in the derivations of the two kinds of estimates.

In Sec. 9, we obtain an energy estimate, based primarily on Hypothe-
sis 6.2, which leads to a useful bound on the space-time integral of |ηt|2
and on the kinetic and stored energies. In Sec. 10, we use our energy esti-
mate and Hypothesis 6.10 to show that ζ3 is pointwise bounded below by
a positive-valued function of t. In Sec. 11, we use Hypothesis 6.11 to get
pointwise bounds on η and ηt, the arguments of the constitutive functions.
The derivations of these bounds and their analogs for the Galerkin approx-
imations form the technical heart of our paper. It is mainly here that we
have to face the complications caused by the underlying mechanics.
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Since we have these bounds on the arguments of the constitutive func-
tions, we do not change the solutions of our governing equations if we modify
our constitutive functions where their arguments do not obey these bounds.
In Sec. 12 we effect such a modification that replaces σ with a modified
function that is uniformly monotone in η̇ and that behaves regularly at a
total compression. This replacement makes our problem more accessible to
a version of the Faedo-Galerkin method designed to accommodate the tech-
nical challenges posed by the underlying mechanics. We use this method
to carry out the existence theory in Part IV. In Sec. 18 we show that the
solution depends continuously on the data and is therefore unique.

In Part V we discuss related problems, formulations, hypotheses, and
methods. Sec. 19 treats alternative constitutive restrictions, some of which
are both more physically natural and more complicated than those upon
which we base our original treatment. In Sec. 20, we show how to treat other
boundary conditions. In Sec. 21 we discuss a more traditional formulation
in terms of componential equations, and we explain the difficulties that we
would have encountered had we used more standard methods of analysis for
it. In Sec. 22 we discuss related problems.

9. Energy Estimates

We introduce the kinetic energy K(t), the stored energy Φ(t), and the
work Ω(t) of the dissipative internal forces at time t:

K(t) : = 1
2 〈p(·, t)ρAp(·, t)〉 + 1

2 〈w , ρJ ·w(s, t)〉,

(9.1a)

Φ(t) : =

∫ 1

0

ϕ(v(s, t),u(s, t), s) ds ≡
∫ 1

0

ϕ(η(s, t), s) ds,

(9.1b)

Ω(t) : =

∫ t

0

∫ 1

0

σD(η(s, τ),ηt(s, τ), s) · ηt(s, τ) ds dτ ≡
∫ t

0

〈σD,ηt〉 dτ.

(9.1c)

We substitute the constitutive equation (5.5b) into the weak equations of
motion (7.12a,b), replace y in (7.12a) with p, replace y in (7.12b) with w ,
and add the resulting equations. Since

n · ps ≡ n · vt ≡ n · (vkdk)t = nk∂tvk + n · (w × v)(9.2)

≡ n · vt + n · (w × v) = ϕv · vt + nD · vt + n · (w × v),

etc., we obtain the energy equation
(9.3)

K(t)+Φ(t)+Ω(t) = K(0)+Φ(0)+

∫ t

0

[n(1, τ)·p(1, τ)+m(1, τ)·w(1, τ)] dτ.
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Had we used equivalent componential forms in place of our vectorial equa-
tions, then the derivation of the energy equation (9.3) could be a formidable
exercise. The basic difficulty, which recurs unavoidably in Sec. 11, is due to our
introduction of the moving basis dk, which is essential for a simple description of
constitutive equations invariant under rigid motions, but which complicates the
equations of motion because it is responsible for the appearance of w in various
time-derivatives.

We wish to bound the left-hand side (9.3), so that we must get sharp
estimates for the integral on the right-hand side of (9.3), which gives the
work done by the forces and couples at the end s = 1. For this purpose we
use the monotonicity condition (6.3) (a consequence of Hypothesis 6.2), Hy-
pothesis 7.7 giving the regularity of initial conditions (7.3), the requirement
that the initial conditions satisfy Φ(0) < ∞ (which is ensured by (7.8b)),
and a weaker version of (7.2):

(9.4) n̄ , m̄ ∈ L2
loc[0,∞).

Let us set

(9.5a) M :=

[
∫ 1

0

(nD · vt + mD · ut) ds

]1/2

≡
[
∫ 1

0

σD · ηt ds

]1/2

,

so that

(9.5b)

∫ t

0

M(τ)2 dτ = Ω(t),

∫ t

0

M(τ) dτ ≤
√

tΩ(t).

From the monotonicity condition (6.4), a consequence of Hypothesis 6.2,
and from (9.1) we obtain

(9.6)

∫ 1

0

|ηt(s, t)|2 ds ≡
∫ 1

0

{|vt(s, t)|2 + |ut(s, t)|2} ds ≤ CM(t)2,

(9.7)

∫ 1

0

(|p(s, t)|2 + |w(s, t)|2) ds ≤ CK(t),

1
2

∫ 1

0

|η(s, t)|2 ds ≤
∫ 1

0

|η(s, 0)|2 ds+

∫ 1

0

[
∫ t

0

|ηt(s, τ)| dτ
]2]2

ds(9.8)

≤ C +

∫ 1

0

t

∫ t

0

|ηt(s, τ)|2 dτ ds ≤ C + CtΩ(t).

From these estimates, from identity (4.8)1, and from the boundary condi-
tions (7.1), we obtain

|p(s, t)| =

∣

∣

∣

∣

∫ s

0

ps(ξ, t) dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ s

0

vt dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ s

0

[R · vt + w × v ] dξ

∣

∣

∣

∣

(9.9a)

≤
∫ 1

0

(

|vt(ξ, t)| + 1
2 |w(ξ, t)|2 + 1

2 |v(ξ, t)|2
)

dξ

≤ CM(t) + Γ (t)[K(t) +Ω(t)],

|r(s, t)| ≤ Γ (t)
√

Ω(t) + Γ (t)

∫ t

0

[K(τ) +Ω(τ)] dτ.(9.9b)



Nonlinearly Viscoelastic Rods 23

Likewise,

(9.10) |w(s, t)| ≤
∣

∣

∣

∣

∫ s

0

∂tukdk dξ

∣

∣

∣

∣

≤
∫ 1

0

|ut(s, t)| ds ≤ CM(t).

In view of boundary conditions (7.1c) we estimate the boundary term
on the right-hand side of (9.3) by

∣

∣

∣

∣

∫ t

0

[n̄(τ) · p(1, τ) + m̄(τ) ·w(1, τ)] dτ

∣

∣

∣

∣

(9.11)

≤
∫ t

0

{|n̄(τ)||p(1, τ)| + |m̄(τ)||w(1, τ)|} dτ

≤ C

∫ t

0

{|n̄(τ)| + |m̄(τ)|}M(τ) dτ +

∫ t

0

Γ (t)|n̄(τ)|[K(τ) +Ω(τ)] dτ

≤ C

∫ t

0

{|n̄(τ)| + |m̄(τ)|}2 dτ + εΩ(t) +

∫ t

0

Γ (t)|n̄(τ)|[K(τ) +Ω(τ)] dτ.

We now substitute (9.11) into (9.3) and invoke (9.4) and the positivity of ϕ
(required by (6.1)) to obtain
(9.12)

K(t) +Ω(t) ≤ K(t) +Φ(t) +Ω(t) ≤ Γ (t) +Γ (t)

∫ t

0

|n̄(τ)|[K(τ) +Ω(τ)] dτ.

Since n̄ is locally integrable by assumption (9.4), the Gronwall inequality
then implies that K(t) +Ω(t) ≤ Γ (t), so that Φ(t) ≤ Γ (t). Thus

9.13. Theorem. Let the monotonicity condition (6.2) hold (so that (6.4)
holds) and let the stored energy function satisfy (6.1). Let boundary condi-

tions (7.1) hold subject to (9.4) and let the initial conditions satisfy Hypoth-

esis 7.7. Then the energy estimate

(9.14) K(t) + Φ(t) +Ω(t) ≤ Γ (t)

holds. In particular,

(9.15) |r(·, t)|, ‖p(·, t)‖, ‖w(·, t)‖ ≤ Γ (t).

10. The Preclusion of Total Compression

We assume that Hypothesis 6.10 holds and that the hypotheses of The-
orem 9.13 hold, so that the energy estimate (9.14) holds and so that ζ3 is
continuous. Condition (7.8b) allows us to choose the ε of Hypothesis 6.10
to satisfy 0 < ε < infs ζ

◦
3 (s) ≡ infs ζ3(s, 0), without loss of generality. To

show that ζ3(s, t) is positive for all (s, t) it suffices to show this only for all
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(s, t) for which ζ3(s, t) < ε. Thus suppose that there is a ξ in [0, 1) and a
τ2 > 0 such that ζ3(ξ, τ2) < ε. Since ζ3 is taken to be continuous, there is a
latest time τ1 before τ2 at which ζ3(ξ, τ1) = ε. From the equation of motion
(5.1) and the constitutive hypothesis (6.10) we get

d3(ξ, t)·
∫ 1

ξ

(ρA)(s)p(s, τ) ds

∣

∣

∣

∣

t

τ1

= d3(ξ, t) ·
∫ t

τ1

n(s, τ) dτ

∣

∣

∣

∣

1

ξ

(10.1)

≥ d3(ξ, t) ·
∫ t

τ1

n(1, τ) dτ +

∫ t

τ1

ψ′(ζ3(ξ, τ))∂tζ3(ξ, τ) dτ(10.2)

−A

∫ t

τ1

ψ(ζ3(ξ, τ)) dτ

≥ ψ(ζ3(ξ, t)) − ψ(ε) −A

∫ t

τ1

ψ(ζ3(ξ, τ)) dτ − Γ (t)

for τ1 ≤ t ≤ τ2. Since (9.14) holds, we deduce from (9.9a) that

(10.3)

∣

∣

∣

∣

∫ 1

ξ

ρAp ds

∣

∣

∣

∣

≤ C

√

∫ 1

0

ρA|p|2 ds ≤ CK ≤ Γ.

Thus we obtain from (10.1) and (10.3) that

(10.4) ψ(ζ3(ξ, t)) ≤ A

∫ t

τ1

ψ(ζ3(ξ, τ)) dτ + Γ (t)

for τ1 ≤ t ≤ τ2. The Gronwall inequality then implies that

(10.5) ψ(ζ3(ξ, τ2)) ≤ Γ (τ2),

and the properties of ψ then yield the desideratum ζ3(ξ, τ2) ≥ γ(τ2). Since
γ denotes a continuous positive-valued function on (0,∞), we have

10.6. Theorem. Let the hypotheses of Theorem 9.13 (namely, (5.7a), (6.1),
(7.1), (9.4), Hypothesis 7.7, and the continuity of ηt) hold, and further let

Hypothesis 6.10 hold. Then

(10.6) ζ3(s, t) ≥ γ(t) ∀ (s, t).

for any solution of the initial-boundary-value problem with the requisite

smoothness.
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11. Estimates of the Accelerations and the Strain Rates

As discussed in Sec. 8, we need pointwise bounds on both the strains
η and the strain rates ηt, which enter as arguments into the constitutive
equations. In this section we use the bounds and (9.14) and (10.6) to derive
such a priori estimates:

11.1. Theorem. Let the hypotheses of Theorem 10.6 hold. Let the compat-

ibility condition (7.8a) hold. Let T be any positive number. Then η, ηt, ps,

ws lie in a compact subset of C0([0, 1]× [0, T ]) that depends only on T , the

constitutive functions, and bounds for the data.

The pointwise bound on ηt is based on an analog of the energy estimate
involving the accelerations rather than the velocities. Since this estimate
is motivated by the needs of the analysis and is somewhat artificial from
the viewpoint of mechanics, its derivation lacks the simplicity of that of the
energy estimate. The many complications due to our use of the variable
orthonormal basis {dk} essentially occur because the functions defining a
configuration of a rod take values in a manifold rather than in a vector space,
and because our formulation makes explicit the requirement that material
properties be invariant under rigid motions.

We shall obtain an energy-like estimate for the functional

(11.2)

H[pt,wt,η,ηt,ηtt](t)

:= 1
2 〈pt, ρApt〉 + 1

2 〈wt, ρJ ·wt〉 +

∫ t

0

〈ηtt,σ
D

η̇(η,ηt, s) · ηtt〉 dτ.

(H plays a role analogous to that played by K +Ω in the energy estimate
(9.14).) We suppress the arguments pt,wt,η,ηt,ηtt of H. Note that (7.8a)
implies that H(0) ≤ C. Our main effort in proving Theorem 11.1 lies in
proving

11.3. Proposition. Let the hypotheses of Theorem 10.6 hold. Let (7.8a)
hold. Let T be any positive number. Then

(11.3) H(t) ≤ Γ (T ) for 0 ≤ t ≤ T

with Γ (T ) depending only on T , the constitutive functions, and the bounds

for the data.

Proof. We shall show that H satisfies an inequality of the form

(11.4) H ≤ Γ

[

1 +

∫ t

0

NH dτ +

∫ t

0

N2
√
H dτ

]

≤ Γ

[

1 +

∫ t

0

N2H dτ

]

where N := 1+M . Since
∫ t

0
N2dτ ≤ Γ (t) by (9.14), the Gronwall inequality

implies the desired (11.3). We now derive (11.4).
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We take y = pt in (7.12a) , take y = wt in (7.12b), add the resulting
equations, and use the identity

wt · ∂tt(ρJ ·w) ≡ wt · ∂tt(ρJpqwqdp)

(11.5)

= 1
2∂t(wt · ρJ ·wt) + 2(wt ×w) · (ρJ ·wt) + (wt ×w) · [w × (ρJ ·w)]

to obtain

1
2dt〈pt, ρApt〉 + 1

2dt〈wt, ρJ ·wt〉 − n̄t · pt(1, ·) − m̄t ·wt(1, ·)(11.6)

= 2〈w ×wt, ρJ ·wt + w × (ρJ ·w)〉
− 〈nt,pst〉 − 〈(n × v)t,wt〉 − 〈mt,wst〉.

Using the identity (4.8) and the compatibility conditions (4.9) we obtain

nt · pst + (n × v)t ·wt

(11.7)

= [R · nt + w × n ] · [R · vtt + 2w × (R · vt) + wt × v + w × (w × v)]

+ nt · (v ×wt) + n · {[R · vt + w × v ] ×wt}
= nt · vtt + nt · [2w × (R · vt) + w × (w × v)]

− n · [w × (R · vtt) + wt × (R · vt) + wt × (w × v)]

= (nη · ηt + nη̇ · ηtt) · vtt + ∂t{n · [2w × (R · vt) + w × (w × v)]}
− n · {3w × (R · vtt) + 3wt × (R · vt) + 3w × [w × (R · vt)]

+ 2wt × (w × v) + w × (wt × v) + w × [w × (w × v)]},

mt ·wst = mt · [utt −wt × u −w × ut]
(11.8)

= [R · mt + w ×m ] · [R · utt + w × (R · ut)]

= mt · utt + mt · [w × (R · ut)] + (w ×m) · (R · utt)

= (mη · ηt + mη̇ · ηtt) · utt + ∂t{m · [w × (R · ut)]}
−m · {2w × (R · utt) + wt × (R · ut) + w × [w × (R · ut)].

