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Abstract

We consider a singularly perturbed system of second-order differential equations
describing steady state of a chemical process that involves three species, two reactions
(one of which is fast), and diffusion. Formal asymptotic expansion of the solution is
constructed. The theorem on estimation of the remainder is proved.

1. Introduction: statement of the problem

We consider a chemical reaction 2A + B → product which we decompose as a pair of
simultaneous binary reactions involving an intermediate species C:

A+B
λ→ C, A+ C

µ→ product

where λ, µ are the binary reaction rates. We scale our units so µ = 1 and the diffusion
coefficient1 is 1. This reaction in the presence of diffusion can be described in steady state

∗J. Math. Anal. Appl., 288, pp. 722–743, (2003).
1We assume equal diffusion coefficients for convenience of exposition, while emphasizing that for steady

state all our arguments for (1.1) would apply with only minimal modification in the more general case with
distinct coefficients D1, D2, D3.
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by the system
uxx − λuv − uw = 0,
vxx − λuv = 0,
wxx + λuv − uw = 0,

(1.1)

where u, v and w represent concentrations of the substances A, B and C, respectively. To
this we adjoin the boundary conditions

u = α > 0, vx = 0, wx = 0 at x = 0,
ux = 0, v = β > 0, wx = 0 at x = 1.

(1.2)

Our particular interest will be in the behavior of this system when the first reaction is
comparatively extremely fast, i.e., in the asymptotics as λ→∞.

The study of problem (1.1), (1.2) and its generalization to the spatially multi-dimensional
case was initiated in the paper by Seidman and Kalachev [5]. There the chemical engineering
context of this problem was extensively discussed and the following results were obtained:

• the existence of a steady state solution of (1.1), (1.2) was proved (in the multi-
dimensional case);

• it was proved that the solution converges as λ → ∞ to the solution of a reduced
problem associated with (1.1), (1.2);

• the uniqueness of the limit solution was established.

In this paper we inquire about the behavior of the solution in terms of a suitable asymptotic
expansion, using the methods of singular perturbation theory for our analysis, and then
prove the correct rate of convergence for the results of [5].

The paper is organized as follows. The next two sections provide a formal asymptotic
analysis of the problem: Section 2 describes the form of the expansion to be obtained,
including determination of the appropriate expansion parameter λ−1/3, and Section 3 shows
how the asymptotic algorithm of [6] is used to obtain the first terms of this expansion. With
this initial expansion in hand for insight, an independent proof is given in Section 4 for the
anticipated O(λ−1/3) convergence rate for the results of [5], using the infinite dimensional
Implicit Function Theorem. Finally, a similar asymptotic analysis is sketched in Section 5
for a related problem in which α → 0 in (1.2) as λ →∞, observing that α ∼ 1/λ gives an
expansion in λ−1/2, rather than in λ−1/3 as here.

We note that the corresponding time dependent system

ut = uxx − λuv − uw,
vt = vxx − λuv,
wt = wxx + λuv − uw,

(1.3)

has been considered by Haario and Seidman [3], although with boundary conditions of a
quite different type (involving time derivatives of the unknown functions at x = 1), to
describe reactions in the “film model” for a gas/liquid interface. We are also planning
to study the non-stationary system (1.3) subject to non-negative initial conditions and
boundary conditions of the form (1.2) with a concern, as here, for the asymptotics as
λ→∞. In that subsequent investigation we will be concerned with the approach to steady
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state and especially with descriptions of the development and time-dependent behavior of
moving fronts for the limit problem.

2. Asymptotic algorithm
Our goal in this and the next section is to use the boundary function method of [6]) to

construct a uniformly valid asymptotic expansion for the solution of the system, viewed in
the form (2.1), (1.2). In this section we describe the approach and find the correct expansion
parameter and the correct ‘stretched variables’ while in the next section we will show how
this method obtains the same characterization of the zeroth order approximation as was
developed in [5] and will then determine the next correction terms.

Let us start with a brief explanation of the idea behind the choice of the correct asymp-
totic sequence with respect to which the expansion will be constructed. Introducing the
small parameter 0 < ε := 1/λ � 1, the steady state system (1.1) can be written in the
form:

εuxx = uv + εuw,
εvxx = uv,
εwxx = −uv + εuw,

(2.1)

which we consider with the boundary conditions (1.2). We use the boundary function method
(see Vasil’eva, Butuzov and Kalachev [6]) for defining an asymptotic expansion of the solu-
tion to (2.1), (1.2) which should be uniformly valid on [0, 1].

