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Abstract. Based on a strict coercivity estimate [8] for a class of nonlinear elliptic operators
A : u 7→ ∇·a(·, |∇u|)∇u, it is shown that (with suitable consistency conditions on the data)
the problem:

u̇+ Au = f, a∇u · ~n = ϕ, time periodicity

has a unique solution depending continuously on f, ϕ and also on the nonlinear form of
the diffusion coefficient a(··). This is then used to obtain existence by a fixpoint argument
for the more general problem with a, f of the form a = a(·, u, |∇u|), f = f(·, u,∇u).
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1. Introduction

The present paper is a continuation of the sequence [7], [8], [9]. It uses the results of [8]
concerning elliptic operators of the form

A : u 7→ −∇ · a(·, |∇u|)∇u (0.1)

to generalize the results of [7] on periodic solutions of

u̇+ Au = f (0.2)

with Neumann boundary conditions

uν := a(··)∇u · ~n = ϕ. (0.3)

In comparison with [7], which considered only a = a(|∇u|), we have now for (0.1)

a : Q× IR+ → IR+ (0.4)

1Adv. in Math. Sci. & Appl. 9, pp. 539–555 (1999).
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rather than simply a : IR+ → IR+; we will consider still more general dependence later.
Note that we have assumed in (0.4) that we are given a spatial region Ω (bounded in

IRm with sufficiently smooth2 boundary ∂Ω). We are also assuming that any explicit time
dependence in a, f, ϕ has periodicity with a common period which, with no loss of generality,
we can take to be 1; thus, IP := IR/ZZ is the period interval, topologically a circle. The
periodicity is now “built in” by defining f on Q := IP×Ω, a on Q× IR+, ϕ on Σ := IP× ∂Ω,
and seeking u defined on Q. (Note that one automatically has∫

Q
v̇ = 0 for v defined on Q (0.5)

when suitable interpretation of v̇ is possible.)
The operators: u 7→ −∇a(|∇u|)∇u considered in [7] involve functions a(··) which behave

like a power as |∇u| → ∞:
a(r) ∼ rp−2 as r →∞

for a fixed p which determines the space in which to seek solutions; for simplicity we will
assume p ≥ 2. The principle concern of [7] was the effect of possible non-uniform ellipticity
as r → 0 on the well-posedness of the problem (0.2), (0.3) with periodicity. The arguments
of [8] made it possible there to consider this possibility as well as other ways for the diffusion
coefficient to vanish. The analysis in [8] also made it possible to demonstrate existence of
solutions to elliptic equations of the form

−∇ · a(·, u, |∇u|)∇u = f(·, u,∇u)

with Dirichlet conditions. It was promised in [8] that we would correspondingly treat the
parabolic problem with periodicity in time

u̇−∇ · a(·, u, |∇u|)∇u = f(·, u,∇u) (0.6)

with a Neumann condition (0.3). Here we will first analyze the simpler problem (0.2), (0.3)
with A as in (0.1) and with f independent of u and then will proceed to fulfil this promise
by a fixpoint argument. Thus, the main results of this paper will be well-posedness for the
“simple” problem

u̇−∇ · a(·, |∇u|)∇u = f on Q,
a∇u · ~n = ϕ on Σ, periodicity in t

(0.7)

and existence for the problem

u̇−∇ · a(·, u, |∇u|)∇u = f(·, u,∇u),
a∇u · ~n = ϕ on Σ, periodicity in t

(0.8)

under suitable hypotheses on a, f, ϕ.
A new difficulty which arises in connection with the problem (0.8), as compared to a

corresponding problem with Dirichlet conditions, is that one has a consistency condition for
the data and an element of nonuniqueness for the solution. From (0.5) we see, integrating

2The regularity of ∂Ω is to be adequate to justify the trace and extension theorems employed. We take
[1] as a general reference for the relevant hypotheses and results.
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over Q and using the Divergence Theorem, that it is not possible for (0.7), to have a solution
on Q unless f, ϕ satisfy the consistency condition∫

Q
f +

∫
Σ
ϕ = 0. (0.9)

The solution u, when it exists, cannot be unique since, on adding any constant c to the
solution of problem (0.7), one again has a solution. The solution can be made unique by
imposing some auxiliary condition such as, e.g.,∫

Q
u = 0. (0.10)

Neither the direct verification of (0.9) nor the imposition of (0.10) is feasible for the more
general problem (0.8), and existence of a solution to that problem will be obtained by an
application of Glicksberg’s Theorem [5] on fixpoints of set-valued maps without imposing
(0.10) to specify a solution.

We have adopted here, as in [7] (see also Chapter II of [6]), the static approach of looking
in a space of periodic functions (defined on Q) for a solution rather than the dynamic
approach of first treating the initial value problem and then (e.g., by seeking a fixpoint
of the Poincaré period map) looking for a solution which is periodic. Much as in [9], our
formulation will take ξ := ∇u in Lp(Q → IRm) as the principal unknown.

In the treatment of (0.7) we seek a well-posedness result which also includes structural
stability : not only should the solution depend continuously on f, ϕ but also on the form of
the nonlinear diffusion coefficient a(··) in that a suitable form of convergence ak → a will
imply convergence for the corresponding solutions; compare [9]. Such structural stability is,
of course, necessary for any consideration of real applications in which, at best, a(··) is only
known approximately (by measurement or by inference); it also is an essential ingredient in
the treatment of (0.6).