We substitute the constitutive equations (5.5b) into (11.7) and (11.8),
substitute these equations into (11.6) and use (11.2) to obtain

Ht = −〈ηtt,ση · ηt〉 + n̄t · pt(1, ·) + m̄t ·wt(1, ·)(11.9)

+ 2〈w ×wt, ρJ ·wt + w × (ρJ ·w)〉
− ∂t〈n , 2w × (R · vt) + w × (w × v)〉 − ∂t〈m ,w × (R · ut)〉
+ 〈n , 3w × (R · vtt) + 3wt × (R · vt) + 3w × [w × (R · vt)]〉
+ 〈m , 2w × (R · utt) + wt × (R · ut) + w × [w × (R · ut)]〉.

Hypothesis 6.11 was expressly designed to handle the term ηtt · σ̂η · ηt,
which appears in the right-hand side of (11.9):
(11.10)
|ηtt · σ̂η ·ηt| ≡ |(Λ ·ηtt) · (Λ−1 · σ̂η ·ηt)| ≤ εηtt · σ̂η̇ ·ηtt +C[1+σD ·ηt +ϕ].
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Since ρJ is uniformly positive-definite, the Euclidean norm |wt| is equiv-
alent to

√
wt · ρJ ·wt . We integrate (11.9) with respect to t over [0, t], use

Hypothesis 7.7 to control initial values, use (11.10), and use the energy esti-
mate (9.14) to control the integral of σD ·ηt +ϕ (which appears in (11.10))
to obtain

H ≤ Γ + C

∫ t

0

∫ 1

0

|w |wt · ρJ ·wt ds dτ

(11.11)

+ C

∫ t

0

∫ 1

0

|w |2
√

wt · ρJ ·wt

√

w · ρJ ·w ds dτ

+ Γ

∫ t

0

∫ 1

0

{|w | |ηtt| + |w |2|ηt| + |w |3|η| + |wt|(|ηt| + |w | |η|)}|σ| ds dτ

+ C

∫ 1

0

(|w | |ηt| + |w |2|η|)|σ| ds

+

∫ t

0

{|pt(1, τ)| |n̄t(τ)| + |wt(1, τ)| |m̄t(τ)|} dτ.

We now estimate each term on the right-hand side of (11.11) to obtain
from it the integral inequality (11.4) for H. It is evident that the presence
of w and its derivatives is a primary source of difficulty in obtaining these
estimates. It is reasonable to expect that these w ’s should cause no difficulty
in our analysis because they appear in lower-order terms, albeit in powers
or in products with other functions, but the demonstration of this fact here
and in Section 15 requires quite a few tricky constructions. We recall that
(9.10) and (9.14) imply that

(11.12) |w(s, t)| ≤ CM(t),

∫ 1

0

|w(s, t)|2 ds ≤ Γ (t).

To supplement these with another estimate on w , we first observe that
Hypothesis 7.7 on the initial data and the energy estimate (9.14) imply
that

∫ 1

0

|ηt|2 ds =

∫ 1

0

|ηt(s, 0)|2 ds+ 2

∫ 1

0

∫ t

0

ηt · ηtt dτ ds

(11.13)

≤ C + 2

√

∫ 1

0

∫ t

0

|ηt|2 dτ ds
∫ 1

0

∫ t

0

|ηtt|2 dτ ds ≤ Γ (1 +
√
H).

Then (4.9) and (11.13) yield

(11.14) |w(s, t)|2 ≤
∫ 1

0

|ut(ξ, t)|2dξ ≤ Γ (t)[1 +
√

H(t)].
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We use (11.12) to bound the integrals in the first line of (11.11):

∫ t

0

∫ 1

0

|w |wt · ρJ ·wt ds dτ ≤ C

∫ t

0

MH dτ,(11.15a)

∫ t

0

∫ 1

0

|w |2
√

wt · ρJ ·wt

√

w · ρJ ·w ds dτ(11.15b)

≤ C

∫ t

0

M2
√
K
√
H dτ ≤ Γ (t)

∫ t

0

M2
√
H dτ.

To estimate the remaining terms, we need a bound on σ: Let s2 ≥ s1.
In view of (7.1) with n̄ and m̄ in L∞

loc[0,∞), we obtain from equations of
motion (5.1), (5.2), and estimates (9.8), (9.14), (11.14) that

|n(s2, ·) − n(s1, ·)| ≤
√

∫ s2

s1

ρAds
√

〈pt, ρApt〉 ≤ C
√
s2 − s1

√
H,

(11.16a)

|n(s, ·)| ≤ Γ (1 +
√
H),(11.16b)

|m(s2, ·) −m(s1, ·)| ≤
∣

∣

∣

∣

∫ s2

s1

v × n ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s2

s1

[ρJ ·wt + w × (ρJ ·w)] ds

∣

∣

∣

∣

(11.17a)

≤ Γ (1 +
√
H )

∫ s2

s1

|v| ds+ C

∣

∣

∣

∣

∫ s2

s1

[|wt| + |w |2] ds
∣

∣

∣

∣

≤ Γ
√
s2 − s1

[

(1 +
√
H ) +

√

〈wt, ρJ ·wt〉 + (1 +
√
H )

]

,

|m(s, ·)| ≤ Γ (1 +
√
H).(11.17b)

Let us examine the second line of (11.11). The monotonicity condition
(6.3) implies that

(11.18) |ηtt| ≤ C
√

ηtt · σ̂η̇ · ηtt.

Thus for any positive ε, (11.16b) and (11.18) yield

∫ t

0

∫ 1

0

|w | |ηtt| |σ| ds dτ ≤ Γ (t)

∫ t

0

[
∫ 1

0

√

w · ρJ ·w |ηtt| ds
]

(1 +
√
H) dτ

(11.19)

≤ Γ (t)

∫ t

0

√
K

√

〈ηtt, σ̂η̇ · ηtt〉 ds (1 +
√
H) dτ

≤ ε

∫ t

0

〈ηtt, σ̂η̇ · ηtt〉 dτ + Γ (t)

∫ t

0

(1 +H) dτ

≤ εH(t) + Γ (t)

∫ t

0

(1 +H) dτ.
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By virtue of the energy estimates (9.6), (9.8), (9.14), the inequalities (11.11),
and (11.15a) imply that

∫ t

0

∫ 1

0

|w |2|ηt| |σ| ds dτ ≤ Γ (t)

∫ t

0

M

[
∫ 1

0

|w ||vt| ds
]

(1 +
√
H) dτ

(11.20a)

≤ Γ (t)

∫ t

0

M2(1 +
√
H) dτ,

∫ t

0

∫ 1

0

|w |3|v| |σ| ds dτ ≤ Γ (t)

∫ t

0

M2(1 +
√
H) dτ,

(11.20b)

∫ t

0

∫ 1

0

|w |2|ηt| |σ| ds dτ ≤ Γ (t)

∫ t

0

M2(1 +
√
H) dτ,

(11.20c)

∫ t

0

∫ 1

0

|wt| |ηt| |σ| ds dτ ≤ Γ (t)

∫ t

0

[
∫ 1

0

√

wt · ρJ ·wt |ηt| ds
]

(1 +
√
H) dτ

(11.20d)

≤ Γ (t)

∫ t

0

M(1 +H) dτ,

∫ t

0

∫ 1

0

|w | |wt| |η| |σ| ds dτ ≤ Γ (t)

∫ t

0

M

[
∫ 1

0

√

wt · ρJ ·wt| v| ds
]

(1 +
√
H) dτ

(11.20e)

≤ Γ (t)

∫ t

0

M(1 +H) dτ,

We now study the penultimate integral of (11.11). Inequality (11.13)
implies that

(11.21a)
∫ 1

0

|ηt| |σ| |w | ds

≤ Γ (1 +
√
H)

∫ 1

0

|ηt| |w | ds ≤ Γ (1 +
√
H)

√

∫ 1

0

|ηt|2 ds

≤ Γ (1 +
√
H)

√

C + Γ
√
H ≤ Γ (1 +H1/2)(1 +H1/4) ≤ Γ + εH.

Inequalities (9.8), (9.12), and (11.16) yield

(11.21b)

∫ 1

0

|w |2|η| |σ| ds ≤ Γ (1+H1/4)(1+H1/2)

∫ 1

0

|w | |η| ds ≤ Γ+εH.

In Sec. 19 we exhibit a constitutive assumption, complementary to Hypothesis
6.10, that would enable us to get a pointwise a priori bound on η. In this case, we
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could get (11.21b) immediately from (9.14) and (11.16). In the absence of such an
a priori bound on η, we might have been led to use (9.10) and (9.8) to obtain

Z

1

0

|w |2|η| |σ| ds ≤MΓ (1 +
√
H)

Z

1

0

|w ||η| ds ≤MΓ (1 +
√
H).

This inequality would produce a version of (11.4) that does not yield (11.3) be-

cause the bounds on M coming from (9.5) and (9.14) are insufficient to control

the powers of M that would appear in this alternative version of (11.4).

We now estimate the boundary term of (11.11). From (4.8) and (7.1a)
we obtain
(11.22)

|pt| ≤
∫ 1

0

|pst| ds ≤
∫ 1

0

|vtt| ds+2

∫ 1

0

|vt| |w | ds+
∫ 1

0

|wt| |v| ds+
∫ 1

0

|v| |w |2 ds.

Thus (11.18), (11.13), (11.14), (9.6), (9.8) imply that
(11.23)

|n̄t · pt(1, ·)| ≤ Γ

[

1 +

∫ 1

0

|ηtt| ds+
√
H +

∫ 1

0

|wt|2 ds+M2

]

≤ Γ [1 +M2] + ε〈wt, ρJ ·wt〉 + ε〈ηtt, σ̂η̇ · ηtt〉 + ε
√
H.

Likewise, we obtain

(11.24) |m̄t ·wt(1, ·)| ≤ Γ [1+M2]+ε〈wt, ρJ ·wt〉+ε〈ηtt, σ̂η̇ ·ηtt〉+ε
√
H.

We substitute all our estimates into (11.11) (not forgetting that (11.23)
and (11.24) are to be integrated over [0, t]) and choose ε sufficiently small
to get (11.4).

Proof of Theorem 11.1. Proposition 11.3 and (11.16b) and (11.17b) now
imply that σ is bounded:

(11.25) |σ(s, t)| ≤ Γ (t) ∀ s, t.

Thus (6.4) implies that

(11.26) ϕη · ηt = σ · ηt − σD · ηt ≤ Γ |ηt| − c|ηt|2 ≤ Γ,

whence the boundedness of the initial data imply that ϕ(η, s) ≤ Γ . Thus,
Hypothesis 6.1 implies that the strain is pointwise bounded:

(11.27) |η(s, t)| ≤ Γ (t) ∀ s, t.

Hypothesis 6.2 ensures that the finite-dimensional equation σ̂(η, η̇, s) =
σ can be uniquely solved for η̇, so that this equation is equivalent to an
equation of the form

(11.28) η̇ = κ(η,σ, s).
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Since we assumed that σ̂ is continuously differentiable in η, η̇ and contin-
uous in s, it follows from the Local Implicit-Function Theorem that κ is
continuously differentiable in (η,σ) and continuous in s. We conclude that
the constitutive equation σ(s, t) = σ̂(η(s, t),ηt(s, t), s) is equivalent to

(11.29) ηt(s, t) = κ(η(s, t),σ(s, t), s),

which, for given σ, is an ordinary differential equation for η(s, ·) paramet-
rized by s. Since both η and σ are bounded, (11.29) implies that ηt is also
bounded:

(11.30) |ηt(s, t)| ≤ Γ (T ) ∀ (s, t) ∈ [0, 1] × [0, T ].

In view of (11.3) and (11.14) we deduce from (11.16a), (11.17a) that for
each t ∈ [0, T ],
(11.31)
σ(·, t) lies in a bounded subset of C0,1/2[0, 1] independent of t for t ≤ T .

Here C0,1/2[0, 1] is the space of Hölder continuous functions with exponent
1
2 . The Arzelà-Ascoli Theorem implies that C0,1/2[0, 1] is compactly embed-
ded in C0[0, 1].

From (11.31) it follows that τ 7→ κ(η,σ(s, τ), s) is continuous. The
standard theory of ordinary differential equations says that (11.29) has has
a unique continuously differentiable solution for small t that satisfies the
initial condition η(s, 0) = η◦(s). The boundedness of η implies that this
solution can be continued to T .

By forming the integral equation for the difference η(s1, t1) − η(s2, t2)
and using (11.31), the Gronwall inequality, and the Arzelà-Ascoli Theorem,
we find that η lies a compact subset of C0([0, 1]× [0, T ]). (This is one of the
statements of Theorem 11.1.) Then (11.29) and the smoothness of κ imply
that
(11.32)
ηt lies a bounded subset of C0,1/2[0, 1] independent of t for each t ∈ [0, T ].

We now invoke a generalization of a lemma of Aubin [13]:

11.33. Lemma [29,34]. Let X, Y, Z be Banach spaces of functions with

X compactly embedded in Y and with Y embedded in Z. Let E be a set of

functions w for which wt lies in a bounded subset of Lp(0, T,Z) with p > 1
and for which w lies in a bounded subset of L∞(0, T,X). Then E lies in a

compact subset of C0(0, T,Y).

To use this lemma, we take X = C0,1/2[0, 1], Y = C0[0, 1], Z = L2(0, 1)

p = 2, w = ηt, and identify E with those ηt satisfying
∫ t

0
‖ηtt‖2 dτ ≤ Γ (T )

(which is a consequence of (11.3)). Thus ηtt lies in a bounded subset of
L2([0, 1] × [0, T ]) ≡ L2(0, T, L2(0, 1)) ≡ L2(0, T,Z). Inequality (11.32) im-
plies that ηt lies in a bounded subset of L∞(0, T, C0,1/2[0, 1]) = L∞(0, T,X).
Hence ηt lies in a compact subset of C0(0, T,Y) = C0(0, T, C0[0, 1]). (This
is another statement of Theorem 11.1.)
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Having control of ηt, we regard (4.9)2 as a linear ordinary differential
equation for s 7→ w(s, t) parametrized by t. It is subject to the initial
condition w(0, t) = o, which comes from the boundary condition (7.1b).
By using the analog of (4.11), we find that
(11.34)

ws lies in a compact subset of C0(0, T, C0[0, 1]) ≡ C0([0, 1] × [0, T ]).

Likewise, we deduce the same result for ps from (4.9) and (7.1b).

12. The Modified Problem

Since we have shown that for any T > 0 there are Γ̄ (T ) and γ̄(T ) such
that
(12.1)
γ̄(T ) ≤ ζ3(·, t) ≤ Γ̄ (T ), |ζ(·, t)| ≤ Γ̄ (T ), |ηt(·, t)| ≤ Γ̄ (T ) for t ≤ T ,

only the restriction of σ̂(·, ·, s) to the corresponding values of the arguments
(η, η̇) actually intervenes in our initial-boundary-value problem for t ≤
T . This means that we can replace our constitutive functions, which were
originally defined for all strains η satisfying (4.14) and for all strain rates η̇

and which exhibit unpleasant behavior at extreme values of these variables,
by nicer constitutive functions, which are well behaved at the extreme values
and which accordingly remove some of the difficulties in the existence theory.
We now show how this can be done.