The expansion will have the form of a sum of the so-called regular functions, approximat-
ing the solution of the original problem everywhere in the domain [0, 1] except the vicinity
of the point x∗ where these functions have discontinuous derivatives2 (we denote these func-
tions by ū, v̄ and w̄), and the boundary functions (denoted by Πu, Qu, Πv, Qv, Πw, and
Qw to the right and left of x∗, respectively) needed to compensate for discontinuities in the
derivatives of corresponding regular functions and depending on stretched variables. The
correct stretching is determined together with the asymptotic sequence.

Equations defining the regular functions to the leading order (denoted by ū0, v̄0 and w̄0;
these are precisely the ‘limit solutions’ found in [5]) are to be obtained from the original
problem by setting ε to zero. Thus, we have the equation ū0v̄0 = 0 that must be satisfied
by the regular functions of the zero-th order; taking into account the boundary conditions
for u and v, we obtain, as in [5],

ū0 6= 0, v̄0 = 0 in [0, x∗),
ū0 = 0, v̄0 6= 0 in (x∗, 1],
ū0 = 0, v̄0 = 0 at x = x∗,

(2.2)

where x∗, as well as ū0 and v̄0 in the subintervals [0, x∗) and (x∗, 1], respectively, are as
yet unknown. They, as well as the function w̄0, will be found in the next steps of the
asymptotic process. We will use the notation Πu(ξ), Πv(ξ) and Πw(ξ) for the boundary
functions defined to the right of the point x∗, and the notation Qu(ξ∗), Qv(ξ∗) and Qw(ξ∗)
for the boundary functions defined to the left of x∗, where

ξ = (x− x∗)/εν ≥ 0, ξ∗ = (x∗ − x)/εν ≥ 0 (2.3)

2We are taking advantage of the prior work of [5] to know that there is just one such point x∗, interior
to the interval (0, 1).
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are the boundary layer (or stretched) variables with ν a constant as yet unknown . The
boundary functions describe the corner layer in the vicinity of the point x∗; they are defined
for non-negative values of their arguments and must decay to zero as the corresponding
stretched variables approach infinity. No boundary functions are needed in the zero-th
order approximation since the limit solution obtained in [5] is already continuous. To define
the correct stretching, i.e., the value of ν, as well as to find the correct leading order of the
boundary functions we will proceed as follows.

We introduce the notation

Πu = εµ(Π1u+ higher order terms), (2.4)

and similar representations for Πv, Πw, Qu, Qv, and Qw.

Lemma 2.1: µ = ν = 1/3.

Proof: Taking into account that d2/dx2 = ε−2νd2/dξ2, we can write for the Π-functions
(see Vasil’eva, Butuzov and Kalachev [6] for a detailed description of the corresponding
algorithm):

ε

(
ε−2ν d

2Πu

dξ2

)
= [ū(x∗ + ενξ) + Πu(ξ)][v̄(x∗ + ενξ) + Πv(ξ)]

+ε[ū(x∗ + ενξ) + Πu(ξ)][w̄(x∗ + ενξ) + Πw(ξ)],

with two similar equations involving derivatives of Πv and Πw. Using the representations
of type (2.4), etc., for Π-functions, and taking into account that ū0 = 0 for x ≥ x∗ and, by
virtue of continuity of v̄0 at x∗, that we have v̄0(x

∗) = 0, we can rewrite the above equation
in the form:

ε1−2ν+µd
2Π1u

dξ2
= εµΠ1u(ξ) [v̄0x(x

∗)ενξ + εµΠ1v(ξ)] + higher order terms. (2.5)

where we assume that the limit from the right v̄0x(x
∗+) is non-zero, as we will see below.

Since we expect the boundary functions of the leading order to compensate for the O(1)
jumps in the derivatives of regular functions of the zeroth order, we must have

ε−ν d

dξ
(εµΠ1u) = O(1),

with similar relations for Π1v and Π1w. Thus, we must have µ = ν and (2.5) can be
rewritten to the leading order as

ε1−ν d
2Π1u

dξ2
= ε2νΠ1u(ξ)(v̄0x(x

∗)ξ + Π1v(ξ)) + . . . , (2.6)

with similar equations for Π1v and Π1w. For the Π1 boundary functions to decay to zero
as ξ → ∞, we need to have at least two terms in (2.6) that are of the same order in ε so,
necessarily, 1− ν = 2ν, whence ν = µ = 1/3. 2

Thus, the asymptotic expansion will take the form:

u(x, ε) = ū0(x) + ε1/3ū1(x) + ε2/3ū2(x) + εū3(x) + . . .