The original motivation of [7] was an application involving induced eddy currents in a
nonlinearly ferromagnetic material with longitudinal symmetry. The generalization to (0.7),
now permits the consideration of material inhomogeneity but the further generalization to
(0.8), is here motivated solely by the mathematical interest.
2. The Coercivity Estimate

We begin by recalling from [8] the analysis of elliptic operators of the form (0.1). Note
that we have assumed Ω bounded in IRm with ∂Ω sufficiently smooth and, for simplicity, will
assume p ≥ 2. We have set IP := IR/ZZ (the period “interval”, topologically a circle) and
then Q := IP× Ω, Σ := IP× ∂Ω.

Given a function a : Q × IR+ → IR+ satisfying Carathéodory conditions, we define
g(·, r) := ra(·, r) and then define

µ(·, s) := sup{µ : g(·, r)− g(·, s) ≥ µsp−2(r − s) for r > s ≥ 0} (0.11)

Note that µ is nondecreasing in s and µ(·, s) is measurable; when g is differentiable in its
second variable, one easily sees that µ can conveniently be equivalently3 defined by

µ(·, s) := inf
{
r−(p−2)∂g(·, r)/∂r : r > s ≥ 0

}
= (p− 1) inf {∂g/∂(rp−1) : r > s}

3Part of the reason for restricting our attention here to p ≥ 2 is that this convenient equivalence fails for
p < 2.
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which may be easier to compute.
Now, for λ ≥ 0 set

σ(·, λ) := 4 inf{s > 0 : µ(·, s) ≥ λ},

N(λ) := ‖σ(·, λ)‖p :=
∫
Q
σ(·, λ)p.

(0.12)

Clearly σ(·, λ) is measurable and (where finite) nondecreasing in λ so N(λ) is well-defined
and nondecreasing in λ. If there is any λ̄ > 0 for which N(λ̄) <∞, then, by the Monotone
Convergence Theorem, N is continuous on [0, λ̄) and, in particular, N(λ) → 0 as λ → 0.
Our basic set of assumptions regarding a(··) is, then,

(i)
a : Q× IR+ → IR+ satisfies Carathéodory conditions:

measurability in (t, x) ∈ Q for each r ∈ IR+

and continuity in r a.e. on Q,

(ii)
0 ≤ g(·, r) := ra(·, r) ≤ g∗(·) + C∗r

p−1

for some C∗ ∈ IR+ and some g∗ ∈ Lq+(Q) (1/q + 1/p = 1)

(iii) for some λ̄ > 0, (0.11), (0.12) give σ(·, λ) ∈ Lp+(Q) for 0 ≤ λ < λ̄.

(0.13)

Fixing C∗, g∗ ∈ Lq+(Q), and N∗(·) nondecreasing on [0, λ̄) with N∗(0+) = 0, we define
G∗ = G∗(C∗, g∗, N∗) and G by

G∗ :=

{
g :

(0.13-ii, iii) hold and one has
(0.12) with N(λ) ≤ N∗(λ)

}
, G :=

⋃
G∗. (0.14)

Note that G∗ is a nondecreasing set-valued function of [C∗, g∗, N∗] and the union in defining
G = ∪G∗ is over all admissible choices of [C∗, g∗, N∗] for G∗. We then define (sequential)
convergence gk(··)→ g(··) in G to mean:

(i) gk ∈ G∗ for some common [C∗, g∗, N∗]
(ii) gk(·, r(·))→ g(·, r(·)) in Lq+(Q) for each fixed r(·) ∈ Lq+(Q).

(0.15)

Finally, given g ∈ G and vector fields ξ(·), η(·) ∈ Lp(Q → IRm) we define

β(ξ, η) = βg(ξ(·), η(·)) := [a(·, |ξ|)ξ − a(·, |η|)η] · [ξ − η] (0.16)

(euclidean dot product, pointwise a.e. on Q) and

B(ξ, η) = Bg(ξ, η) :=
∫
Q
βg(ξ, η). (0.17)

Note that the assumption (0.13-ii) is just sufficient to ensure the integrability of β(ξ, η)
for ξ, η ∈ Lp(Q → IRm). Other than some minor notational changes, these definitions are
just those introduced in [8]; we recall from there some important properties:

LEMMA 2.1: Suppose {gk} ⊂ G∗ for some fixed G∗ = G∗(C∗, g∗, N∗) as in (0.14). Then
pointwise convergence:

gk(·, r̄)→ g(·, r̄) on Q for each r̄ ≥ 0
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is sufficient to ensure that gk → g in the sense of (0.15).

THEOREM 2.2: Given vector fields ξ, η ∈ Lp(Q → IRm) and g ∈ G — here
g(·, r) = ra(·, r)) — one has

β(ξ, η) ≥ Cµ(r/4)δp (0.18)

where, pointwise, r(·) := max{|ξ|, |η|} and δ := |ξ − η|.

THEOREM 2.3: There is a nondecreasing function Φ : IR+ → IR+, depending only
on N∗(·), such that Φ(r) → 0 as r → 0 and, for any g ∈ G (with N = Ng bounded by the
N∗ used to determine Φ), one has

‖ξ − η‖ ≤ Φ

(
Bg(ξ, η)

‖ξ − η‖

)
(0.19)

(using Lp norms) for arbitrary vector fields ξ, η ∈ Lp(Q → IRm).