Let us set χ := (ζ1, ζ2, ζ4, ζ5, ζ6) ≡ (v1, v2, u1, u2, u3). For our fixed γ̄(T )
and Γ̄ (T ) we introduce the cut-off functions

(12.2)

[ζ3] :=











1
2 γ̄(T ) if ζ3 ≤ 1

2 γ̄(T ),

ζ3 if 1
2 γ̄(T ) ≤ ζ3 ≤ 2Γ̄ (T ),

2Γ̄ (T ) if 2Γ̄ (T ) ≤ ζ3,

[[χ]] :=

{

ζ− if |χ| ≤ 2Γ̄ (T ),

2Γ̄ (T )χ/|χ| if |χ| ≥ 2Γ̄ (T ).

When ζ is related to η by (6.5), then corresponding to (12.2) is the set of
cut-off strains

(12.3) η♯ :=
(

[[v]]1, [[v]]2, [v3 −Υ ([[u]]1, [[u]]2, s)]+Υ ([[u]]1, [[u]]2, s), [[u]]
)

where [[v]]1 is the 1-component of [[ζ]], and [[u]] is the triple of the last three
components of [[ζ]].

Guided by (6.6) we define the modified constitutive function σ♯:
(12.4)

σ♯(η, η̇, x) :=

{

σ̂(η♯, η̇, x) if |η̇| ≤ 2Γ̄ (T ),

σ̂
(

η♯, 2Γ̄ (T )η̇
|η̇| , x

)

+ 2µΓ̄ (T )
[

1 − 2Γ̄ (T )
|η̇|

]

η̇ if |η̇| ≥ 2Γ̄ (T )
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where µ is a positive number. Thus the smoothness of our constitutive func-
tion σ̂ implies a uniform regularity for the modified constitutive function
σ♯:

(12.5)
|σ♯(η, η̇, x)| ≤ Γ (T )(1 + |η̇|),

|σ♯
η(η, η̇, x)|, |σ♯

η̇(η, η̇, x)|, |σ♯
x(η, η̇, x)| ≤ Γ (T ).

Moreover, (6.3) implies that

(12.6) c|ξ|2 ≤ ξ · σ♯
η̇ · ξ ∀ ξ

whenever |η̇| ≤ 2Γ̄ (T ). It was proved in [5] that the constitutive functions
modified in this way have the virtue that (12.6) holds for all η̇ provided that
µ is large enough. (This assertion is the basis of a surprisingly tricky proof
that a continuously differentiable uniformly monotone mapping on a ball in
R

n can be extended to a uniformly Lipschitz continuous, uniformly mono-
tone mapping on all of R

n that is continuously differentiable everywhere
except on the spherical boundary of the ball.)

In view of these remarks, we replace the actual problem with the modi-
fied problem. In doing so, we drop the sharp signs. This means that we are
treating a problem of the same form as the original problem, but with the
bounds (12.5), with the uniform monotonicity condition (12.6), and without
the restriction (4.14).

IV. Existence and Uniqueness

In Secs. 13–17, we prove the existence part of Theorem 8.1 by a modifica-
tion of the Faedo-Galerkin method [26,39]. (We defer the proof of uniqueness
to Sec. 18, where it is a consequence of the well-posedness proved there.)
Our main effort is accordingly devoted to handling the characteristic diffi-
culties, faced throughout this paper, due to the mathematical formulation
of the underlying mechanics.

13. A Faedo-Galerkin Method

To avoid technical difficulties, we want approximations to the directors
dk to satisfy relations like (4.3). We accordingly replace a standard Faedo-
Galerkin method based on the full set of weak equations (7.10) with one
based on the weak momentum equations (7.10c,d) and on approximations
of the geometric relations (5.7a,b,c). In Sec. 21 we discuss in detail the
motivations for all of our modifications.
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Galerkin approximations. We seek Galerkin approximations of standard
type, not of the full set (dk, v ,u ,p,w) of unknowns of our initial-boundary-
value problem, but only for p and w , taking these in the very special form

(13.1) pN(s, t) :=
N

∑

a=1

pa(t)ya(s), wN(s, t) :=
N

∑

a=1

wa(t)ya(s)

where

(13.2) ya(s) :=
√

2 sin νas, νa := (2a − 1)π
2 , whence 〈ya, yb〉 = δab,

with δab the Kronecker delta. The functions pa,wa are to be determined.
(These unknown functions should also be indexed by N because the equa-
tions for them depend on N, but we suppress this index for visual clarity.)
For notational convenience, we set

(13.3)

xa(s) :=
√

2 cos νas so that 〈xa, xb〉 = δab,

dsxa = −νaya, dsya = νaxa, xa(s) = νa

∫ 1

s

ya(ξ) dξ.

System (13.1) then yields

(13.4) wa = 〈wN, ya〉 ⇔ wN =
N

∑

a=1

〈wN, ya〉 ya, etc.

In view of (13.3) and (13.4), integration by parts yields

(13.5) wN

s =

N
∑

a=1

〈wN, ya〉 dsya ≡ −
N

∑

a=1

〈wN, dsxa〉xa ≡
N

∑

a=1

〈wN

s , xa〉xa.

We define orthogonal projectors Y N onto span {y1, . . . , yN} and XN onto
span {x1, . . . , xN} by

(13.6) Y Nf :=
N

∑

a=1

〈f , ya〉 ya, XNf :=
N

∑

a=1

〈f , xa〉xa,

so that wN ≡ Y NwN and wN
s ≡ XNwN

s . Note that

(13.7) 〈f ,XNg〉 = 〈XNf ,XNg〉 = 〈XNf , g〉, ‖XNf ‖ ≤ ‖f ‖;
the inequality is just Bessel’s inequality.

Rather than representing approximations dN

k , v
N, uN for dk, v , u by

sums like (13.1), we define them to be solutions of the following initial-
value problems (based on (5.7a,b,c)) for ordinary differential equations with
respect to t in which s is just a parameter:

∂td
N

k = wN × dN

k , dN

k (s, 0) = dk
◦(s),(13.8)

vN

t = pN

s , vN(s, 0) = v◦(s),(13.9)

uN

t = wN

s + wN × uN, uN(s, 0) = u◦(s).(13.10)
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(Were we to replace the boundary condition in (13.9) with vN(s, 0) =
∑

N

a=1〈v◦, xa〉xa(s), then vN(s, t) would have the form
∑

N

a=1 va(t)xa(s), which
is a standard form of a Galerkin approximation. No such simplifications can
be effected for (13.8) and (13.10).) By taking the dot product of (13.8)
with dN

p we find that dN

k · dN
p = dk

◦ · dp
◦ ≡ δkp, so that {dN

k (s, t)} is an
orthonormal basis for each s, t.

We set

vN

k := vN · dN

k , uN

k := uN · dN

k ,(13.11)

vN := vN · dN

k ek, uN := uN · dN

k ek, ηN := (vN,uN),(13.12)

so that uN = uN · ekd
N

k =: RN · uN, etc.,

(in consonance with (4.6) and (13.11)) where

(13.13) RN := dN

k ek, RN

t = wN×RN so that zN

t = RN ·zt +wN×zN

for any function zN of the form zN

k dN

k . Note that RN is an orthogonal trans-
formation. (In (13.12) and (13.13), the summation convention applies to the
Roman index k but not to the sanserif index N.)

We define

(13.14)

nN

k (s, t) := n̂k(vN(s, t),uN(s, t), vN

t (s, t),uN

t (s, t), s),

nN := nN

kd
N

k , nN := nN

k ek,

nN

D
(s, t) := n̂D

k (vN(s, t),uN(s, t), vN

t (s, t),uN

t (s, t), s)ek, etc.

In the theory of hyperbolic conservation laws, the weak forms (7.10a) and

(7.10b) play a fundamental role. For the reasons mentioned above and in Sec.

21, we have replaced Galerkin equations based on them with (13.9) and (13.10).

Presumably, such modifications would be unnecessary for Galerkin approxima-

tions supporting effective numerical methods, such as versions of the finite-element

method.

Approximating ordinary differential equations. To get the approxi-
mating ordinary differential equations for the pa and wa from (7.10c) and
(7.10d), we replace v , u , p, w , dk, n , m with the same symbols bearing
superposed indices N, replace ρJ with ρJN := ρJpqd

N
p dN

q , replace y with
yab where b is an arbitrary constant vector, and then use the arbitrariness
of b to obtain

〈Y NρApN

t , ya〉 ≡
N

∑

b=1

∫ 1

0

ya(s)(ρA)(s)yb(s) ds
dpb

dt
(s, t)

(13.15)

≡ d

dt

∫ 1

0

ya(s)(ρA)(s)pN(s, t) ds

= n̄(t)ya(1) −
∫ 1

0

nNdsya ds ≡ −
∫ 1

0

[nN − n̄ ]dsya ds

≡ −νa〈XN(nN − n̄), xa〉,
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〈Y N(ρJN ·wN)t, ya〉 ≡
d

dt

[
∫ 1

0

N
∑

b=1

ya(s)ρJ
N(s, t)yb(s) ds ·wb(t)

]

(13.16)

≡ d

dt

∫ 1

0

ya(s)ρJ
N(s, t) ·wN(s, t) ds

= m̄(t)ya(1) −
∫ 1

0

mNdsya ds+

∫ 1

0

(vN × nN)ya ds

≡ −
∫ 1

0

{[mN − m̄ ]dsya − (vN × nN)ya} ds

≡ −νa〈XN(mN − m̄), xa〉 + 〈Y N(vN × nN), ya〉.

(Recall that the boundary data n̄ and m̄ are introduced in (7.1c).) By
virtue of (13.6), these equations hold not only for a = 1, . . . ,N, but in fact
for all a.

As initial conditions for pN and wN in (13.15) and (13.16) we take

(13.17)

pN(s, 0) =
N

∑

a=1

pa(0)ya(s) =
N

∑

a=1

〈p◦, ya〉ya(s),

wN(s, 0) =

N
∑

a=1

wa(0)ya(s) =

N
∑

a=1

〈w◦, ya〉ya(s).

Let us multiply (13.15) and (13.16) by ya, sum the resulting equations
over a from 1 to N, use (13.6), and then integrate the resulting equations
from s to 1 (or, alternatively, multiply (13.15) and (13.16) by xa, sum the
resulting equations over a from 1 to N, and use (13.3)) to obtain equivalent
versions of these equations:

∫ 1

s

Y NρApN

t dξ ≡
d

dt

∫ 1

s

N
∑

a=1

〈ya, ρApN〉ya dξ

(13.18)

= −
N

∑

a=1

〈nN − n̄ , xa〉xa ≡ −XN(nN − n̄),

∫ 1

s

Y N∂t(ρJ
N ·wN) dξ ≡

∫ 1

s

d

dt

[ N
∑

a=1

〈ρJN ·wN, ya〉ya dξ

]

(13.19)

= −
N

∑

a=1

〈mN − m̄ , xa〉xa +

∫ 1

s

N
∑

a=1

〈vN × nN, ya〉ya dξ

≡ −XN(mN − m̄) +

∫ 1

s

Y N(vN × nN) dξ.
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14. Global Existence of Solutions of the

Approximating Ordinary Differential Equations

The convergence of the Faedo-Galerkin method for our problem hinges
on obtaining sharp estimates for (13.1), some of which are analogous to
those obtained in Sections 9–11. In all these estimates it is important to
note that the constant C and the functions Γ and γ are independent of N.

System (13.8)–(13.17) is a well-defined initial-value problem for a finite-
dimensional system of ordinary differential equations for the variables
pa,wa,d

N

k , v
N,uN. Since there is a positive number c such that 〈p, ρAp〉 ≥

c|p|2 and 〈w , ρJN · w〉 ≥ c|w |2, equations (13.16) and (13.15) can be put
into standard form in which the dtpa and dtwa are expressed as functions of
pa,wa,d

N

k , v
N,uN. Since σ̂(·, x) is assumed to be continuously differentiable,

and since n̄ and m̄ are continuous by (7.2), the standard theory of ordinary
differential equations implies that this initial-value problem has a unique
classical solution defined on a neighborhood of t = 0. The continuation the-
ory for ordinary differential equations says that this solution is defined for
all time provided that no component of it can blow up in finite time. We
now show this. We have already shown that the dN

k are bounded because
they are orthonormal.

To control pa,wa we obtain an energy estimate corresponding to (9.14)
by taking the dot product of(13.15) with pa, taking the dot product of
(13.16) with wa, and summing the resulting two equations over a from 1
to N, adding the resulting sums, and invoking the compatibility equations
(13.9) and (13.10):

(14.1)

1

2

d

dt

∫ 1

0

[ρApN · pN + wN · JN ·wN] ds− n̄(t) · pN(1, t) − m̄(t) ·wN(1, t)

=

∫ 1

0

[−nN · pN

s −mN ·wN

s + (vN × nN) ·wN] ds

=

∫ 1

0

{

−nN · vN

t −mN · [uN

t −wN × uN] + [vN × nN] ·wN

}

ds

=

∫ 1

0

[−nN · ∂tv
N

k dN

k −mN · ∂tu
N

kd
N

k ] ds

= −
∫ 1

0

[nN · vN

t + mN · uN

t ] ds.

In analogy with (9.1) and (9.5) we define
(14.2a)

KN :=
1

2

∫ 1

0

[ρApN · pN + wN · ρJ · wN] ds, ΦN :=

∫ 1

0

ϕ(vN,uN, s) ds,
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MN :=

[
∫ 1

0

σN

D
· ηN

t ds

]1/2

≡
[
∫ 1

0

σD(ηN,ηN

t , s) · ηN

t ds

]1/2

,(14.2b)

ΩN(t) :=

∫ t

0

MN(τ)2 dτ.(14.2c)

We use constitutive equation (5.6) as in Section 9 to convert (14.1) into the
energy equation

(14.3) d
dt [K

N(t) + ΦN(t) +ΩN(t)] = n̄(t) · pN(1, t) + m̄(t) ·wN(1, t),

whence the restriction (7.2) on the boundary data n̄ , m̄ implies that
(14.4)

KN(t) + ΦN(t) +ΩN(t) ≤ C +

∫ t

0

|n̄(τ) · pN(1, τ) + m̄(τ) ·wN(1, τ)| dτ

≤ C + Γ (t)

∫ t

0

(|pN(1, τ)| + |wN(1, τ)|) dτ.

To estimate the right-hand side of (14.4), we first use (6.4) to obtain

∫ 1

0

|ηN

t (s, t)|2 ds ≡
∫ 1

0

{|vN

t (s, t)|2 + |uN

t (s, t)|2} ds ≤ CMN(t)2,(14.5)

∫ 1

0

{|pN(s, t)|2 + wN(s, t)|2} ds ≤ CKN(t),(14.6)

∫ 1

0

|ηN(s, t)|2 ds ≤ C + 2

∫ 1

0

t

∫ t

0

{|ηN

t (s, τ)|2 dτ ds ≤ C + CtΩN(t),

(14.7)

in analogy with (9.6)–(9.8).
In view of the compatibility equation (13.9) and these estimates, we

obtain

|pN(s, t)| ≤
∫ 1

0

|pN

s (ξ, t)| dξ =

∫ 1

0

|vN

t | dξ ≤
∫ 1

0

(

|vN

t | + |wN||vN|
)

dξ

(14.8)

≤
∫ 1

0

(

|vN

t | + 1
2 |w

N|2 + 1
2 |v

N|2
)

dξ

≤ CMN(t) + Γ (t)[KN(t) +ΩN(t)].