+

{
ε1/3Π1u(ξ) + ε2/3Π2u(ξ) + . . . when ξ > 0,
ε1/3Q1u(ξ

∗) + ε2/3Q2u(ξ
∗) + . . . when ξ∗ > 0,

(2.7)
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with similar expressions for v and w. Recall that x∗ is as yet unknown within the interval
[0, 1] and, in fact, we must also seek x∗ as an expansion

x∗ = x0 + ε1/3x1 + ε2/3x2 + · · · (2.8)

as well. Substituting (2.7) together with this expansion for x∗ into (2.1), (1.2), and equating
coefficients of like powers of ε separately for different types of functions, we obtain the
problems for the terms of the asymptotic expansion.

In this context, what was called the ‘limit solution’ in Seidman and Kalachev [5] will
now be the leading term in the asymptotics (usually defined by formally setting ε = 0 in the
original problem). In our case ū0 and v̄0 (as well as w̄0) are not defined completely by (2.2).
We show how (2.7), etc., leads at the zero-th order — in a way somewhat different in its use
of the asymptotic algorithm from that of [5] — to the same ‘limit’ problem considered earlier
by Seidman and Kalachev [5]. Thus, our previous analysis in [5] provides the existence (and
uniqueness — not otherwise obvious) for the zero-th order approximations [ū0, v̄0, w̄0] of
(2.7), etc., together with the unique determination of the leading term x0 in the expansion
of x∗. This, then, provides the basis for the further development of the expansion which
describes the behavior of the solution of (1.1),(1.2) for small ε (large λ), especially in the
neighborhood of x∗ (the principal ‘reaction zone’ for A+B → C).

3. Derivation of terms of the asymptotic expansion
1. Leading order approximation.

Let us recall that we already derived (2.2) for ū0 and v̄0. It can easily be verified that
we obtain relations similar to (2.2) for the functions ūi and v̄i with i = 1, 2. In the order
O(ε) we obtain the system

ū0 xx = ū0v̄3 + ū3v̄0 + ū0w̄0,
v̄0 xx = ū0v̄3 + ū3v̄0,
w̄0 xx = −ū0v̄3 − ū3v̄0 + ū0w̄0,

(3.1)

noting that this has different forms in the subintervals (0, x0) and (x0, 1), respectively. In
(0, x0), taking (2.2) into account, we write

ū0 xx = ū0w̄0, v̄0 = 0, w̄0 xx = ū0w̄0, (3.2)

and in (x0, 1), we have
ū0 = 0, v̄0 xx = 0, w̄0 xx = 0. (3.3)

As we have expected, these equations coincide with those in [5].
To (3.2) and (3.3) we must add the additional conditions (1.2) in the zeroth order and

the conditions following from the fact that u, v and w are continuous at x0. Using the fact
that all the boundary functions of the zeroth order are identically zero, we now write down
the portion of such conditions relevant to (3.2) and (3.3):

ū0(x0−) = ū0(x0+) = 0, v̄0(x0+) = v̄0(x0−) = 0,

w̄0(x0−) = w̄0(x0+) = const;
(3.4)
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dū0

dx
(x0−)− dQ1u

dξ∗
(0) =

dū0

dx
(x0+) +

dΠ1u

dξ
(0); (3.5)

similar expressions hold for v- and w-functions.
Consider the equations (3.3) for v̄0 and w̄0 in the subinterval (x0, 1) subject to v̄0(1) = β

and w̄0x(1) = 0. The corresponding solutions are

v̄0(x) =
β

1− x0

x− x0β

1− x0

, (3.6)

w̄0(x) = W = const, (3.7)

where x0 and W are so far unknown. To obtain additional conditions for the equations (3.2)
in the subinterval [0, x0], we must first consider the problems for the boundary functions
Π1u, Q1u, etc. For the Π1-functions, we have