We note that C = Cp = min{3−p, 1
2
82−p} in (0.18) and that Φ = Φ(ρ) in Theorem 2.3

can be obtained as the maximal solution of

Φp = 2 inf
λ
{2pN∗(λ) + ρΦ/Cpλ}. (0.20)

For further details see [8], noting that we are considering only p ≥ 2 here.
Given g ∈ G, the inequality (0.19) is a strict coercivity estimate for the Nemytskii operator

ΓΓ : ξ 7→ a(·, |ξ|)ξ = g(·, |ξ|)(ξ/|ξ|) (0.21)

since Bg(ξ, η) is just 〈ΓΓξ − ΓΓη, ξ − η〉; continuity of ΓΓ follows from Krasnoselskii’s Theorem
on Nemytsky operators (cf. e.g., [3]) in view of (0.13-i, ii).
3. Formulation of the Parabolic Problem

Suppose we are given Ω, p as above and a function a : Q × IR+ → IR+ such that g ∈ G
so (0.13) holds. We begin by considering a standard weak formulation of the problem (0.2),
(0.3): ∫

Ω
[vu̇+∇v · (ΓΓ∇u)] =

∫
Q
vf +

∫
∂Ω
vϕ (0.22)

which is to hold a.e. on IP for suitable test functions v on Ω. Indeed, one usually further
integrates over IP with v a test function defined on Q:∫

Q
[vu̇+∇v · (ΓΓ∇u)] =

∫
Q
vf +

∫
Σ
vϕ, (0.23)

but it will be convenient to consider (0.22) first, at least formally, to obtain an ordinary
differential equation for the spatial mean:

z = z(t) :=
∫

Ω
u(t, ·)/|Ω|. (0.24)
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Setting v = 1 in (0.22) one obtains

ż = f 0 :=
[∫

Ω
f +

∫
∂Ω
ϕ
]
/|Ω|, (0.25)

to hold a.e. on IP; note that (0.25) is solvable on IP if and only if (0.9) holds.
The appearance of ΓΓ in (0.23) and the coercivity condition (0.19) suggest seeking a

solution u for which ∇u is in Lp(Q → IRm), i.e., such that u is in

XX := Lp(IP→ X ) with X := W 1,p(Ω).

One easily sees that

X = IR⊕X0 with X0 := {v ∈ X :
∫

Ω v = 0} ,
XX = YY ⊕ XX 0 with XX 0 := Lp(IP→ X0), YY := Lp(IP).

Note that ‖v‖X := ‖∇v‖p (Lp-norm on Ω for ∇v) is a suitable norm for XX 0. This decompo-
sition permits us to look for u in the form

u = z + ū with z ∈ YY and ū ∈ XX 0.

(Since u − ū = z is constant on Ω for each t ∈ IP, we have ∇ū = ∇u and, of course, (0.24)
gives

∫
Ω ū = 0 for each t so having ū ∈ XX 0 is equivalent to having ū ∈ XX .)

From the hypotheses (0.13-i, ii), if ∇u is in Lp(Q → IRm) then ΓΓ∇u is in Lq(Q → IRm);
hence one considers test functions v for which ∇v is in Lp(Q → IRm), i.e., v ∈ XX . Using
(0.25) one sees that ū must satisfy∫

Q
[v ˙̄u+∇v · (ΓΓ∇ū)] =

∫
Q
vf̄ +

∫
∂Ω
vϕ (0.26)

with f̄ := f − f 0. Note that this definition of f̄ gives∫
Ω
f̄ +

∫
∂Ω
ϕ = 0 a.e. on IP (0.27)

and, since ˙ = ∂t is a closed (unbounded) operator: XX to XX ∗0 = Lq(IP→ X ∗0 ), one has∫
Ω
ū = 0 a.e. on IP.

The effect of this with (0.27) is to make (0.26) invariant under addition to v of a spatially
constant function. Thus, having (0.26) for all v ∈ XX 0 is equivalent to having (0.26) for all
v ∈ XX and we take XX 0 as our space of suitable test functions.

Looking at the right hand side of (0.26) for v ∈ XX 0, we see that the data f, ϕ must be
such that (0.25) makes sense and that

ψψ : v 7→
[∫
Q
vf̄ +

∫
∂Ω
vϕ
] (

f̄ := f − f 0
)

(0.28)

is in XX ∗0; we will wish to topologize ψψ in XX ∗0. From the Sobolev Embedding Theorem [1]
and then using duality, we have

X = W 1,p(Ω) ↪→ Lp̃(Ω) with 1/p̃ = max{0, 1/p− 1/m}

Lq̃(Ω) ↪→ X ∗0
FF0 := Lq(IP→ Lq̃(Ω)) ↪→ XX ∗0 with 1/q̃ + 1/p̃ = 1.

(0.29)
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(continuous embeddings). Similarly, for the trace τ : v 7→ v|∂Ω and its adjoint one has [1]
continuity of

τ : X → Lp̂(∂Ω) with p̂ :=
{
m−1
m−pp if p < m; ∞ else

}
τ ∗ : FF1 := Lq(IP→ Lp̂(∂Ω))→ XX ∗0 with 1/q̂ + 1/p̂ = 1.