Likewise,

(14.9) |wN(s, t)| ≤
∫ 1

0

{|uN

t (ξ, t)|} dξ ≤ CMN(t).

The substitution of (14.8) and (14.9) into the right-hand side of (14.4) and
the use of the Gronwall inequality yields

(14.10) KN + ΦN +ΩN ≤ Γ.
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Let us again emphasize that here and throughout this section Γ is indepen-
dent of N.

It then follows from the continuation theory for ordinary differential
equations that (13.8)–(13.15) has a solution defined for all t that satisfies

max
t∈[0,T ]

(

‖pN‖ + ‖wN‖
)

≤ Γ (T ),(14.11a)

∫ T

0

∫ 1

0

|ηN

t |2 ds dt ≡
∫ T

0

∫ 1

0

(

|vN

t |2 + |uN

t |2
)

ds dt ≤ Γ (T ),(14.11b)

whence

(14.11c) max
t∈[0,T ]

‖ηN‖ ≡ max
t∈[0,T ]

(

‖vN‖ + ‖uN‖
)

≤ Γ (T ).

15. Estimates of Higher Derivatives

The derivation of the energy estimate (14.10) for the Galerkin approx-
imation closely follows the pattern of that for the corresponding estimate
(9.14) for the full partial differential equations. There are some subtle diffi-
culties, however, in likewise extending the results of Sec. 11 to the Galerkin
approximation:

Since σ̂(·, x) is continuously differentiable and since m̄ , n̄ ∈ H1
loc by

(7.2), we can differentiate system (13.15), (13.16) with respect to t, finding
that the second derivatives dttpa and dttwa thereby appearing on the left-
hand sides belong to L2

loc. We multiply the resulting equations respectively
by dtpa and dtwa, sum them over a, and add them to obtain the analog of
(11.9) with all the symbols bearing the superscript N:
(15.1)

1
2dt〈ρApN

t ,p
N

t 〉 + 〈∂tt(ρJ
N ·wN

t ),wN

t 〉 − n̄t · pN

t (1, t) − m̄t ·wN

t (1, t)

= −〈nN

t ,p
N

st〉 − 〈mN

t ,w
N

st〉 + 〈(vN × nN)t,w
N

t 〉.

In imitation of (11.2) we define
(15.2)

HN[pN

t ,w
N

t ,η
N,ηN

t ,η
N

tt](t) := 1
2 〈p

N

t , ρApN

t 〉+ 1
2 〈w

N

t , ρJ
N·wN

t 〉+
∫ t

0

‖ηN

tt‖2 dτ.

Since the compatibility equations (13.9) and (13.10) (coming from our def-
inition of vN and uN as their solutions) are exactly satisfied (and conse-
quently the dN

k are unambiguously defined), we can use the constitutive
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assumptions (6.2) and (6.11) to obtain the exact analog of (11.11):

HN ≤ Γ + C

∫ t

0

∫ 1

0

|wN| |wN

t |2 ds dτ + C

∫ t

0

∫ 1

0

|wN|3|wN

t | ds dτ(15.3)

+ Γ

∫ t

0

∫ 1

0

(

|wN| |ηN

tt| + |wN|2|ηN

t | + |wN|3|ηN|

+ |wN

t | |ηN

t | + |wN| |wN

t | |ηN|
)

|σN| ds dτ

+ C

∫ 1

0

(|wN| |ηN

t | + |wN|2|ηN|)|σN| ds

+

∫ t

0

[|pN

t (1, τ)| |n̄t(τ)| + |wN

t (1, τ)| |m̄t(τ)|] dτ.

As in Sec. 11 we must estimate the right-hand side of (15.3) to obtain the
analog of Proposition 11.3:

15.4. Proposition. Let the hypotheses of Theorem 10.6 hold. Let (7.8a)
hold. Then

(15.4) HN(t) ≤ Γ

[

1 +

∫ t

0

(1 +MN)2HN dτ

]

whence HN(t) ≤ Γ (T )

for all T > 0 and for all t ∈ [0, T ].

Proof. As in Sec. 11, we obtain the exact analogs of (11.12)–(11.14):

(15.5)
|wN| ≤ CMN, ‖wN‖ ≤ Γ, |wN|2 ≤ Γ [1 +

√
HN],

‖ηN

t ‖ ≤ CMN, ‖ηN

t ‖2 ≤ Γ
√
HN.

We supplement these with (14.11).
Exactly as in (11.15), (11.23), (11.24), we estimate all the terms not

containing σN:

∫ t

0

∫ 1

0

|wN| |wN

t |2 ds dτ + C

∫ t

0

∫ 1

0

|wN|3|wN

t | ds dτ(15.6)

≤ Γ

∫ t

0

[MNHN + (MN)2
√
HN] dτ,

∫ t

0

{|pN

t (1, τ)| |n̄t(τ)| + |wN

t (1, τ)| |m̄t(τ)|} dτ ≤ Γ + C

∫ t

0

HN dτ.(15.7)

Our development so far parallels that of the proof of Proposition 11.3 up
to (11.16). To get useful estimates of the remaining integrals on the right-
hand side of (15.3), we cannot continue following that proof because we
lack pointwise estimates on nN and mN like those of (11.16) and (11.17). In
particular, (11.16) and (11.17) are based on integrals of acceleration terms
over intervals [s1, s2] on the s-axis, i.e., on integrals over [0, 1] of the prod-
uct of the acceleration terms with the characteristic function for [s1, s2]. We
cannot get such integrals in the weak formulation of equations supporting



Nonlinearly Viscoelastic Rods 41

our Galerkin approximation because these characteristic functions do not lie
in the span of the test functions (13.2) and (13.3). Rather than attempting
to approximate the characteristic functions by combinations of these test
functions, we instead use estimates for XNnN and XNmN available from
(13.18) and (13.19), the bounds (12.5) and (12.6) for the modified problem,
the bounds (14.11) and (15.5) just obtained, and the constitutive assump-
tion (6.11). Since the derivation of the requisite estimates of the remaining
integrals on the right-hand side of (15.3) depends sensitively on the choice
of estimates for wN and ηN from (15.5), and on the choice and ordering of
standard mathematical inequalities, we supply the tricky details:

Z t

0

Z

1

0

|wN| |ηN

tt| |σN| ds dτ

(15.8)

≤ Γ (T )

Z t

0

M
N

Z

1

0

|ηN

tt| (1 + |ηN

t |) ds dτ ≤ Γ (T )

Z t

0

M
N‖ηN

tt‖ (1 + ‖ηN

t ‖) dτ

≤ Γ (T )

Z t

0

[MN]2 dτ + ε

Z t

0

‖ηN

tt‖2
dτ + Γ (T )

s

Z t

0

‖ηN
tt‖2 dτ

s

Z t

0

(MN)2
√
HN dτ

≤ Γ (T ) + εH
N + Γ (T )

√
HN

s

Z t

0

(MN)2[1 +HN] dτ

≤ Γ (T ) + εH
N + Γ (T )

Z t

0

(MN)2HN
dτ.

Z t

0

Z

1

0

|wN|2|ηN

t | |σN| ds dτ ≤ Γ (T )

Z t

0

(MN)2‖ηN

t ‖(1 + ‖ηN

t ‖) dτ

(15.9)

≤ Γ (T )

Z t

0

(MN)2[(HN)1/4 + (HN)1/2] dτ ≤ Γ (T ) + Γ (T )

Z t

0

(MN)2HN
dτ,

Z t

0

Z

1

0

|wN

t | |ηN

t | |σN| ds dτ ≤
Z t

0

Z

1

0

|wN

t | |ηN

t | (1 + |ηN

t |) ds dτ

(15.10)

≤
Z

1

0

»

C + Γ (T )

Z t

0

|ηN

tt|) dτ
–»

Z t

0

|wN

t | |ηN

t | dτ
–

ds

≤ Γ (T )

s

»

1 +

Z

1

0

Z t

0

|ηN
tt| dτ ds

–

2

s

»
Z

1

0

Z t

0

|wN
t | |ηN

t | dτ ds
–

2

≤ Γ (T )

s

»

1 +

Z

1

0

Z t

0

|ηN
tt|2 dτ ds

–»
Z

1

0

Z t

0

|wN

t |2 dτ ds
–1/4»

Z

1

0

Z t

0

|ηN

t |2 dτ ds
–1/4

≤ Γ (T )

»

1 +
p

HN(t)

–»
Z t

0

H
N
dτ

–

1/4
»

Z t

0

H
N
dτ

–

1/8

= Γ (T )

»

1 +
p

HN(t)

–»
Z t

0

H
N
dτ

–3/8

≤ εH
N + Γ (T )

»

1 +

Z t

0

H
N
dτ

–

,
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Z t

0

Z

1

0

|wN|3|ηN| |σN| ds dτ ≤ Γ (T )

Z t

0

(MN)2[1 + (HN)1/4] ‖ηN‖ (1 + ‖ηN

t ‖) dτ

(15.11)

≤ Γ (T ) + Γ (T )

Z t

0

(MN)2[(HN)1/4+ (HN)1/2] dτ ≤ Γ (T ) + Γ (T )

Z t

0

(MN)2HN
dτ,

Z t

0

Z

1

0

|wN| |wN

t | |ηN| |σN| ds dτ(15.12)

≤
Z

1

0

»

C + Γ (T )

Z t

0

|ηN

tt|) dτ
–»

Z t

0

|wN| |wN

t | |ηN| dτ
–

ds

≤ Γ (T )

»

1 +
p

HN(t)

–

s

Z t

0

MN

Z

1

0

‖wN
t ‖ ‖ηN‖ ds dτ

≤ Γ (T )

»

1 +
p

HN(t)

–»
Z t

0

(MN)2 dτ

–

1/4
»

Z t

0

H
N
dτ

–

1/4

≤ εH
N + Γ (T )

»

1 +

Z t

0

H
N
dτ

–

,

Z

1

0

|wN| |ηN

t | |σN| ds ≤ Γ (T )[1 +H
N(t)1/4]

Z

1

0

|ηN

t | [1 + |ηN

t |] ds(15.13)

≤ Γ (T )[1 +H
N(t)3/4] ≤ Γ (T ) + εH

N(t),

Z

1

0

|wN|2|ηN| |σN| ds ≤ Γ (T )[1 +H
N(t)1/2] ‖ηN‖(1 + ‖ηN

t ‖)(15.14)

≤ Γ (T )[1 +H
N(t)1/2][1 +H

N(t)1/4] ≤ Γ (T ) + εH
N(t).

These estimates ensure (15.4).

An immediate consequence of (15.4) is the strengthening of (15.5):
(15.15)

|pN| ≤ Γ (T ), |wN| ≤ Γ (T ), ‖pN

t ‖ ≤ Γ (T ), ‖wN

t ‖ ≤ Γ (T ),

‖ηN

t ‖ ≤ Γ (T ), ‖pN

s ‖ ≤ Γ (T ), ‖wN

s ‖ ≤ Γ (T ),

∫ t

0

‖ηN

tt‖2 dτ ≤ Γ (T ).

To justify the convergence of our Galerkin approximations to the solu-
tion, we must obtain an estimate for ‖ηN

st‖. Toward this end, we use (13.7)

to replace
∫ 1

0
[nN − n̄ ]dsya ds in (13.15) with

∫ 1

0
XN[nN − n̄ ]dsya ds, take

the dot product of the resulting version of this equation with ν2
a
pa, use the

identity dssya = −ν2
a
ya, sum the product over a from 1 to N, and integrate

the sum by parts to obtain

(15.16) 〈pN

ss, ρApN

t 〉 = −XN(nN − n̄)
∣

∣

s=1
· pN

ss(1, ·) + 〈pN

ss,n
N

s 〉.
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Likewise, we obtain
(15.17)
〈wN

ss, (ρJ
N·wN)t〉 = −XN(mN−m̄)

∣

∣

s=1
·wN

ss(1, ·)+〈wN

ss,m
N

s 〉+〈wN

ss, v
N×nN〉.

We note with satisfaction that (13.18) and (13.19) imply that the boundary
terms in (15.16) and (15.17) vanish. Now,

nN

s = RN · [n̂η · ηN

s + n̂η̇ · ηN

st + n̂x] + uN × nN, etc.,

(15.18a)

pN

ss = vN

st = RN · vN

st + uN ×RN · vN

t

(15.18b)

+ wN ×RN · vN

s − vN ×RN · uN

t + wN × (uN × vN),

wN

ss = uN

st − (uN

t −wN × uN) × uN −wN × uN

s = RN · uN

st + uN ×RN · uN

t

(15.18c)

where the derivatives of n̂ and m̂ are evaluated at (ηN,ηN
t , s) and where

RN := dN

k ek. The identities (15.18b) and (15.18c) follow from the compat-
ibility equations (13.9) and (13.10). We add (15.16) and (15.17) (without
the boundary terms) and substitute (15.18) into the sum to obtain
(15.19)

〈RN · vN

st + pN

ss −RN · vN

st, RN · n̂η̇ · ηN

st + nN

s −RN · n̂η̇ · ηN

st − ρApN

t 〉
+ 〈RN · uN

st + wN

ss −RN · uN

st,

RN · m̂η̇ · ηN

st + mN

s −RN · m̂η̇ · ηN

st + vN × nN − (ρJN ·wN)t〉 = 0,

whence

〈ηN

st , σ
N

η̇ · ηN

st〉 ≡ 〈RN · vN

st , R
N · n̂η̇ · ηN

st〉 + 〈RN · uN

st , R
N · m̂η̇ · ηN

st〉
(15.20)

= −〈RN · vN

st , n
N

s − R
N · n̂η̇ · ηN

st − ρAp
N

t 〉
− 〈pN

ss − R
N · vN

st , R
N · n̂η̇ · ηN

st〉
− 〈pN

ss − R
N · vN

st , n
N

s − R
N · n̂η̇ · ηN

st − ρAp
N

t 〉
− 〈RN · uN

st , m
N

s − R
N · m̂η̇ · ηN

st + v
N × n

N − (ρJN · wN)t〉
− 〈wN

ss − R
N · uN

st , R
N · m̂η̇ · ηN

st〉
− 〈wN

ss − R
N · uN

st , m
N

s − R
N · m̂η̇ · ηN

st + v
N × n

N − (ρJN · wN)t〉
= −〈RN · vN

st , R
N · [n̂η · ηN

s + n̂x] + u
N × n

N − ρAp
N

t 〉
− 〈uN× R

N · vN

t + w
N× R

N · vN

s − v
N× R

N · uN

t + w
N× (uN× v

N) , RN · n̂η̇ · ηN

st〉
− 〈uN × R

N · vN

t + w
N × R

N · vN

s − v
N × R

N · uN

t + w
N × (uN × v

N) ,

R
N · [n̂η · ηN

s + n̂x] + u
N × n

N − ρAp
N

t 〉
− 〈RN · uN

st , R
N · [m̂η · ηN

s + m̂x] + u
N × m

N + v
N × n

N − (ρJN · wN)t〉
− 〈uN × R

N · uN

t , R
N · m̂η̇ · ηN

st〉
− 〈uN × R

N · uN

t , R
N · [n̂η · ηN

s + n̂x] + u
N × m

N + v
N × n

N − (ρJN · wN)t〉.
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Applying the inequalities (12.5), (12.6), (15.15) to (15.20) yields
(15.21)

‖ηN

st‖2 ≤ Γ

∫ 1

0

|ηN

st|{|ηN

s | + 1 + |ηN| (1 + |ηN

t |) + |pN

t |} ds

+ Γ

∫ 1

0

{|ηN| |ηN

t | + |wN| |ηN

s | + |wN| |ηN|2}|ηN

st| ds

+ Γ

∫ 1

0

{|ηN| |ηN

t | + |wN| |ηN

s | + |wN| |ηN|2}

{|ηN

s | + 1 + |ηN|(1 + |ηN

t |) + |pN

t |} ds

+ Γ

∫ 1

0

|ηN

st|{|ηN

s | + 1 + |ηN|(1 + |ηN

t |) + |wN|2 + |wN

t |} ds

+ Γ

∫ 1

0

{|ηN| |ηN

t |}|ηN

st| ds

+ Γ

∫ 1

0

|ηN| |ηN

t |{|ηN

s | + 1 + |ηN|(1 + |ηN

t |) + |wN|2 + |wN

t |} ds

≤ Γ

∫ 1

0

{|ηN

st| + |ηN|2 + |ηN

s | + |ηN| |ηN

t |}

{1 + |ηN|2 + |ηN

s | + |ηN| |ηN

t | + |pN

t | + |wN

t |} ds.