(Π1u)ξξ = Π1u[v̄0x(x0+)(ξ + x1) + Π1v] = (Π1v)ξξ = −(Π1w)ξξ (3.8)

with x1 as in (2.8). [Here (·)ξξ denotes the second derivative with respect to the variable
ξ. In what follows, we will use the notations (·)ξ, (·)ξ∗ , and (·)ξ∗ξ∗ for the first and second
derivatives with respect to corresponding stretched variables.] Taking into account the decay
conditions at infinity, i.e., that Πiu(ξ) → 0, Πiv(ξ) → 0, Πiw(ξ) → 0 when ξ → ∞, we
obtain

Π1u = Π1v = −Π1w. (3.9)

In a similar way,

(Q1u)ξ∗ξ∗ = [ū0x(x0−)(−ξ∗ + x1) +Q1u]Q1v

= (Q1v)ξ∗ξ∗ = −(Q1w)ξ∗ξ∗ ,
(3.10)

and thus
Q1u = Q1v = −Q1w. (3.11)

From the matching conditions (3.5), etc., together with (3.7), we now obtain

ū0x(x0−)− (Q1u)ξ∗(0) = (Π1u)ξ(0),

−(Q1v)ξ∗(0) = (Π1v)ξ(0) + v̄0x(x0+),

w̄0x(x0−)− (Q1w)ξ∗(0) = (Π1w)ξ(0).

(3.12)

Taking into account (3.9) and (3.11), we can derive from (3.12) the relations:

ū0x(x0−) = −w̄0x(x0−) = −v̄0x(x0+) = −β/(1− x0). (3.13)

Note that the last equality in (3.13) follows from (3.6). We remark iat this point that we
have

Q1u(ξ
∗) = Π1u(−ξ∗), etc. (3.14)

as a consequence of (3.13) and the symmetry of the equations (3.8).
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Now we have enough conditions to completely define the problem for ū0 and w̄0 in the
subinterval [0, x0]. From (3.2), (1.2), (3.4) and (3.13), we have

ū0xx = ū0w̄0, w̄0xx = ū0w̄0, (3.15)

ū0(0) = α, ū0(x0−) = 0, ū0x(x0−) = −β/(1− x0), (3.16)

w̄0x(0) = 0, w̄0x(x0−) = β/(1− x0). (3.17)

Note that the general solution of (3.15) depends on five unknowns (four constants of inte-
gration and x0). To find these unknowns we have exactly five conditions in (3.16), (3.17).

This problem, transformed in an appropriate way, is nothing but the problem analyzed
in Seidman and Kalachev [5] and was there proved to have a unique solution. Once x0 is
defined, and ū0(x) and w̄0(x) known the interval [0, x0], v̄0(x) for x ≥ x0 is also known
(see (3.6)). The value w̄0(x) ≡ W for x ≥ x0 can be found from the matching condition
W = w̄0(x0−). From (2.7) we expect the remainders u− ū0, etc., to be of order O(ε1/3) =
O(λ−1/3), and in Section 4 we will, indeed, prove this in the sense of uniform approximation.

2. Terms of approximation in the next order.

To get more insight, we now turn to consideration of the next correction terms — those
of first order in the expansion parameter ε1/3. Note that the equations (3.8), (3.10) for the
boundary functions involve the constant x1 of (2.8). This is as yet unknown, but can be
found during solution of the problem for the functions ū1, v̄1 and w̄1. These functions satisfy
the following systems obtained analogously to (3.2), (3.3). In (0, x0), we have

ū1xx = ū1w̄0 + ū0w̄1, v̄1 = 0, w̄1xx = ū1w̄0 + ū0w̄1, (3.18)

and in (x0, 1), we get
ū1 = 0, v̄1xx = 0, w̄1xx = 0. (3.19)

To (3.18) and (3.19) we must add additional conditions (1.2) in the first order approximation

ū1 = 0, v̄1x = 0, w̄1x = 0 at x = 0,
ū1x = 0, v̄1 = 0, w̄1x = 0 at x = 1,

(3.20)

and the conditions following from the fact that u, v and w are continuous at x0. Taking
into account that Π1u(0) = Q1u(0), etc., and that

d2ū0/dx
2(x0−) = d2w̄0/dx

2(x0−) = ū0(x0−)w̄0(x0−) = 0; d2v̄0/dx
2(x0+) = 0

due to the linearity of v̄0 on [x0, 1], the conditions at x0 can be written as

ū1(x0−) + ū0x(x0−)x1 = ū1(x0+) = 0,

v̄1(x0−) = v̄1(x0+) + v̄0x(x0+)x1 = 0,

w̄1(x0−) + w̄0x(x0−)x1 = w̄1(x0+),

(3.21)
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and
ū1x(x0−)− (Q2u)ξ∗(0) = (Π2u)ξ(0),

−(Q2v)ξ∗(0) = (Π2v)ξ(0) + v̄1x(x0+),

w̄1x(x0−)− (Q2w)ξ∗(0) = (Π2w)ξ(0).