We assume, then, that the data satisfy

[f, ϕ] ∈ FF0 ×FF1 = Lq(IP→ Lq̃(Ω)× Lq̂(∂Ω)) (0.30)

with q̃, q̂ as above. Setting4

YY∗ := Lq(IP), YY∗0 := {y ∈ YY∗ :
∫
IP
y = 0}, (0.31)

we note that (0.30) ensures that the consistency condition (0.9) is meaningful and that
imposing it gives f 0 ∈ YY∗0. Thus, the map:

[f, ϕ] 7→ [f 0, ψψ]
{[f, ϕ] ∈ FF0 ×FF1 : (0.9)} → YY∗0 ×XX ∗0

is well-defined and continuous. Assuming (0.30) with (0.9) and (0.31), we turn to [f 0, ψψ] ∈
YY0 ×XX ∗0 as the principal formulation of the data. With this, the problem becomes

(i)
∫
Q

[v ˙̄u+∇v · (ΓΓ∇ū)] = ψψv for all v ∈ XX 0,

(ii) ż = f 0 on IP,
(0.32)

given [f 0, ψψ] ∈ YY∗0 × YY∗0.
It will be convenient to make one final reformulation of (0.32-i). It has already been

noted that
∂t : XX 0 → XX ∗0

is a (densely defined) closed operator. One easily sees (working initially with smooth func-
tions) that ∂t is skew adjoint in view of the periodicity inherent in the consideration of
functions defined on Q. If we then define an operator A : XX 0 → XX ∗0 by

Au : v 7→
∫
Q
∇v · (ΓΓ∇u) =

∫
Q
a(·, |∇u|)∇u · ∇v, (0.33)

we see that the continuity of ΓΓ in (0.21) is just equivalent to continuity of the operator
A : XX 0 → XX ∗0 and that

[Au−Av](u− v) =
∫
Q

[ΓΓ∇u− ΓΓ∇v] · [∇u−∇v]

= Bg(∇u,∇v)
(0.34)

for u, v ∈ XX 0. The equation (0.32-i) now takes the equivalent form

(∂t + A)ū = ψψ with ū ∈ D(∂t) ⊂ XX 0. (0.35)

4This should be read here as (YY∗)0 rather than as (YY0)∗, although XX ∗
0 means (XX 0)∗.
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Our final formulation of the “simple” problem (0.7) is then the system (0.35), (0.32-ii) for
ū, z — giving u = ū+ z.

We turn next to the more involved problem corresponding to (0.6) with (0.3), i.e., (0.8).
Suppose, for w ∈ XX , we set

(i)
aw(·, r) := a(·, w(·), r) (r ∈ IR+),
gw(·, r) := raw(·, r)

(ii) fw(·) := f(·, w(·),∇w(·))
(0.36)

on Q. We cannot simply replace a, f in (0.7) by aw, fw as we might expect in approaching
(0.8) as a fixed point problem: in general the consistency condition (0.9) would not be
satisfied. Thus, from fw as in (0.36-ii) and the given ϕ ∈ FF1, we use a slight modification5

of our earlier definitions of f 0, f̄ , ψψ and set

f 0
w :=

[(∫
Ω
fw +

∫
∂Ω
ϕ
)
−
(∫
Q
fw +

∫
Σ
ϕ
)]
/|Ω|,

f̄w := fw −
[∫

Ω
fw +

∫
∂Ω
ϕ
]
/|Ω|,

ψψw := v 7→
[∫
Q
vf̄w +

∫
Σ
vϕ
]
.

(0.37)

It is then possible to consider the system

(i) (∂t + Aw)ū = ψψw with ū ∈ D(∂t) ⊂ XX 0,

(ii) ż0 = f 0
w with

∫
IP
z0 = 0

(0.38)

where Aw is defined from aw as in (0.1). From our earlier analysis of (0.35) it is clear that
u will satisfy (0.8) if and only if

(i) [fu, ϕ] satisfies (0.9) so (0.37) reduces to (0.25), etc.
(ii) [ū, z0] satisfies (0.38) with w = u,
(iii) (u− [ū+ z0]) is constant on Q.

(0.39)

The final aspect of our construction — relating the nonuniqueness of the constant in (0.39-
iii) to the requirement (0.39-ii) — will be deferred to the existence proof of the next section
but we describe here the sets of functions a, f for which our argument works.6

We are assuming that Ω, p, and ϕ ∈ FF1 are fixed; we further introduce parameters ϑ, γ
with

0 ≤ γ ≤ 1, γ < p− 1 so q̄ : p/γ > q,
1/p+ 1/q = 1 = 1/p̄+ 1/q̄; ϑ < 1, ϑ ≤ γ.

(0.40)

Now define FF ′0 as the set of f such that f : Q × IR × IRm → IR satisfies Carathéodory
conditions and a growth condition

|f(·, s, ξ)| ≤ f∗(·) + C(|s|ϑ + |ξ|γ) (0.41)

5Note that only the definition of f0 has changed from (0.25) and even that is unchanged if f already
satisfies the consistency condition (0.9).

6These hypotheses can be compared with the corresponding hypotheses (3.11), (3.12) of [8]; the only real
novelty here is (0.43-i).