To estimate the terms in the last line of (15.21) we use the pointwise esti-
mates
(15.22)

|ηN

t (s, t)| ≤ C + ‖ηN

st(·, t)‖, |ηN(s, t)| ≤ Γ (t) +

∫ t

0

‖ηN

st(·, τ)‖ dτ,

|ηN

s (s, t)| ≤ C +

∫ t

0

|ηN

st(s, τ)| dτ, ‖ηN

s ‖2 ≤ C +

∫ t

0

‖ηN

st(·, τ)‖2 dτ,

valid for all s ∈ [o, 1] and for all t ≥ 0, together with (12.5), (12.6), (15.15):

∫ 1

0

|ηN

st| |ηN|2 ds ≤ ‖ηN

st‖ ‖ηN‖
[

Γ (T ) +

∫ t

0

‖ηN

st‖ dτ
]

(15.23a)

≤ ε‖ηN

st‖2 + Γ (T )

[

1 +

∫ t

0

‖ηN

st‖2 dτ

]

,

∫ 1

0

|ηN

st| |ηN

s | ds ≤ ‖ηN

st‖
√

C +

∫ t

0

‖ηN
st‖2 dτ

(15.23b)

≤ ε‖ηN

st‖2 + Γ (T )

[

1 +

∫ t

0

‖ηN

st‖2 dτ

]

,
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∫ 1

0

|ηN

st| |ηN| |ηN

t | ds ≤ ‖ηN

st‖‖ηN

t ‖
[

Γ (T ) +

∫ t

0

‖ηN

st‖ dτ
]

(15.23c)

≤ ε‖ηN

st‖2 + Γ (T )

[

1 +

∫ t

0

‖ηN

st‖2 dτ

]

,

∫ 1

0

|ηN

st|{|pN

t | + |wN

t |} ds ≤ ‖ηN

st‖{‖pN

t ‖ + ‖wN

t ‖} ≤ ε‖ηN

st‖2 + Γ (T )

(15.23d)

for all T ≥ 0 and for all t ∈ [0, T ]. The remaining terms in the last line of
(15.21) are easily shown to have the same bounds. Thus ‖ηN

st‖ ≤ Γ (T ) +

Γ (T )
∫ t

0
‖ηN

st‖2 dτ , so that the Gronwall inequality implies that

(15.24) ‖ηN

st(·, t)‖ ≤ Γ (T ) ∀ t ∈ [0, T ].

16. Convergence

We adopt the convention that a convergent subsequence of a given se-
quence is denoted the same way as the parent sequence. Let X = H1(0, 1),
Y = C[0, 1], Z = L2(0, 1), so that X is compactly embedded in Y and Y is
embedded in Z. Since (15.24) gives a bound on ηN

st(·, t) in Z and, equiva-
lently, a bound on ηN

t (·, t) in X that is uniform in t for t ∈ [0, T ], it follows
that ηN

t is bounded in L2(0, T,Z). Thus Lemma 11.33 implies that

(16.1) ηN

t lies in a compact subset of C(0, T,Y) ≡ C([0, 1] × [0, T ]),

so that

(16.2)
ηN

t has a subsequence converging uniformly

to a continuous limit η∞
t on [0, 1] × [0, T ].

Since Hypothesis 7.7 implies that the initial values of η are continuous, it
follows that

(16.3)
ηN itself lies in a compact subset of C([0, 1] × [0, T ]),

and converges uniformly to a continuous limit η∞,

whose t-derivative is η∞
t . Since the values (ηN(s, t),ηN

t (s, t) lie in a compact
subset of R

12, the continuity of σ̂ implies that

(16.4)
σN ≡ σ̂(ηN,ηN

t , ·) converges uniformly

to a continuous limit σ∞ ≡ σ̂(η∞,η∞
t , ·).

We now regard the compatibility equation (13.10) as a linear ordinary
differential equation for s 7→ wN(s, t) subject to the boundary condition
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that wN(0, t) = o, which comes from (13.2). Then (13.9) (cf. (4.9)–(4.11))
implies that

(16.5) |wN(s, t) −wN(ξ, t)| ≤
∣

∣

∣

∣

∫ s

ξ

|uN

t | dξ
∣

∣

∣

∣

,

so that (16.1) implies that wN is uniformly pointwise bounded and equicon-
tinuous. It accordingly has a uniformly convergent subsequence, and (13.9)
implies that wN

s has a uniformly convergent subsequence:
(16.6)

wN and wN

s converge uniformly to continuous limits w∞ and w∞
s ,

with w∞
s the s-derivative of w∞, and with w∞ satisfying

(16.7) w∞
s = u∞

t −w∞ × u∞.

We likewise deduce completely analogous results about the convergence of
pN

s to p∞
s :

(16.8) pN and pN

s converge uniformly to continuous limits p∞ and p∞
s ,

with p∞
s the s-derivative of p∞, and with p∞ satisfying

(16.9) p∞
s = v∞

t .

Since the dN

k satisfy the integral version of the initial-value problem (13.8),
and since wN is uniformly convergent, the dN

k are uniformly bounded and
equicontinuous, so that they have a uniformly convergent subsequence. The
differential equation (13.8) then implies that the ∂td

N

k also converge uni-
formly to the t derivative of d∞

k :
(16.10)

dN

k and ∂td
N

k converge uniformly to continuous limits d∞
k and ∂td

∞
k ,

with d∞
k satisfying (4.3):

(16.11) ∂td
∞
k = w∞ × d∞

k .

It follows from the uniform convergence given by (16.3), (16.4), (16.6),
(16.8), (16.10) that all the cross products appearing in the Galerkin equa-
tions (13.8)–(13.10), (13.15), (13.16) have uniformly convergent subsequences:

(16.12)
wN × dN

k → w∞ × d∞
k , wN × uN → w∞ × u∞,

vN × nN → v∞ × n∞ uniformly.

From (15.2)–(15.4) we obtain that 〈pN
t , ρApN

t 〉, 〈wN
t , ρJ · wN

t 〉 ≤ Γ (T ).
Thus wN

t and pN
t are bounded sequences in the reflexive space L2((0, 1) ×

(0, T )) and accordingly have weakly convergent subsequences:

(16.13) wN

t ⇀ (wt)
∞, pN

t ⇀ (pt)
∞ in L2((0, 1) × (0, T )).

Since wN converges uniformly to w∞, it follows that (wt)
∞ is the distribu-

tional t-derivative of w∞, i.e., (wt)
∞ = (w∞)t in the sense of distributions.

We accordingly drop the parentheses in (16.13). The uniform convergence
of dN

k and wN then implies the weak convergence

(16.14) (JN ·wN)t ⇀ (J∞ ·w∞)t in L2((0, 1) × (0, T )).
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17. Weak Solutions

We have just shown that d∞
k , p∞, w∞, v∞, u∞ satisfy (5.7a–c) in the

classical sense. We now show that these functions also satisfy the momen-
tum equations in a suitable way. The definitions (13.6) of the orthogonal
projectors Y N and XN show that the Galerkin approximations (13.15) and
(13.16) of the momentum equations hold not only for a = 1, . . . ,N, but for
any a. Let y1,y2, . . . be arbitrary functions of t in C1[0, T ]. We take the
dot products of (13.15) and (13.16) each with ya and sum the resulting
equations from 1 to L, to obtain

∫ T

0

〈ρApN

t ,y〉 dt = −
∫ T

0

〈nN − n̄ ,ys〉 dt,(17.1a)

∫ T

0

〈(ρJN · wN)t,y〉 dt = −
∫ T

0

〈mN − m̄ ,ys〉 dt+

∫ T

0

〈vN × nN,y〉 dt

(17.1b)

for all y of the form
∑

L

a=1 yaya. But such finite sums y are dense in
L2(0, T,W). Thus the approximations dN

k ,p
N,wN, vN,uN satisfy the weak

momentum equations (17.1) for all time-dependent test functions y ∈
L2(0, T,W). (This system has a form more general than (7.10c,d). We could
make this system even more general by putting time derivatives on the test
functions, but our convergence results make doing this unnecessary.)

We use (16.2)–(16.13) to take the subsequential limits of these equations
as N → ∞:

∫ T

0

〈ρAp∞
t ,y〉 dt = −

∫ T

0

〈n∞ − n̄ ,ys〉 dt,

(17.2a)

∫ T

0

〈(ρJ∞ · w∞)t,y〉 dt = −
∫ T

0

〈m∞ − m̄ ,ys〉 dt+

∫ T

0

〈v∞ × n∞,y〉 dt.

(17.2b)

By using the arbitrariness of y in (17.2) (i.e., by using a version of the
Fundamental Lemma of the Calculus of Variations), we readily find that
d∞

k ,p∞,w∞, v∞,u∞ satisfy (7.10c,d). The method for showing that these
functions satisfy the boundary and initial conditions is standard, is exactly
the same as in [12, p. 177], and is accordingly omitted. We have thus proved
the existence part of Theorem 8.1.

By imposing more restrictions on the data, we can ensure that the solu-
tion enjoys more regularity. The methods are standard (see, e.g., [24,26,39])
and are accordingly omitted. In Proposition 19.20, however, we shall show
how to obtain further estimates from a slight variant of our constitutive
hypotheses.
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18. Continuous Dependence on the Data. Uniqueness

In this section we show that solutions depend continuously on the ini-
tial and boundary data, from which it follows that solutions are unique.
Our approach is almost standard; the chief novelty is our treatment of the
difficulties that come from our use of a moving basis.

We continue to treat the boundary conditions (7.1). We examine the
difference of solutions of two problems for the same material in which the
nonzero initial and boundary data are distinguished by superscripts 1 and
2. We denote the corresponding solutions by the same superscripts: p1, . . .
and p2, . . . , and set
(18.1)

δp := p1 − p2, δn := n1 − n2, n1 := R1 · n̂(v1,u1, v1
t ,u

1
t , s),

δp◦ := p1
◦ − p2

◦ , δn̄ := n̄1 − n̄2,

etc. (For notational clarity, the initial data bear subscripts ◦, instead of such
superscripts.)

In the weak linear momentum equation (7.10c), we replace p,n , n̄ with
δp, δn , δn̄ and replace y by δp to obtain

(18.2)
1

2

d

dt

∫ 1

0

ρA|δp|2 ds+

∫ 1

0

δn ·δps ds = δn̄ ·δp(1, ·) ≡ δn̄ ·
∫ 1

0

δps ds.

Likewise, from (7.10c) we get

1

2

d

dt

∫ 1

0

δw · ρJ 1 · δw ds+

∫ 1

0

δm · δws ds

(18.3)

=

∫ 1

0

[12δw · (ρJ 1)t · δw − δw · δρJt ·w2 − δw · δρJ ·w2
t ] ds

+

∫ 1

0

[δv × n1 + v2 × δn ] · δw ds+ δm̄ ·
∫ 1

0

δws ds.

Since the dk are unit vectors, we immediately obtain the crude estimate

(18.4) |δdk(s, t)| ≤ 2,

but we need a sharper estimate: Let us set ∆ := maxk |δdk|, ∆◦ :=
maxk |δd◦

k |. Note that |δR| ≤ ∆ (where |δR| is the operator norm). From
(6.3) we get

(18.5a) δdk(·, t) = δd◦
k +

∫ t

0

[δw × d1
k + w2 × δdk] dτ,

so that

(18.5b) ∆(·, t) ≤ ∆◦ +

∫ t

0

|δw | dτ + Γ (t)

∫ t

0

∆dτ.
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The Gronwall inequality then yields

(18.5c) ∆(·, t) ≤ Γ (t)

[

∆◦ +

∫ t

0

|δw | dτ
]

.

For λ, µ ranging over 1,2, set

nλµ := n̂(ηλ,ηµ
t , ·),(18.6a)

nµ
η :=

∫ 1

0

n̂η(αη1 + (1 − α)η2,ηµ
t , ·) dα,(18.6b)

nλ
η̇ :=

∫ 1

0

n̂η̇(ηλ, αη1
t + (1 − α)η2

t , ·) dα,(18.6c)

etc. For regular solutions we thus obtain from the compatibility condi-
tions(4.9), the Mean-Value Theorem, and the Monotonicity Condition (6.2)
that

δn · δps + δm · δws

(18.6d)

= [R1 · n11 −R2 · n22] · δps + [R1 · m11 −R2 · m22] · δws

= [R1 · n11 −R1 · n12 + R1 · (n12 − n22) + δR · n22]

· [R1 · δvt + δR · v2
t + δw × v1 + w2 × δv ]

+ [R1 · m11 −R1 · m12 + R1 · (m12 − m22) + δR · m22]

· [R1 · δut + δR · u2
t ]

≥ c|δηt|2

+ [R1 · n1
η̇ · δηt + R1 · n1

η · δη + δR · n22] · [δR · v2
t + δw × v1+ w2× δv ]

+ [R1 · n1
η · δη + δR · n22] ·R1 · δvt

+ [R1 · m1
η̇ · δηt + R1 · m1

η · δη + δR · m22] · δR · u2
t

+ [R1 · m1
η · δη + δR · m22] ·R1 · δut

≥ (c− ε)|δηt|2 − Γ [∆2 + |δη|2 + |δw |2].