(3.22)

The equations for the Π2- and Q2-functions can easily be written out. E.g., for Π2u we have

(Π2u)ξξ = v̄0x(x0+)(ξ + x1)Π2u+ Π1uΠ2v + Π2uΠ1v

+[v̄0x(x0+)x2 + v̄0xx(x0+){ξ2/2 + ξx1 + x1
2/2}+ v̄1x(x0+)(ξ + c)]Π1u.

(3.23)
Note that (3.23) is a linear equation. One term in the square brackets in (3.23) depends
on another constant x2, again as in (2.8), which will be found together with the regular
functions of order O(ε2/3), and on the asymptotic terms that must be defined in the earlier
stages of the asymptotic algorithm: as soon as these terms are determined the function in
the brackets will be known and the equation for Π2u (as well as the equations for other Π2-
and Q2-functions) will be completely defined.

Just as in the case of the Π1- and Q1-functions, it can be shown that

Π2u = Π2v = −Π2w, (3.24)

and
Q2u = Q2v = −Q2w. (3.25)

By virtue of (3.24), (3.25) we obtain from (3.22):

ū1x(x0−) = −w̄1x(x0−) = −v̄1x(x0+). (3.26)

Once again we remark that we have

Q2u(ξ
∗) = Π2u(−ξ∗), etc. (3.27)

as a consequence of (3.26) and the symmetry of the equation (3.23) and the corresponding
equation for Q2u.

Solving the equations (3.19) for v̄1, w̄1 in the interval (x0, 1) with corresponding condi-
tions in (3.20) and (3.21), we obtain

v̄1 =
βx1

(1− x0)2
[x− 1], (3.28)

w̄1 = W̃ = const, (3.29)

where x1 and W̃ are as yet unknown. For ū1, w̄1 in the interval (0, x0) we have the system
(3.18)

ū1xx = ū1w̄0 + ū0w̄1, w̄1xx = ū1w̄0 + ū0w̄1,

subject to conditions (3.20) at x = 0:

ū1(0) = 0, w̄1x(0) = 0,
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and conditions at x = x0−:

ū1(x0−) =
βx1

1− x0

, (3.30)

ū1x(x0−) = − βx1

(1− x0)2
, (3.31)

w̄1x(x0−) =
βx1

(1− x0)2
, (3.32)

Condition (3.30) follows from (3.21), and (3.31), (3.32) are obtained by substituting (3.28)
into (3.26). We have exactly five conditions for defining the five unknowns: four constants
of integration and x1.

Lemma 3.1: x1 = 0 and ū1 ≡ 0, w̄1 ≡ 0 on [0, x0].

Proof: First, notice that ū1xx = w̄1xx, and thus, for constants A,B we have

w̄1 = ū1 + Ax+B, (3.33)

Differentiating (3.33) once with respect to x and evaluating the resulting expression at
x = x0 (substituting (3.31), (3.32) for ū1x(x0−) and w̄1x(x0−) into this expression), we
obtain A = 2x1β/(1− x0)

2 so

w̄1 = ū1 +
2x1β

(1− x0)2
x+B (3.34)

and

ū1x(0) = − 2x1β

(1− x0)2
. (3.35)

Let us assume that the problem has a non-trivial solution and come to a contradiction.
Suppose x1 > 0. Then ū1(x0) > 0, dū1/dx(0) < 0 and dū1/dx(x0) < 0. This means that,
since ū1(0) = 0, the function ū1(x) must have at least one negative minimum and at least
one positive maximum in the interval (0, x0), and the minimum is attained to the left of
where the maximum is attained. Let w̄1 ≥ 0 at the maximum of ū1. Then, taking into
account that ū0 > 0, w̄0 > 0 in (0, x0), we have that w̄0ū1 + ū0w̄1 > 0 at this point. On the
other hand, at the maximum we have ū1xx < 0, and arrive at a contradiction with the first
equation in (3.18). Now let w̄1 < 0 at the maximum of ū1. Then from (3.34) it follows that
w̄1 < 0 at the point of minimum of ū1 (notice that at this point ū1 is negative, and besides,
the term 2x1βx/(1−x0)

2 in (3.34) is an increasing function of x and the negative minimum
lies to the left of the positive maximum). At the minimum of ū1 we have ū1xx > 0, but at
this point w̄0ū1 + ū0w̄1 < 0, which again leads to a contradiction with the first equation in
(3.18). A similar argument leads to a contradiction if we assume x1 < 0.