8



with f∗ ∈ Lp̄+(Q). Given f ∈ FF ′0 and any w ∈ XX , we define Hw : IR→ IR by

Hw(c) :=
∫
Q
fw+c +

∫
Σ
ϕ :=

∫
Q
f(·, w(·) + c,∇w(·)) +

∫
Σ
ϕ. (0.42)

By Krasnosel’skii’s Theorem, one sees that the functional [w, c] 7→ Hw(c) is continuous from
XX × IR to IR. We will assume that f ∈ FF ′0 is such that (0.42) gives

(i)
there are κ0, κ1 such that
c ≥ κ0 + κ1‖w‖XX ⇒ Hw(−c) ≤ 0 ≤ Hw(c)

(ii) for each w ∈ XX the function Hw(·) is nondecreasing.

(0.43)

With Ω, p as above, we define AA as the set of functions a such that

(i)
a : Q× IR× IR+ → IR+ satisfies Carathéodory conditions
and a growth condition
0 ≤ a(·, s, r)r ≤ g∗(·) + C|s|+ r)p−1 with g∗ ∈ Lq+(Q),

(ii)
for each w ∈ XX one has gw ∈ G (as in (0.14));
write µw, σw, Nw for the functions as in (0.11), (0.12).

(0.44)

For any a ∈ AA and ν ≥ 0 one can define N̄ν : IR+ → [0,∞] by

N̄ν(λ) := sup{Nw(λ) : ‖w‖XX ≤ ν}.

This need not be finite but is certainly nondecreasing both in ν and in λ. We will further
assume that a ∈ AA is such that, using the same γ as in (0.39), (0.40), one has7

(i)
for each ν > 0 one has N̄ν(·) finite on an interval [0, λ̄)
and Nν(λ)→ 0 as λ→ 0,

(ii)
there is a function Λ : IR+ → IR+ such that

Λ(ν) = o(νp−1−γ), N̄ν(1/Λ)) = o(νp) as ν →∞.

(0.45)

4. Results
In this section we state and prove the main results of the paper: Theorems 4.1 and 4.2,

giving well-posedness for (0.7) and existence for (0.8).
It is of course, because we are working with a periodicity condition in time (rather than

an initial condition) that the approach can be as similar as it is to that used in [8] for
the elliptic problem. Indeed, the most significant differences come from the shift here to
Neumann conditions rather than considering Dirichlet conditions as in [8]. We split the
problem into a system so as to seek ū in the space XX 0 for which ξ := ∇ū determines ū and
we impose (0.43) to handle the consistency condition.

Without further mention, we assume that p is fixed (2 ≤ p < ∞) and that Ω is a given
bounded region in IRm with boundary ∂Ω smooth enough to justify (0.29). Thus G and
sequential convergence in G are defined by (0.14), (0.15) with this Ω (hence Q) and this p.

7We will only need that: for any weakly convergent sequence {wk} one has N∗(λ) → 0 as λ → 0 where
N∗(λ) := sup{Nw(λ) : w ∈ {wk}}. However, it can easily be shown that this is actually equivalent to the
apparently stronger condition (0.45-i).
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THEOREM 4.1: Suppose a set of data [a, f, ϕ] is given with a(··) as in (0.13) and
[f, ϕ] ∈ FF0 ×FF1 as in (0.30) satisfying the consistency condition (0.9). Then there exists a
weak solution u ∈ XX := Lp(IP→ W 1,p(Ω)) of the problem (0.7) in the sense that u = ū+ z
satisfies (0.32). This solution is unique to within an additive constant; we impose the aux-
iliary condition (0.10) to ensure uniqueness. Further, if {[ak, fk, ϕk] : k = 1, 2, . . .} is any
sequence of data sets with gk → g in the sense G (corresponding to ak, a as in (0.13-ii),
fk → f in FF0 and ϕk → ϕ in FF1, then the corresponding solutions uk converge in XX to u.

THEOREM 4.2: Let a(··) be given in AA, satisfying (0.44), (0.45); let ϕ be given in
FF1 and let f(··) be given in FF ′0, satisfying (0.41), (0.43). Then there exists a weak solution
u of (0.8) in XX .

Proof of Theorem 4.1: Formulating the problem as (0.32), we note that the equa-
tions are decoupled and can be considered separately. For existence for (0.32-i), re-written
as (0.35), we may appeal to a result of Browder’s [4], which we recall in a conveniently
specialized form:

Let L be a closed, densely defined, skew-adjoint linear operator from
a reflexive Banach space V to its dual V∗ and let A : V → V∗ be
coercive and maximal monotone. Then (L + A) is maximal monotone
and surjective to V∗.

The linear problem (0.32-ii), is trivial. We have a continuous (indeed, compact) linear
map:

f 0 7→ z : YY∗0 → YY0 :=
{
y ∈ YY := Lp(IP) :

∫
IP
y = 0

}
(0.46)

to obtain the unique mean-zero solution; all other solutions of (0.32-ii) are obtained by
adding arbitrary constants to the solution specified by (0.46). For (0.35) we have (from
(0.34) and the skew-adjointness of ∂t)

[(∂t + A)u− (∂t + A)v](u− v) = Bg(∇u,∇v) (0.47)

which shows both monotonicity and coercivity of the operator

(∂t + A) : XX 0 ⊃ D(∂t)→ XX ∗0 (0.48)

in view of Theorem 2.3. Since A : XX 0 → XX ∗0 is continuous and ∂t is closed, skew-adjoint,
and densely defined, Browder’s theorem [4] applies to give existence of a solution ū ∈ XX 0 for
(0.35) = (0.32-i). If one had two solutions ū, v̄ of (0.35), then (0.47) gives B(∇ū,∇v̄) = 0
and application of Theorem 2.3 gives ∇ū = ∇v̄. For ū, v̄ ∈ XX 0, this means ū = v̄ so the
solution ū of (0.32-i) is unique. Adding, we obtain u = ū+ z as the unique solution of (0.7),
(0.10).