We add (18.2) and (18.3), integrate the sum from 0 to t, use (18.6), and
use inequalities like

(18.7)

∫ t

0

δn̄ ·
∫ 1

0

δvt ds dτ ≤
[
∫ t

0

|δn̄ |2 dτ
]1/2[∫ t

0

∫ 1

0

|δvt|2 ds dτ
]1/2

≤ C

∫ t

0

|δn̄ |2 dτ + ε

∫ t

0

∫ 1

0

|δvt|2 ds dτ
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to obtain

∫ 1

0

(|δw |2 + |δp|2) ds+ c

∫ t

0

∫ 1

0

(|δws|2 + |δvt|2) ds dτ(18.8)

≤
∫ 1

0

(|δw◦|2 + |δp◦|2) ds+ C

∫ t

0

(|δn̄ |2 + |δm̄ |2) dτ

+ C

∫ t

0

∫ 1

0

(|δw |2 + |δu |2 + |δv |2 +∆2) ds dτ.

We want to manipulate this inequality into a form to which we can apply
the Gronwall inequality. From (4.9) we obtain

(18.9) |δu(·, t)| ≤ |δu◦| +
∫ t

0

(|δws| + Γ |δw | + Γ |δu |) dτ,

whence the Gronwall inequality implies that

(18.10) |δu(·, t)| ≤ Γ (t)|δu◦| + Γ (t)

∫ t

0

(|δws| + |δw |) dτ.

We substitute (18.5c) and (18.10) into (18.8), and use the (Poincaré-

type) inequality |v(·, t)| ≤ |v◦| +
√

t
∫ t

0
|vt(·, τ)|2 dτ to obtain

∫ 1

0

|δw |2 ds+ c

∫ t

0

∫ 1

0

(|δws|2 + |δvt|2) ds dτ(18.11)

≤ Γ

∫ 1

0

(|δw◦|2 + |δp◦|2 + |δu◦|2 + |δv◦
t |2 + (∆◦)2) ds

+ C

∫ t

0

(|δn̄ |2 + |δm̄ |2) dτ

+ Γ

∫ t

0

∫ 1

0

[

|δw |2 +

∫ τ

0

|δws|2 dζ +

∫ τ

0

|δvt|2 dζ
]

ds dτ.

The Gronwall inequality implies that this inequality holds with the last line
omitted. It then follows from (18.8) that

(18.12)

∫ 1

0

(|δw |2 + |δp|2) ds+ c

∫ t

0

∫ 1

0

(|δws|2 + |δvt|2) ds dτ

≤ Γ

∫ 1

0

(|δw◦|2+|δr◦
t |2+|δu◦|2+|δv◦

t |2+(∆◦)2) ds+C

∫ t

0

(|δn̄ |2+|δm̄ |2) dτ.

This inequality gives continuous dependence on the initial and boundary
conditions with respect to to the norms that intervene here. Obviously the
vanishing of the left-hand side of (18.12) when the right-hand side vanishes
ensures uniqueness.
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V. Commentary

19. Alternative Constitutive Hypotheses and their Consequences

In this section we give variants of our constitutive assumptions, several
of which are less physically restrictive (and also more complicated) than
those used above, and we describe their consequences.

Preclusion of total compression. The requirement of Hypothesis 6.10
that (6.10) hold for all positive values of ζ̇3 unduly restricts the growth of
the constitutive functions for large ζ̇3. We now formulate a refinement of
this hypothesis that does not suffer from this disadvantage. We set

(19.1) χ := (ζ1, ζ2, ζ4, ζ5, ζ6) ≡ (η1, η2, η4, η5, η6).

19.2. Hypothesis. (i) There is a positive number

ε < inf{ζ3 : ň3(ζ, ζ̇, x) = 0, ζ̇3 = 1, ζ ∈ R
6, χ̇ ∈ R

5, x ∈ [0, 1]},

there is a number

n∗ > sup{ň3(ζ, ζ̇, x) : ζ3 = ε, ζ̇3 = 1, χ ∈ R
5, χ̇ ∈ R

5, x ∈ [0, 1]},

there is a positive number A
+
, and there is a continuously differentiable,

strictly decreasing, convex, positive-valued function ψ
+

on (0, ε) with

(19.2a) ψ
+
(ζ3) → ∞ as ζ3 → 0,

such that

(19.2b) ňD

3 (ζ, ζ̇, s) ≤ −ψ′
+
(ζ3)ζ̇3 −A

+

for

(19.2c) ζ3 ≤ ε, 1 ≤ ζ̇3, ň3(ζ, ζ̇, s) ≤ n∗.

(ii) Inequality (6.10) holds when ζ3 ≤ ε and ζ̇3 ≤ 1.
(iii) There is a number n∗∗ < n∗ with the property that ζ̇3 ≥ 1 if ň3(ζ, ζ̇, s) =
n∗∗ and ζ3 ≤ ε, there is a number A

−
≥ A+, and there is a continuously dif-

ferentiable, strictly decreasing, convex, positive-valued function ψ− on (0, ε)
with

(19.2d) ψ−(ζ3) → ∞ as ζ3 → 0

such that

(19.2e) ňD

3 (ζ, ζ̇, s) ≥ −ψ′
−
(ζ3)ζ̇3 −A−

for

(19.2f) |η| ≤ C, ζ3 ≤ ε, 1 ≤ ζ̇3, n∗∗ ≤ ň3(ζ, ζ̇, s) ≤ n∗.
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(iv) The numbers A
±
, n∗, n∗∗ satisfy

(19.2g) 0 < A+ + n∗∗ < A− + n∗.

This hypothesis is a complicated analog of Hypothesis 3.9 of [12]. See
Figure 3.8 of that paper for the underlying geometry used in this hypothesis.
Since the preclusion of total compression requires the control merely of
a scalar variable, the exploitation of Hypothesis 19.2 to get the requisite
bound follows directly from the quite technical treatment (using a phase-
plane analysis) in Sec. 7 of [12]. Hypothesis 19.2 posits a uniformity with
respect to the variables χ, χ̇. Presumably this uniformity could be weakened
in the context of the balancing of constitutive hypotheses discussed below.

Additional constitutive restrictions to handle boundary conditions

on the configuration. If p(0, t) and p(1, t) are prescribed, but not equal,
or if w(0, t) and w(1, t) are prescribed, but not equal, then the energy esti-
mate (9.14) need not hold, because the terms on the right-hand side of (9.3)
containing n or m can no longer be conveniently estimated: These terms
involve ∂ϕ/∂η, which behaves worse than ϕ itself near total compression,
and so cannot be dominated by a term involving Φ. A method for handling
this difficulty for scalar problems, employing strengthened constitutive hy-
potheses and an intricate analysis involving the solution of a simultaneous
system of integral inequalities, is given by [12]. Again, since the preclusion
of total compression just requires the control of a scalar variable, the meth-
ods of Sec. 6 of [12] may very well carry over to our problem, but we do not
pursue this question.

A priori bound on the strain. In Sec. 11 we obtained an a priori bound
on the strain as a byproduct of Hypothesis 6.11. We now show that the next
hypothesis enables to get such a bound more directly. The availability of this
bound enables us to weaken several of the other constitutive hypotheses.

19.3. Hypothesis. For each c > 0, there is a continuously differentiable

function κ 7→ β(κ) with β(κ) → ∞ as κ→ ∞ and there are numbers D ≥ 0
and ε > 0 such that

(19.3)
σ̂

(

η, η̇, s
)

· η
|η| ≥ β′(|η|)η · η̇

|η| −Dβ(|η|) + ε|η| |η̇|

for all η̇ and for all η and s such that ζ̂3(η, s) ≥ c.

Hypothesis 19.3 is suggested by the form of constitutive equations for trans-
versely isotropic rods [7]. If m̂3 changes sign while m̂α, n̂α, n̂3 remain unchanged
when u3 and u̇3 change sign, then these equations have the form

(19.4)

m̂α(η, η̇, s) = m(I, s)uα +m
×(I, s)vα + µ(I, s)u̇α + µ

×(I, s)v̇α,

n̂α(η, η̇, s) = n
×(I, s)uα + n(I, s)vα + ν

×(I, s)u̇α + ν(I, s)v̇α,

m̂3(η, η̇, s) = ξ(I, s)u3 + η(I, s)u̇3,

n̂3(η, η̇, s) = ζ(I, s),
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where m,m×, µ, µ×, n, n×, ν, ν×, ξ, η, ζ are scalar-valued constitutive functions,
and I is the collection of invariants
(19.5)

uαuα, uαvα, vαvα, uαu̇α, uαv̇α, vαu̇α, vαv̇α, u̇αu̇α, u̇αv̇α, v̇αv̇α, u3

2
, u3u̇3, u̇3

2
, v3, v̇3.

If we substitute (19.4) into the left-hand side of (19.3), we can discern some of
the physical content of these hypotheses. The term β′(|η|) gives a strain-dependent
lower bound on the viscosity. In contrast to the corresponding term in (6.10), the
presence of this bound is not very restrictive: Indeed, β′(|η|) can approach 0 as
|η| → ∞ so that the viscosity could decrease in large extensions. E.g., we could
have β(|η|) = log |η|. On the other hand, the presence of the positive term ε|η| |η̇|
on the right-hand side of (19.3) suggests that the “elastic moduli” m, m×, etc.,
of (19.4) become larger with the strain rate.

Now we show how to use this hypothesis to get the desired bound on
η. We continue to assume that the hypotheses of Theorem 10.6 hold. We
now use Hypothesis 19.3 get a pointwise bound on |η|. For any ξ ∈ [0, 1] we
obtain from the equations of motion (5.1) and (5.2) (with f = o = l) the
following identities whose sum is the left-hand side of (19.3):

n(ξ, t) · v(ξ, t)

|η(ξ, t)| =
n̄(t) · v(ξ, t)

|η(ξ, t)| − ∂t

[

v(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

(ρA)(s)p(s, t) ds

]

(19.6)

+ ∂t

[

v(ξ, t)

|η(ξ, t)|

]

·
∫ 1

ξ

(ρA)(s)p(s, t) ds,

m(ξ, t) · u(ξ, t)

|η(ξ, t)| =
m̄(t) · u(ξ, t)

|η(ξ, t)| +
u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

v(s, t) × n(s, t) ds

(19.7)

− ∂t

{

u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

∂t[(ρJ )(s, t) ·w(s, t)] ds

}

+ ∂t

[

u(ξ, t)

|η(ξ, t)|

]

·
∫ 1

ξ

(ρJ )(s, t) ·w(s, t) ds.

Since |η(ξ, t)| ≥ γ(t) by (10.6), the identities

(19.8)

∂t

(

v

|η|

)

=
R · vt

|η| +
w × v

|η| − v(η · ηt)

|η|3 ,

∂t

(

u

|η|

)

=
R · ut

|η| +
w × u

|η| − u(η · ηt)

|η|3

immediately imply that

(19.9)

∣

∣

∣

∣

∂t

(

v

|η|

)
∣

∣

∣

∣

,

∣

∣

∣

∣

∂t

(

u

|η|

)
∣

∣

∣

∣

≤ |w | + Γ (t)|ηt|.
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Let us examine the second term on the right-hand side of (19.7). Again
using (5.1) we obtain

u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

rs(s, t) × n(s, t) ds

(19.10)

=
u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

rs(s, t) ×
[

n̄(t) −
∫ 1

s

(ρA)(ξ)rtt(ξ, t) dξ

]

ds

=
u(ξ, t)

|η(ξ, t)| · [r(1, t) − r(ξ, t)] × n̄(t)

+
u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

[r(s, t) − r(ξ, t)] × (ρA)(s)rtt(s, t) ds.

We write the last term of (19.10) as

(19.11)

∂t

{

u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

[r(s, t) − r(ξ, t)] × (ρA)(s)rt(s, t) ds

}

−∂t

[

u(ξ, t)

|η(ξ, t)|

]

·
∫ 1

ξ

[r(s, t) − r(ξ, t)] × (ρA)(s)rt(s, t) ds

− u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

[rt(s, t) − rt(ξ, t)] × (ρA)(s)rt(s, t) ds.

When we insert the constitutive equations (5.5) into the sum of the
left-hand sides of (19.6) and (19.7), we obtain the left-hand side of the
constitutive restriction (19.3). We substitute (19.6) and (19.7) into (19.3)
and use (10.3), (19.9)–(19.11) to find that there is a function Γ1 such that

β′(|η(ξ, t)|)η(ξ, t) · ηt(ξ, t)

|η(ξ, t)| −Dβ(|η(ξ, t)|) + ε|η(ξ, t)| |ηt(ξ, t)|

(19.12)

≤ σ̂(η,ηt, s) · η
|η|

≤ Γ (t) + 1
2Γ1(t)(|w | + |ut| + |vt|)

− ∂t

{

rs(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

(ρA)(s)rt(s, t) ds

+
u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

∂t

[

(ρJ )(s, t) ·w(s, t)
]

ds

+
u(ξ, t)

|η(ξ, t)| ·
∫ 1

ξ

[r(s, t) − r(ξ, t)] × (ρA)(s)rt(s, t) ds

}

.

Since (9.10) implies that |w | ≤ CM(t), it follows from (9.5b) and (9.14)

that
∫ t

0
Γ1(τ)|w(s, τ)| dτ ≤ Γ (t). Since the term in braces in (19.12) is
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bounded, we integrate (19.10) with respect to t from τ1 to t and use the
last observation to get
(19.13)

β(|η(ξ, t)|) − β(|η(ξ, τ1)|) ≤ D

∫ t

τ1

β(|η(ξ, τ)|) dτ +

∫ t

τ1

Γ1(τ)|ηt(ξ, t)| dτ.

Let Γ2(t) be a continuous function that is bounded below by Γ1(t)/ε+
maxs |η(s, 0)|. To show that |η(s, t)| is bounded for all (s, t) it suffices to
show that it is bounded only for all (s, t) for which |η(s, t)| > Γ2(t). Thus,
suppose that there is some ξ in (0, 1] and some τ2 > 0 such that |η(ξ, τ2)| >
Γ2(τ2). Since we are presuming that |η| is continuous, there is a last time
τ1 at which |η(ξ, τ1)| = Γ2(τ2). For t ∈ [τ1, τ2] the last term of (19.13) is
not positive, so it can be dropped. The Gronwall inequality can then be
applied to the resulting form of (19.13) to show that supξ |η(ξ, t)| ≤ Γ (t)
for t ∈ [τ1, τ2]. Thus we obtain

19.14. Theorem. Let Hypothesis 19.3 and the hypotheses of Theorem 10.6

hold. Let the initial values of η and ηt lie in L2(0, 1). Then

(19.14) |η(s, t)| ≤ Γ (t) ∀ (s, t).