Thus, x1 = 0, and we have for ū1, w̄1 a system of homogeneous equations with zero
boundary conditions. We now show that the solution is trivial: ū1 ≡ 0, w̄1 ≡ 0.

From (3.34), w̄1 = ū1 +B, so if B = 0, then w̄1 = ū1, and we have

ū1xx = (w̄0 + ū0)w̄1, ū1(0) = ū1x(x0) = 0,

and thus, by virtue of (w̄0 + ū0) ≥ const > 0, we get w̄1 ≡ 0, ū1 ≡ 0.
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Next, suppose B 6= 0; without loss of generality we can assume B < 0, since otherwise
we would consider the solution(−ū1,−w̄1), and also arrive at a contradiction. First, we note
that from (3.34), (3.20), w̄1x(0) = ū1x(0) = 0. Substituting (3.34) into the equation for ū1,
we obtain:

ū1xx = (w̄0 + ū0)w̄1 +Bw̄0, ū1(0) = ū1x(0) = 0 (3.36)

Since w̄0(0) > 0, B < 0 and ū1(0) = 0, the right-hand side of (3.36) is negative in some
neighborhood of x = 0. Using this with the conditions ū1(0) = ū1x(0) = 0, we see that
ū1 < 0 on some interval in the vicinity of x = 0. On the other hand, multiplying (3.36) by
û = min{0, ū1} ≤ 0, integrating over the interval [0, x0], rearranging terms and noting that
ûū1 = û2, ûxū1x = û2

x, we get∫ x0

0
û2

xdx+
∫ x0

0
(w̄0 + ū0)û

2dx+B
∫ x0

0
w̄0ûdx = 0.

Each term in the left-hand side of this relation is greater than or equal to zero (since, e.g.,
(w̄0 + ū0) ≥ const > 0, and B < 0, û ≤ 0). So, û ≡ 0, and thus, ū1 ≥ 0 on (0, x0). We have
arrived at a contradiction. 2

All the regular functions of order O(ε1/3) in [0, x0] are now known. From the last con-
dition of (3.21) it follows that W̃ = 0, and thus, w̄1 ≡ 0 in [x0, 1]. Substituting x1 = 0
into (3.28), we obtain v̄1 ≡ 0 in [x0, 1]. Thus, all the regular functions of order O(ε1/3) are
identically zero in the whole interval [0, 1]

Now, when x1 is determined, we may finally define Π1u, Q1u, Π1v, Q1v, Π1w, Q1w.
To complete the problems for these boundary functions, we have to substitute ū0x(x0) =
−v̄0x(x0) = −β/(1− x0) and x1 = 0 into the systems (3.8) and (3.10). Note that the equa-
tions forQ-functions can be transformed into the equations for Π-functions by symmetrically
changing ξ∗ to −ξ. Therefore, by virtue of (3.9), to find all the Q1- and Π1-functions, we
need to solve only a single equation

(Π1u)ξξ = (Cξ + Π1u) Π1u

(
C :=

β

1− x0

)
(3.37)

with the conditions

Π1u(∞) = 0, (Π1u)ξ(0) =
ū0x(x0−)

2
= − β

2(1− x0)
< 0. (3.38)

The last condition follows from the corresponding condition for u-functions in (3.12) together
with the relation (Q1u)ξ∗(0) = (Π1u)ξ(0). We are looking for the non-negative solution to
(3.37), (3.38). We can obtain (see Protter and Weinberger [4]) that the unique solution of
this problem exists and is bounded from above by the positive solution of the problem

Pξξ = CξP, P (∞) = 0, Pξ(0) = −C
2
< 0. (3.39)

Recognizing that (3.39) is just a scaled version of the defining equation for the well-known
Airy function, we see that

0 ≤ Π1u(ξ) ≤ P (ξ) = − C2/3

2Ai′(0)
· Ai(C1/3ξ)
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and recall the decay rate: Ai(η) ∼ exp(−2
3
η3/2)/η3/8 as η →∞. This means, in particular,

that the discrepancy introduced by Π1u(ξ) to the boundary condition for u at x = 1 is
transcendentally small (as are the discrepancies introduced by the other Π1, Q1-functions;
these can easily be written in terms of Π1u, from the boundary conditions for u, v and w
at x = 0 and x = 1).