Next consider a sequence of such problems (0.7), (0.10), determined by {[ak, fk, ϕk]} with
solutions uk, decomposed as above into uk = ūk + zk with ūk ∈ XX 0, zk ∈ YY0. For each k we

10



obtain [f 0
k , ψψk] from [fk, ϕk] by (0.25), (0.28) and let ΓΓk, Ak be operators defined using ak;

abusing notation slightly, we write Bk(··) for the corresponding forms. The hypotheses of
this theorem give gk → g in the sense of (0.15) — in particular, (0.13) holds with C∗, g∗ and
N∗ ≥ ‖σ‖p fixed — and [fk, ϕk]→ [f, ϕ] in FF0×FF1 so [f 0

k , ψψk]→ [f0, ψψ] in YY∗0×XX ∗0. From
the continuity of (0.46) it is immediate that zk → z in YY0 (which we now view as embedded
in XX ) so we need only show convergence ūk → ū in XX 0 ↪→ XX .

Setting ξk := ∇uk, ξ := ∇u in Lp(Q → IRm), we have observed that the Lp−norm
‖ξk − ξ‖p is equivalent on XX 0 to ‖uk − u‖XX . We have, then,

‖ψψk − ψψ‖XX ∗
0
‖ξk − ξ‖p ≥ [(∂t + A)uk − (∂ + A)u](uk − u)

= [Akuk −Aku](uk − u) + [Aku−Au](uk − u)
= Bk(ξk, ξ) + 〈ΓΓkξ − ΓΓξ, ξk − ξ〉

so
Bk(ξk, ξ)/‖ξk − ξ‖p ≤ ‖ψψk − ψψ‖+ ‖ΓΓkξ − ΓΓξ‖q

= ‖ψψk − ψψ‖+ ‖gk(·, |ξ|)− g(·, |ξ|)‖q
(0.49)

since, pointwise a.e. on Q, we have (ΓΓkξ − ΓΓξ) = (gk − g)ξ/|ξ|.
Since we already know that ψψk → ψψ in XX ∗0, we see that the right hand side of (0.49) goes

to 0 by (0.13-ii) on setting r(·) := |ξ(·)| ∈ Lp+(Q). Applying Theorem 2.3 and noting that
we may fix Φ = Φ∗ in (0.19) independently of k since N∗(·) is fixed, (0.49) gives

‖ξk − ξ‖p ≤ Φ∗(Bk(ξk, ξ)/‖ξk − ξ‖)→ 0.

Hence, ūk → ū in XX 0 whence uk → u in XX .

Before proceeding to the proof of Theorem 4.2 we introduce the space U := D(∂t) :=
{u ∈ XX 0 : u̇ ∈ XX ∗0} with the norm

‖u‖U := ‖∇u‖p + ‖u̇‖XX ∗
0
,

essentially the graph norm of ∂t : XX 0 → XX ∗0. We showed, above, existence of a unique
solution ū ∈ U of (0.35) and now obtain a bound.

LEMMA 4.3: Consider (0.35) with A obtained, as above, from a(··) giving g ∈ G∗
— i.e., (0.14) with ‖σ(·)‖p ≤ N∗(·). Then there is a bound, depending only on D∗ and the
XX ∗0-norm of ψψ, for the U -norm of the solution ū of (0.35).

Proof: Setting ξ := ∇ū, one has

B(ξ, 0) := 〈ΓΓξ − ΓΓ0, ξ − 0〉 = 〈ΓΓξ, ξ〉
= [Aū]ū = [(∂t + A)ū]ū = ψψū
≤ ‖ψψ‖‖ū‖ = ‖ψψ‖‖ξ‖,

using the Lp(Q)−norm of ξ and the XX 0-norm of ū and the corresponding XX ∗0-norm for ψψ.
From (0.19) we have then

‖ū‖ = ‖ξ‖ ≤ Φ(B(ξ, 0)/‖ξ‖) ≤ Φ(‖ψψ‖).

11



Next, one easily sees that the norm of Aū in XX ∗0 is just the norm of ΓΓξ in Lq(Q → IRm)
which, in turn, is just the norm of g(·, |ξ|) in Lq(Q). Thus, re-writing the equation (0.32-i)
as ˙̄u = ψψ −Aū, one obtains an inequality for the XX ∗0-norm of ˙̄u: we have

‖ ˙̄u‖ ≤ ‖ψψ‖+ ‖g(·, |ξ|)‖q
≤ ‖ψψ‖+ ‖g∗‖q + C∗‖ξ‖p−1,

using the growth condition (0.13-ii), and this bounds ū in U as desired.

Proof of Theorem 4.2: We will prove existence by suitably applying Glicksberg’s
generalization [5] of the Schauder Fixpoint Theorem:

Let T map points of a compact, convex subset K of a complete topo-
logical vector space Z to nonempty convex subsets of K; assume the
graph of T is closed. Then there exists at least one fixpoint x ∈ K such
that x ∈ Tx.

Following the previous discussion we take

Z := IR⊕ YY0 ⊕XX 0 with the norm

‖w‖Z :=
[∣∣∣∣∫
Q
w
∣∣∣∣p +

∫
IP

∣∣∣∣w − ∫
Ω
w
∣∣∣∣p +

∫
Q
|∇w|p

]1/p

.