Balancing of constitutive assumptions. The condition that the β in
Hypothesis 19.3 depends upon a lower bound c for ζ3 means in practice
that this hypothesis, just like Hypothesis 6.11, should not be invoked until
after a lower bound (10.6) is obtained for ζ3 by the use of Hypothesis 6.10.
Were we to strengthen Hypothesis 19.3 by requiring that it hold with ε, β,D
independent of c, then we could construct our system of estimates by first
using this strengthened 19.3 to bound η. In this case, we could use a weaker
version of Hypothesis 6.10 to ensure that a total compression cannot occur:

19.15. Hypothesis. For each C > 0 there are numbers ε ∈ (0, 1) and

A ≥ 0, and there is a continuously differentiable function ψ on (0, ε) with

ψ(ζ3) → ∞ as ζ3 → 0 such that (6.10) holds if |η| ≤ C and 0 < ζ3 ≤ ε.

Indeed, with the strengthened 19.3 we could weaken other hypotheses.
E.g., we could weaken Hypothesis 6.11 by requiring that it hold under the
further restriction that |η| ≤ C.

Control of σ̂η. An additional estimate. A variant of Hypothesis 6.11
having the same effect of controlling (5.8) is

19.16. Hypothesis. For each c there is a number C such that

(19.16)
∣

∣

∣

∣

ξ

|ξ| ·
∂σ̂

∂η
(η, η̇, s)

∣

∣

∣

∣

≤ C



1 +

√

ξ · σD

η̇(η, η̇, s) · ξ
|ξ|

√

σD(η, η̇, s) · η̇
|η̇|





for all ξ 6= 0 when ζ3 ≥ c.
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This hypothesis, just as Hypothesis 6.11, could be weakened by requiring
it to hold only under the further restriction that |η| be bounded, when such
a bound follows from an hypothesis like Hypothesis 19.3.

An intimately related condition is that

19.17. Hypothesis. For each c there is a number C such that

(19.17) |ξ · σ̂η(η, η̇, s)| ≤ C[1 + ξ · σD

η̇(η, η̇, s) · ξ] ∀ ξ with |ξ| = 1

when ζ3 ≥ c.

Let us supplement these conditions with the requirements that the con-
dition number for σD

η̇ be bounded and that the dependence of σ̂ on s not
be pathological:

19.18. Hypothesis. Let

(19.18a) q±
(

η, η̇, s
)

:=

{

max

min

}

{ξ · σD

η̇(η, η̇, s) · ξ : |ξ| = 1}.

For each c, C > 0 there is a number G such that

(19.18b) q+ ≤ Gq−.

if ζ3 ≥ c and |η| < C.

19.19. Hypothesis. For each c > 0, there is a number C such that

(19.19) |σ̂x| ≤ C(1 + |σ̂|).

when ζ3 ≥ c.

These conditions support

19.20. Proposition. Let Hypotheses 19.18 and 19.19 and the hypotheses

of Proposition 11.3 hold. Then

(19.20) ‖ηst‖ ≤ Γ.

Proof. From (5.1), (5.2), (5.5) we obtain

(19.21)

ηst · σD

η̇(η, η̇, s) · ηst = ρApt ·R · vst + ∂t(ρJ ·w) ·R · ust

− ηst · σ̂η · ηs − ηst · σ̂x

− ust · (u × m̂ + v × n̂) − vst · (u × n̂).

We deduce from (19.18a), (6.3), and (19.21) that

(19.22)

|ηst|2 ≤ 1

q−
ηst · σD

η̇(η, η̇, s) · ηst

≤ 1

q−
|ηst · σ̂η · ηs| +

1

c
|ρApt ·R · vst + ∂t(ρJ ·w) ·R · ust|

+
1

c
|ηst · σ̂x + ust · (u × m̂ + v × n̂) + vst · (u × n̂)| .
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Inequalities (6.11), (19.18b) imply that
(19.23)
1

q−
|ηst · σ̂η · ηs| ≤

G

q−

{

|ηst| +
ηst · σD

η̇ · ηst

|ηst|

}

|ηs| ≤ G

(

1 +
q+

q−

)

|ηst| |ηs|

≤ ε|ηst|2 + C|ηs|2 ≤ ε|ηst|2 + C + C

∫ t

0

|ηst|2 dτ.

Since m(1, ·) and n(1, ·) are prescribed, estimates (10.6), (19.14), (11.11),
(11.15a), (19.23) and Hypothesis 19.19 enable us to deduce from (19.22) that

(19.24)

|ηst|2 ≤ C + CρA|pt|2 + Cwt · ρJ ·wt

+ Γ 〈pt, ρApt〉 + Γ 〈wt, ρJ ·wt〉 + C

∫ t

0

|ηst|2 dτ.

Integrating (19.24) with respect to s over (0, 1), using (11.4), and using the
Gronwall inequality, we obtain (19.20).

20. The Treatment of Other Boundary Conditions

If we replace the specific boundary conditions (7.1) with various comple-
mentary combinations of components of rt and n and of w and n at each
end of the rod (see [7,8,10]), we would require

20.1. Hypothesis. The prescribed components of p and w at s = 0 and

s = 1 lie in the Sobolev space H2
loc[0,∞). The prescribed components of n

and m at s = 0 and s = 1 lie in H1
loc[0,∞).

(Weaker conditions suffice for the energy estimates like those we now ob-
tain.)

We now obtain energy estimates like those of Sec. 9 for some slightly
trickier cases. First suppose that r(0, ·) is prescribed in W 1,∞

loc [0,∞) and
n(1, ·) ≡ n̄ is prescribed in L∞

loc[0,∞), say. Then (9.9) again holds. To
estimate the integral on the right-hand side of (9.3) for s = 0 we use (5.1)
to obtain

∫ t

0

n(0, τ) · p(0, τ) dτ(20.2)

=

∫ t

0

p(0, τ) ·
[

n(1, τ) −
∫ 1

0

(ρA)(s)pt(s, τ) ds
]

dτ

=

∫ t

0

p(0, τ) · n(1, τ) dτ −
∫ 1

0

p(0, τ) · (ρA)(s)p(s, τ) ds

∣

∣

∣

∣

τ=t

τ=0

+

∫ t

0

pt(0, τ) ·
∫ 1

0

(ρA)(s)p(s, τ) ds dτ.

By the techniques we have been using, we easily find that the absolute value
of (20.2) is dominated by Γ (t)+εCK(t)+

∫ t

0
K(τ) dτ . Thus the integrals of
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(9.3) are dominated by the tractable bound Γ (t)+εCK(t)+Γ (t)
∫ t

0
[K(τ)+

Ω(τ)] dτ .
Now suppose that both ends are free and subjected to prescribed forces:

(20.3) n(0, t) and n(1, t) are prescribed in L∞
loc[0,∞).

The mass center of the rod at time t is

(20.4) c(t) =

∫ 1

0
(ρA)(s)r(s, t) ds
∫ 1

0
(ρA)(s) ds

.

We estimate it and its derivatives by integrating (5.1) with respect to s over
[0, 1] to get

(20.5)

[
∫ 1

0

(ρA)(s) ds

]

ctt(t) = n(1, t) − n(0, t),

whence

(20.6) |ct(t)|, |c(t)| ≤ Γ (t).

Let e be an arbitrary constant unit vector. Then for fixed t there is an
s∗(e , t) ∈ (0, 1) such that e ·[rt(s

∗, t)−ct(t)] = 0, for if not, then e ·rt(s, t) >
e · ct(t), say, for all s, and the integration of this inequality with respect to
s over (0, 1) would contradict (20.4). We use this property of s∗ to get

(20.7) e · [rt(s, t) − ct(t)] = e ·
∫ s

s∗

rst(ξ, t) dξ = e ·
∫ s

s∗

[R · vt + w × v ] dξ,

whence we obtain (9.9a) with rt(0, t) replaced with ct. From (20.3) and
(9.9a) we obtain the requisite replacement for (9.11):
(20.8)
∫ t

0

n(s, τ) · rt(s, τ) dτ

∣

∣

∣

∣

s=1

s=0

≤ Γ (t) + Γ (t)
√

Ω(t) + Γ (t)

∫ t

0

[K(τ) +Ω(τ)] dτ.

We now show how to get such estimates for the work done by the end
couples when

(20.9) m(0, t) and m(1, t) are prescribed in L∞
loc[0,∞).

In analogy with (20.4) we set

(20.10) a(t) :=

∫ 1

0

(ρJ )(s, t) ·w(s, t) ds,

integrate (5.2) with respect to s and t by parts, and use (5.1) to obtain
(20.11)

|a(t)| ≤ Γ (t)+

∫ t

0

r(s, τ)×n(s, τ) dτ

∣

∣

∣

∣

s=1

s=0

+

∣

∣

∣

∣

∫ 1

0

r(s, t)× (ρA)(s)rt(s, t) ds

∣

∣

∣

∣

.
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By (9.9b) we have
(20.12)
∫ t

0

r(s, τ)×n(s, τ) dτ

∣

∣

∣

∣

s=1

s=0

≤ Γ (t)+Γ (t)
√

Ω(t)+Γ (t)

∫ t

0

[K(τ)+Ω(τ)] dτ.

We estimate the rightmost term in (20.11) by

∣

∣

∣

∣

∫ 1

0

r(s, t) × (ρA)(s)rt(s, t) ds

∣

∣

∣

∣

(20.13)

≤ 1

2
C

∫ 1

0

|r(s, t)|2 ds+
ε

2

∫ 1

0

(ρA)(s)|rt(s, t)|2 ds

≤ C

∫ 1

0

|r(s, 0)|2 ds+ C

∫ 1

0

∫ t

0

|rt(s, τ)|2 dτ ds+ εK(t)

≤ C + C

∫ t

0

K(τ) dτ + εK(t).

Thus

(20.14) |a(t)| ≤ Γ (t) + εK(t) + Γ (t)
√

Ω(t) + Γ (t)

∫ t

0

[K(τ) +Ω(τ)] dτ.

Integrating (4.9) from ξ to s, and operating on the resulting equation with
∫ 1

0
dξ(ρJ )(ξ, t)·, we obtain

(20.15a)

[
∫ 1

0

(ρJ )(ξ, t) dξ

]

·w(s, t)−a(t) =

∫ 1

0

[

(ρJ )(ξ, t)·
∫ s

ξ

R·ut dξ

]

dξ.

Since ρJ is positive-definite, so is
∫ 1

0
(ρJ )(ξ, t) dξ. Thus

(20.15b) |w(s, t)| ≤ C|a(t)| + C

∫ 1

0

|ut(s, t)| ds ≤ C|a(t)| + CM(t).

Thus by combining (20.14) and (20.15) we get
(20.16)
∫ t

0

m(s, τ)·w(s, τ) dτ

∣

∣

∣

∣

s=1

s=0

≤ Γ (t)+εK(t)+εΩ(t)+Γ (t)

∫ t

0

[K(τ)+Ω(τ)] dτ.

We now substitute (20.8) and (20.16) into (9.3) and invoke hypothesis
(6.1) to obtain (9.12) and thus the energy estimate (9.14).

We likewise handle the conditions

(20.17) w(0, t) and m(1, t) are prescribed.

and the conditions

p(0, t) = p(1, t) is prescribed,(20.18)

w(0, t) = w(1, t) is prescribed.(20.19)
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In summary, we obtain the analogs of Theorem 9.13 for each of these kinds
of boundary conditions, under slightly different regularity hypotheses.

In Sec. 19, we discussed the tricky case in which p(0, t) and p(1, t) are
prescribed, but not equal, or w(0, t) and w(1, t) are prescribed, but not
equal.

We now show how to get the estimates of Sec. 11 for other boundary
conditions. We modify the treatment beginning with (11.22) to estimate the
boundary term of (11.11).

First suppose that n(0, ·) and n(1, ·) are prescribed. We integrate the
inequality

(20.20) |pt(s, t)| − |pt(ξ, t)| ≤
∣

∣

∣

∣

∫ s

ξ

|pst(ξ, t)| dξ
∣

∣

∣

∣

≤
∫ 1

0

|pst(ξ, t)| dξ

with respect to ξ over [0, 1] and use (5.1e), (11.18), (9.6) to get

(20.21)

|pt(·, ·)| ≤
∫ 1

0

|pt| dξ +

∫ 1

0

|vtt| dξ

+ 2

∫ 1

0

|vt| |w | dξ +

∫ 1

0

|wt| |v| dξ +

∫ 1

0

|v| |w |2 dξ.

Thus (11.18), (9.6), (9.8) imply that
(20.22)

|n̄t ·pt(1, ·)| ≤ Γ [1+M ]+〈pt, ρApt〉+〈wt, ρJ ·wt〉+ε
∫ t

0

〈ηtt,σ
D

η̇ ·ηtt〉 dτ, etc.

Let us generalize initial conditions (7.1b) slightly by assuming that
r(0, ·) is a prescribed nonzero function. We then use the equation of motion
(5.1) to get

(20.23) pt(1, ·) · nt(1, ·) − pt(0, ·) · nt(0, ·)

= [pt(1, ·)−pt(0, ·)] · n̄t +∂t

[

pt(0, ·) ·
∫ 1

0

ρApt ds

]

−ptt(0, ·) ·
∫ 1

0

ρApt ds.

We assume that r(0, ·) ∈ H3
loc(0,∞). In estimating the time integral of this

boundary term, we employ |pt ·
∫ 1

0
ρApt ds| ≤ Γ (t) + ε〈pt, ρApt〉.

We likewise generalize (7.1b) slightly by assuming that w(0, ·) is a pre-
scribed nonzero function. As in (20.20), (20.22), we find that
(20.24)

|wt(s, t)| ≤
∫ 1

0

|wt(ξ, t)| dξ+

∫ 1

0

|utt(ξ, t)| dξ+Γ (t)

∫ 1

0

|w(ξ, t)| |ut(ξ, t)| dξ,

so that (20.15) and the analog of (11.18) yield
(20.25)

|m̄t(t) ·wt(1, t)| ≤ Γ (t)[1 +M(t)2] + 〈wt, ρJ ·wt〉 + ε

∫ t

0

〈ηtt,σ
D

η̇ · ηtt〉 dτ.
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To handle the boundary term at 0 we use (5.2) and (11.20) to get

(20.26)

mt(0, t) ·wt(0, t)

= m̄t ·wt(0, t) + wt(0, t) ·
∫ 1

0

vt × n ds

+ ∂t

[
∫ 1

0

[wt(0, t) × v ] · n ds
]

−
∫ 1

0

∂t[wt(0, t) × v ] · n ds

− ∂t

[

wt(0, t) ·
∫ 1

0

(ρJ ·w)t ds

]

−wtt(0, t) ·
∫ 1

0

(ρJ ·w)t ds

≤ ∂t

[
∫ 1

0

[wt(0, t) × rs] · n ds
]

− ∂t

[

wt(0, t) ·
∫ 1

0

(ρJ ·w)t ds

]

+ Γ (t)[1 +M(t)2] + 〈pt, ρApt〉 + 〈wt, ρJ ·wt〉.

It is clear that our methods handle a much wider variety of boundary
conditions, including, e.g., those in which r(0, t) is confined to a moving
surface or a moving curve and in which the complementary components of
n(0, t) tangent to these manifolds are prescribed, and those in which a rigid
body is attached to one end of the rod (cf. [10]). The rest of our analysis goes
through provided that the boundary conditions support the energy estimate
(9.14) and that special provisions are made to handle the difficulties caused
by boundary conditions on the configuration mentioned in the fourth para-
graph of Sec. 19. For each distinctive set of boundary conditions, we would
replace the ya introduced in in Sec. 13 with a richer class of orthonormal
trigonometric functions (possibly vectorial, like those defined by (21.4) and
(21.5) below, but with different homogeneous boundary conditions).