We then construct T0 : Z → YY0 + XX 0 by

w 7→ [aw, fw] 7→ [aw, f
0
w, ψψw] as in (0.36), (0.37)

7→ T0w := ū+ z0 as in (0.38)
(0.50)

where we are using the specified Neumann data ϕ. Finally, we define Tw from ũ := T0w by

Tw := {ũ+ c : Hũ(c) = 0, |c| ≤ κ0 + κ1‖ũ‖} (0.51)

with κ0, κ1 as in (0.43-i). The argument falls naturally into four parts:

(A) Show T is well-defined on Z and that a fixpoint of T solves the problem,

(B) Find a convex set B ⊂ Z invariant under T, i.e., such that TB := {u ∈ Tw : w ∈
B} ⊂ B,

(C) Show that the graph of T is closed,

(D) Show that TB is precompact in Z so, setting K := [ closed convex hull of TB], one
has K compact, convex and TK ⊂ K

from which the result is then immediate.

(A) Definition: The hypotheses (0.44), (0.45) for a(··) and (0.41), (0.43) for f(··) ensure that
aw satisfies the hypotheses of Theorem 4.1 regarding a and that fw ∈ FF0 for each w ∈ Z.
Using (0.37) one obtains [f 0

w, ψψw] in YY∗0 × XX ∗0 from [fw, ϕ] so, as in Theorem 4.1, there is a
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unique solution z0 + ū =: ũ =: T0w in YY0 ⊕ XX 0. The hypothesis (0.43-i) ensures that the
right hand side of (0.51), defining Tw is a nonempty convex set, as desired.

In (0.51) ũ := T0w is given by (0.32), with f 0, ψψ modified slightly from what would
be needed for (0.8) — as noted in the footnote4. This modification is nugatory for w such
that [fw, ϕ] satisfies (0.9) and we note that the definitions (0.42), (0.51) just ensure that
this is the case for any w in the range of T. Hence, for a fixpoint w of T one necessarily
has consistency so (0.37) gives f 0

w from [fw, ϕ] exactly as in (0.25) whence ũ satisfies (the
formulation (0.32) of)

˙̃u−∇ · a(·, w, |∇ũ|)∇ũ = f(·, w,∇w) (0.52)

with (0.3), (0.10). Since (u − ũ) is constant on Q for any u ∈ Tw, one has u̇ = ˙̃u and
∇u = ∇ũ. In particular, for u = w ( = fixpoint: w ∈ Tw), the definition (0.52) becomes
(0.8); compare (0.39).

(B) Invariance: We will construct B in the form

B = B(α, β) := {w ∈ Z : ‖∇w‖p ≤ α, ‖w‖p ≤ β},

showing that this is invariant for suitable α, β. Note that ν := ‖w‖Z ≤ α + β. For conve-
nience, we set T0 := T1 ⊕T2 with

T1 : w 7→ f 0
w 7→ z0, T2 : w 7→ [aw, ψψw] 7→ ū,

noting that u ∈ Tw (u = c+ z0 + ū) gives

ᾱ := ‖∇u‖p = ‖∇(T2w)‖,
β̄ := ‖u‖p ≤ |Ω||c|+ ‖z0‖+ ‖ū‖ ≤ C(‖T1w‖+ ᾱ)

since |c| ≤ κ0 + κ1‖T0w‖.
For ū = T2w, set ξ := ∇ū so we have (0.49) with Φ = Φν obtained from N̄ν as in (0.20).

Bounding the infimum in (0.20) by the choice λ = 1/Λ(ν), as in (0.45-ii) and noting that
(0.41) gives

ρν := sup{‖ψψw‖ : ‖w‖Z ≤ ν} = O(νγ),

we have, for any w ∈ B (so ν ≤ α + β) and ū = T2w,

ᾱ = ‖ξ‖ ≤ Φν(ρν) =: Φ̃ν ,

Φ̃p
ν ≤ 2p+1N̄ν(1/Λ(ν)) + (2/Cp)ρνΦ̃νΛ(ν)

= o(νp) + Φ̃ν(o(ν
p−1))

from which we conclude that

ᾱ ≤ Φ̃ν = o(ν) = o(α + β) (0.53)

as ν →∞ (α + β →∞).
From the growth condition (0.41) one can bound fw in Lq(Q), whence also f 0

w since
fw 7→ f 0

w is affine with ϕ fixed:

‖f 0
w‖ ≤ A+Bα + Cβϑ
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since γ ≤ 1. Thus, as the map: f 0 7→ z defined by (0.38-ii) is bounded and linear, one has

‖T1w‖ = O(α) + o(β),

β̄ = O(α) + o(β) +O(ᾱ)
(0.54)

as α, β → ∞. For some fixed C and for ε arbitrarily small, one can combine (0.53), (0.54)
to obtain

ᾱ ≤ εα + εβ, β̄ ≤ Cα + εβ (0.55)

for α, β large enough. One easily sees that, taking ε to be the smaller root of the quadratic
(1 − ε)2 = Cε (so 0 < ε < 1), one can take α, β such that β/α = (1 − ε)/ε = C(1 − ε) in
(0.55) with α, β large enough to obtain (0.55) from (0.53), (0.54) These choices give

ᾱ ≤ εα + εβ = α, β̄ ≤ Cα + εβ = β,

which just gives the invariance of B.

(C) Closed Graph: We first show the continuity of T0. Note that w 7→ fw is continuous by

Krasnoselskii’s Theorem, so boundedness of the affine map: fw 7→ f 0
w 7→ z0 gives continuity

of T1 : Z → YY0. Now suppose wk → w in Z. With a self-explanatory notation we have

[ψψk − ψψ](ūk − ū) = [(∂t −Ak)ūk − (∂t −A)ū](ūk − ū)
= 〈ΓΓkξk − ΓΓξ, ξk − ξ〉
= Bk(ξk, ξ) + 〈ΓΓkξ − ΓΓξ, ξk − ξ).

(0.56)

Thus
Bk(ξk, ξ)

‖ξk − ξ‖p
≤ ‖ψψk − ψψ‖XX ∗

0
+ ‖ΓΓkξ − ΓΓξ‖q

= ‖ψψk − ψψ‖+ ‖g(·, wk, |ξ|)− g(·, w, |ξ|)‖q =: δk

which goes to 0 as wk → w by Krasnoselskii’s Theorem and the continuity of the map:
fw 7→ ψψw : Z → XX ∗0. Thus

‖T2wk −T2w‖ = ‖ξk − ξ‖p ≤ Φ̄ν(δk)→ 0

with Φ̄ν obtained, as in (0.20), from N̄ν with ν a bound for {wk} in Z.
Finally, the continuity of [ũ, c] 7→ Hũ(c) : (YY0 ⊕ XX 0) × IR → IR ensures that, if uk =

ũk + ck ∈ Twk converges to u = ũ + c while wk → w, then ũk → ũ = T0w and ck → c
whence Hk(ck)→ Hũ(c) so u ∈ Tw — i.e., the graph of T is closed in Z × Z.

(D) Compactness: We must work slightly to obtain both invariance and compactness for K.
Note, first, that T2B is bounded in U by Lemma 4.3 and so is precompact in Lp(Q) by
the Aubin Compactness Theorem [2]. Also, T1B is precompact in YY0 as {f 0

w : w ∈ B} is
bounded in YY∗0 and the linear map: f 0

w = ż0 7→ z0 = T1w : YY∗0 → YY0 is compact. Since
TB ⊂ [−ν, ν] ⊕ T1B ⊕ T2B (ν is a bound on B in Z-norm), this gives TB precompact in
Lp(Q). Thus,

B1 := [closed convex hull of TB in Z]
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is precompact in Lp(Q) and B1 ⊂ B gives TB1 ⊂ TB ⊂ B1 so B1 is also convex, closed, and
invariant. Similarly, setting

K := [closed convex hull of TB1 in Z],

we have K convex, closed, and invariant; we will show K is precompact, hence compact.
(Note that if we restrict T to K the graph will be closed in K ×K.)

Suppose {wk} is any sequence in B1 and uk ∈ Tkw with uk = ck + zk + ūk. We may
assume, extracting a subsequence if necessary, that

(i) wk ⇀ w̄ (weak convergence in B1 ⊂ Z),

(ii) wk → w̄ in Lp(Q),

(iii) fk := f(·, wk,∇wk) ⇀ f̄ (weak convergence in Lq(Q)).8

As earlier, defining gk(·, r) := g(·, wk, r), we have gk → ḡ in the sense of G where ḡ(·, r) :=
g(·, w̄, r); in particular, for fixed r(·) ∈ Lp(Q) one has ‖gk(·, r) − ḡ(·, r)‖q → 0 by duality,
since the embedding U → Lp(Q)→ U∗. Thus (iii) above gives ψψk → ψψ in U∗. Now let ū be
the (unique) solution in D(∂t) ⊂ XX 0 of the equation (∂t + Ā)ū = ψ̄ψ. Returning to (0.56),
one has

Bk(ξk, ξ̄) = [ψψk − ψ̄ψ](ūk − ū)− 〈ΓΓkξ̄ − Γ̄Γξ̄, ξk − ξ̄〉
≤ [‖ψψk − ψ̄ψ‖U∗‖ūk − ū‖U + ‖gk(·, |ξ̄|)− ḡ(·|ξ̄|)‖q‖ξk − ξ̄‖p

so Bk(ξk, ξ̄) → 0 since {ūk} is bounded in U by Lemma 4.3. If, for some subsequence,
‖ξk − ξ̄‖ → 0 we are done: this means ūk → ū in XX 0. On the other hand, if one could
have ‖ξk − ξ̄‖ bounded away from 0, then application of (0.19) with Φ = Φ̄ν would give
ξk → ξ̄ in Lq(Q → IRm) so, in any case, (a subsequence of) {T2wk} is convergent in XX 0.
This completes the argument that TB1 is precompact, since each factor in IR × YY0 × XX 0

is precompact. Since we took K to be the closed convex hull of TB1, we have K compact
in Z. Thus the Glicksberg Fixpoint Theorem [5] applies, as desired, to give existence of a
solution.

Acknowledgments: The particular stimulus to apply the results of [8] to extend the
results of [7] so as to consider (0.8), came from a conversation with O. Veivoda. The ear-
liest version of this paper was based on research undertaken while the author was visiting
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8It need not be true that f̄ = fw̄ so, while we prove that {T2wk} is convergent, there is no suggestion
that the limit is T2w̄.
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