21. Componential Versions of the Equations

If we take the componential version of (5.7) with respect to the basis
{dk}, we can uncouple the equation (5.7a) for the dk from the remaining
equations: Let eklm denote the alternating symbol. Then (5.7a) has the
componential form

(21.1) ∂tdk = ekijwjdi,

and the remaining equations of system (5.7) are equivalent to

∂tvi = ∂spi + eijk(ujpk − wjvk),(21.2a)

∂tui = ∂swi − eijkwjuk,(21.2b)

∂t(ρApi) = ∂sn̂i + eijk(uj n̂k − wjρApk),(21.2c)

∂t(ρJijwj) = ∂sm̂i + eijk(ujm̂k + vjn̂k − wjρJkqwq),(21.2d)
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where the arguments of n̂k and m̂k are v,u, vt,ut, s. We can write this
system in the compact form

vt = ps + u × p − w × v,(21.3a)

ut = ws − w × u,(21.3b)

∂t(ρAp) ≡ ρApt = ∂sn̂ + u × n̂ − w × (ρAp),(21.3c)

∂t(ρJ · w) ≡ ρJ · wt = ∂sm̂ + u × m̂ + v × n̂ − w × (ρJ · w),(21.3d)

Note the sign flip in going from (5.7c) to (21.3b).
Even though (21.3) is independent of the dk, the boundary conditions for

(21.3) are typically not. Indeed, (7.1c) implies that nk(1, t) = n̄(t) ·dk(1, t),
etc., with the dk(1, t) found as the solution of an initial-value problem for
(21.1) (or, equivalently, for (5.7a)) for s = 1. Thus the uncoupling of (21.3)
from (21.1) need not be complete. This difficulty would be more pronounced
if equal forces were prescribed at each end of the rod, in which case n(0, t) =
−n(1, t), but, in general, the components are not equal: nk(0, t) = d1

k (1, t) ·
d2

l (1, t)nl(1, t).

Other versions of the Galerkin approximations. Some form of a com-
ponential version of the governing equations must be used for numerical
treatments. But as we now observe, its use in Part IV could complicate
the analysis. The componential equations (21.3c,d) are clearly more com-
plicated than their vectorial counterparts (5.7d,e). But (21.3c,d) has the
virtue that ρJ is independent of t. Thus we can replace the Galerkin ap-
proximations (13.1) with others in which the basis functions are taken to
be orthonormal with respect to the natural weights ρA and ρJ, and thereby
obtain approximate ordinary differential equations that are uncoupled in
the time derivatives. In particular, for the boundary conditions (7.1), we
can take Galerkin approximations of the form

(21.4) pN(s, t) :=

N
∑

a=1

Pa(t)pa(s), wN(s, t) :=

N
∑

a=1

Wa(t)wa(s)

where the scalar-valued functions Pa,Wa are to be determined and where
{pa}, {wa}, a = 1, 2, . . . , are each complete independent sets of given func-
tions in H1(0, 1) with pa(0) = o, wa(0) = o. To get the desired orthonor-
mality, we choose the {pa} to be the normalized eigenfunctions satisfying

(21.5)

pss + λ(ρA)(s)p = o on (0, 1), p(0) = o, ps(1) = o,
∫ 1

0

ρApa · pb ds = δab

corresponding to eigenvalues {λa} with 0 < λ1 ≤ λ2 ≤ · · · (each dis-
tinct eigenvalue having multiplicity 3 by virtue of the vectorial character
of (21.5)) and take {wa} to be the normalized eigenfunctions for

(21.6)

wss + µ(ρJ)(s) · w = o on (0, 1), w(0) = o, ws(1) = o,
∫ 1

0

wa · ρJ · wb ds = δab
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corresponding to eigenvalues {µa} with 0 < µ1 ≤ µ2 ≤ · · · . (The properties
of the eigenfunctions are consequences of Sturm-Liouville theory. Should
ρA and ρJ only be piecewise continuous, the eigenfunction solutions of
these problems interpreted in an appropriately generalized sense have sec-
ond derivatives that need only be piecewise continuous.)

If we define vN and uN to be solutions of (21.3a,b) modified by having
all the variables bear the superscript N, then the Galerkin approximations
constructed as in Sec. 13 have the standard form

dtPa = n̄(t) · dN

k pak(1)

(21.7)

+

∫ 1

0

{−nN · ∂spa + [uN × nN − wN × (ρApN)] · pa} ds,

dtWa = m̄(t) · dN

k wak(1)

(21.8)

+

∫ 1

0

{−mN · ∂swa + [uN× mN+ vN× nN− wN× (ρJ · wN)] · wa} ds.

The virtues of these kinematically uncoupled ordinary differential equa-
tions are counterbalanced by the added complexity in the governing equa-
tions.

In the study of hyperbolic conservation laws of mechanics, weak forms like
(7.10a,b) of compatibility equations play a central role on par with the weak
forms of the momentum equations. With some effort, we could give the compo-
nential versions of the compatibility equations the same status as the momentum
equations in the Faedo-Galerkin method: Instead of defining vN and uN as above,
we would seek Galerkin approximations for them in the form

(21.9) v
N(s, t) := v

N

† (t) +
N

X

a=1

Va(t)va(s), u
N(s, t) := u

N

† (t) +
N

X

a=1

Ua(t)ua(s)

with
(21.10)

va =
∂spa√
λa

, ua =
∂swa√
µa

so that

Z

1

0

va · vb ds = δab,

Z

1

0

ua · ub ds = δab.

Here the vector-valued functions vN

† , u
N

† and the scalar-valued functions Va,Ua are
to be determined, with the vector-valued functions allowed to accommodate the
boundary conditions (7.1c). (Such an accommodation seems necessary to get the
requisite estimates.) We set

(21.11) n
N(s, t) := n̂(uN(s, t), vN(s, t), uN

t (s, t), vN

t (s, t), s), etc.

To handle the mechanical boundary conditionat s = 1, we substitute our constitu-
tive equations into the boundary conditions (7.1c) and then replace the resulting
system with the approximation
(21.12)

n̂k(uN

† , v
N

† ,
d
dt

u
N

† ,
d
dt

v
N

† , 1) = n̄(t) · dN

k , m̂k(uN

† , v
N

† ,
d
dt

u
N

† ,
d
dt

v
N

† , 1) = m̄(t) · dN

k ,
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which we supplement with initial conditions

(21.13) v
N

† (0) = v
◦(1), u

N

† (0) = u
◦(1).

Hypothesis 6.2 implies that we can put (21.12) into standard form. In particular,
we can solve the finite-dimensional system n̂(u, v, u̇, v̇, 1) = n, m̂(u, v, u̇, v̇, 1) =
m uniquely for (u̇, v̇) in terms of the other variables: u̇ = u̇♯(u, v,m, n), v̇ =
v̇♯(u, v,m, n). Thus (21.12) is equivalent to

(21.14)
d
dt

v
N

† = v̇
♯(uN

† , v
N

† , m̄(t) · dN

k , m̄(t) · dN

k , n̄(t) · dN

k ),

d
dt

u
N

† = u̇
♯(uN

† , v
N

† , m̄(t) · dN

k , m̄(t) · dN

k , n̄(t) · dN

k ).

The Galerkin approximations for the compatibility equations are readily shown
to be the kinematically uncoupled system

d

dt
Va =

√
λaPa +

Z

1

0

(uN × p
N − w

N × v
N) · va ds− v̇

♯ ·
Z

1

0

va ds,(21.15)

d

dt
Ua =

√
µaWa +

Z

1

0

(uN × w
N) · ua ds− u̇

♯ ·
Z

1

0

ua ds.(21.16)

Unfortunately, these equations correspond to a projection of the compatibility
equations

(21.17) v
N

t = p
N

s + u
N × p

N − w
N × v

N
, u

N

t = w
N

s − w
N × u

N

onto span {v1, . . . , vN} and span {u1, . . . , uN}. The treatment of the discrepancy

between cross products like uN × pN and its projection onto span {v1, . . . , vN}
presumably would require estimates like those of [1, Sec. 4.5] and [43, Sec. III.13].

22. Discussion. Generalizations

Monotone operators. Some of our techniques, especially those in the
proofs of Theorem 11.1 and in the treatment of the Galerkin method, rep-
resent simplifications of methods used in [12]. In particular, compactness
results like (11.31) and (16.1) following from our a priori estimates (which
in turn follow from our constitutive hypotheses) give rise to important in-
stances of strong convergence in Part IV. The availability of these strong
convergence results, in particular, (16.4), enabled us to avoid appealing to
the theory of monotone operators [26,39] to handle difficulties with weak
convergence. We do, of course, use the monotonicity available for the mod-
ified problem to obtain the estimates in Part IV.

Rougher data. At various places in our analysis, we had to assume that
the boundary data are fairly smooth. We can immediately weaken such
assumptions to the corresponding requirements that the data be piecewise
smooth. No doubt, approximation arguments can give further weakening.

Discontinuous material behavior. If the material data ρA, ρJpq, or σ̂

happen to be merely piecewise continuous in s, then the uniform convergence
of continuous functions to continuous limits used in Part IV is replaced
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by the uniform convergence of piecewise continuous functions to piecewise
continuous limits because the loci of the jump discontinuities are fixed. All
our analysis would go through.

Hölder spaces. It would be interesting to know whether comparable re-
sults can be obtained from a direct Hölder-space formulation (rather than
from the use of embedding theorems in a higher-order Sobolev-space set-
ting). Such an approach might exploit the available parabolicity to produce
additional regularization. We used a Sobolev-space setting here because it
is natural for energy-like estimates.

More general theories of rods. We can readily handle a more general
form of our equations for rods in which the acceleration terms are mixtures
of derivatives of r and w . These forms arise when the base curve r is not
taken to be a generalized curve of centroids of the body. See [7, Ex. 8.4.8].
Indeed, we can handle any problem of nonlinear viscoelastic of strain-rate
type with just one spatial variable. These include arbitrary theories for
rods and axisymmetric shells [7, Chaps. 16, 17], and semi-inverse problems
(with one independent spatial variable) of the 3-dimensional theory (cf.
[11]). (The equations for rods and axisymmetric shells are far richer and
more complicated than those for semi-inverse problems of the 3-dimensional
theory with one independent space variable.)

Many of the difficulties we have confronted for the problems treated
here arise because configurations take their values in the manifold E

3×SO(3)
rather than in R

N . Among these difficulties is the treatment of nonlinearities
in the angular acceleration, which is typical of 3-dimensional rigid-body
mechanics. Some of these difficulties do not appear for many more general
rod theories, but do appear in various models for superconductivity [14],
for liquid crystals [25], and in harmonic maps. It would be nice to have a
general theory for the dynamics in which some variables are constrained to
lie in manifolds. (cf. [23])).

Planar problems. We can immediately specialize our results to planar
problems for rods. The governing equations are obtained by constraining
d2, say, to lie along a fixed direction k , and using the two components of
the force balance perpendicular to k and the one component of the moment
balance parallel to k . Then the configuration of d1 and d3 is determined
by the angle θ between d3 and a fixed direction in the plane perpendicular
to k . Then the only flexural strain is u2 = θs. The main simplification is
that the angular acceleration term on the right-hand side of (5.2) reduces
to a scalar ρJ22θtt (times k), which is linear in the unknown θ. See [7] for
details.

Nonzero loads. Standard methods would allow us readily to extend all
our analysis to nonzero f and l provided that these loads are dead, i.e., that
they are prescribed functions of s and t. (If these loads and the boundary
data are independent of t, then versions of our constitutive assumptions
provide uniform a priori bounds, i.e., bounds independent of T .) A live load
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(applied to body of the rod or to its ends) is one that also depends on the
motion itself. E.g., a centrifugal force at a material point depends on the
distance of the material point from the axis of rotation. Other live loads are
generated by hydrostatic pressure, air resistance, attached rigid bodies, and
feedbacks. Our methods handle live loads as long as they deliver the same
estimates.

The trouble with live loads is that they can have a very subtle interaction
with constitutive equations with the consequence that they could produce
blowups in finite time [7,16]. (No such blowups occur for the problem of a
rod carrying a rigid body at an end [10].)

For dead loads, just as for zero loads, we would obtain existence for all
time by getting estimates valid on the time interval [0, T ] for all real T . We
use the finiteness of T merely to ensure the uniformity of our estimates, e.g.,
to ensure that γ(T ) > 0 in (10.6) and that Γ (T ) < ∞ in (11.3). When a
blowup occurs (as a consequence of live loads), T plays the alternative and
more critical role of the blowup time.

The methods of Sec. 18 can readily be extended to show well-posedness
with respect to constitutive functions and dead body loads. Because there
could be blowups produced by slight changes in constitutive functions or in
parameters of live loads, the issue of stability is much more delicate here.

Change of phase. Since we do not require that the stored-energy function
ϕ be convex, we can handle models accounting for change of phase. Cf. ,
e.g., [3,28]

Optimal control. The results of our analysis make these problems amenable
to the methods of optimal control (cf. [30,31]).

Potential for the viscous response. It has sometimes been advocated
on the basis of thermodynamical considerations [41,42] that the dissipative
part σD of the stress resultants should be obtainable from a potential, so
that ση̇ should be symmetric. We found no need for such an assumption.

Thermoviscoelastic rods. It might be possible to combine our methods
with those developed for 1-dimensional thermoviscoelasticity in [19,36], in-
ter al., to treat thermoviscoelastic rods.

Strain-gradient effects. The appropriate incorporation of strain-gradient
effects, in which the resultants also depend upon derivatives of η, would no
doubt regularize solutions in a way akin to that effected by the viscosity
(see [6,21,35]). There is even some evidence that appropriate versions can
preclude total compressions. An objection to using strain-gradient effects is
that there is scarcely any non-mathematical evidence for physically natural
forms for constitutive functions accounting for these effects.

More spatial dimensions. The main difficulty in extending our meth-
ods to more spatial dimensions is that our methods for precluding total
compression in Sec. 10 break down. Basically, for a problem in two spa-
tial dimensions we can show that ζ3 can vanish along any given material
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curve at most on a set of measure zero. Indeed, we can bound the integral
of ψ along such a curve. (This is reminiscent of the regularity theory for
nonlinear elastostatics.) But we are unable to obtain a pointwise bound.

There is a second potential difficulty: In 2- and 3-dimensional viscoelas-
ticity of strain-rate type and in corresponding shell theories, the assumption
that the Piola-Kirchhoff stress is a monotone function of appropriate strain
rates is consistent with the requirement that the response be invariant un-
der rigid motions. On the other hand, in analogy with nonlinear elasticity,
one might wish to generalize this assumption by merely requiring that the
dependence of this stress on the strain rate be strongly elliptic. In this case,
the extensive theory of monotone operators would not be available.

Correction. In [12], the analysis analogous to that beginning with (15.16)
was superficial. The treatment here shows how to correct it.
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