Let us introduce the new stretched variables ξ̃ = (x−x0)/ε
1/3 ≥ 0, ξ̃∗ = (x0−x)/ε1/3 ≥ 0,

defined for x > x0 and for x < x0, respectively. These new variables differ from the old
variables ξ and ξ∗, respectively, at order O(ε2/3) due to the shift of x0 from x∗. We now
define

U1 =

{
ū0(x) + ε1/3Q1u(ξ̃∗) for x ∈ [0, x0], ξ̃∗ ≥ 0,

ε1/3Π1u(ξ̃) for x ∈ [x0, 1], ξ̃ ≥ 0;
(3.40)

V1 =

{
ε1/3Q1u(ξ̃∗) for x ∈ [0, x0], ξ̃∗ ≥ 0,

v̄0(x) + ε1/3Π1u(ξ̃) for x ∈ [x0, 1], ξ̃ ≥ 0;
(3.41)

W1 =

{
w̄0(x)− ε1/3Q1u(ξ̃∗) for x ∈ [0, x0], ξ̃∗ ≥ 0,

W − ε1/3Π1u(ξ̃) for x ∈ [x0, 1], ξ̃ ≥ 0;
(3.42)

We note that higher order terms of the asymptotic approximation can be constructed as
well. The regular functions of higher orders will satisfy linear (non-homogeneous) equations
of type (3.18). The boundary functions will satisfy linear equations of type (3.23). Some of
the xk (k ≥ 2) in the expansion (2.8) for x∗ will be non-zero.

From (2.7) we expect that the remainder terms u−U1, v−V1, w−W1 are of order O(ε2/3).
In the next section we prove the theorem on estimation of the remainder for the leading
order approximation. The argument that we use in the proof cannot be automatically
extended to the case of higher order approximations. We plan to address the analysis of
convergence rate of higher order asymptotic solution to the solution of the original problem
in the nearest future.

4. Rate of convergence
Our object in this section is to prove the O(ε1/3) = O(λ−1/3) convergence rate indicated

by the expansion (2.7) above. Our proof here, while suggested by the insights suggested
by the previous asymptotic analysis, will be independent of that analysis. The key to the
present argument is a generalization of the uniqueness argument of [5] together with the
use, twice, of the Implicit Function Theorem (IFT). The second use of the IFT is in an
infinite dimensional setting Y , treating K = λuv temporarily as an independent entity
in Y , converging there to a delta function (more precisely, to K̄ = κ̄δ(· − x̄0)). The proper
choice of norm for this convergence — i.e., the proper choice of the function space Y — is
essential to the computation for Lemma 4.3 below: we find it necessary to take Y to be
W−1,1(0, 1) — the dual space of the Lipschitzian functions.

Let us introduce a shorter notation ū := ū0, v̄ := v̄0, w̄ := w̄0 for the leading order
approximation of the solution to (2.1), (1.2).

Theorem 4.1: ‖u− ū‖∞, ‖v − v̄‖∞, ‖w − w̄‖∞ = O(ε1/3).

Proof: The proof takes the form of a sequence of lemmas. Before presenting these we

11



recall our system (1.1), (1.2) in the form

on [0, 1] at x = 0 at x = 1

u′′ −K − uw = 0, u = α > 0, u′ = 0,
v′′ −K = 0, v′ = 0, v = β > 0,
w′′ +K − uw = 0, w′ = 0, w′ = 0,

(4.1)

with K := λuv. The following facts are already known from [5]:

1. u, v, w ≥ 0; and also u ≤ α, v ≤ β, w ≤M uniformly in λ and x.

2. 0 ≤ −u′, v′ are monotone increasing; −u, v are monotone increasing.

3. v′(1) = κ, −u′(0) = 2κ,
∫ 1
0 uw dx = κ with κ :=

∫ 1
0 K dx

4. There are limit values κ̄, ū, v̄, w̄ such that κ→ κ̄ and u, v, w ⇀ ū, v̄, w̄ inH1
weak

(hence, in C[0, 1]); in the limit K becomes3 a delta function: K̄ = κ̄δ(· − x̄0).

5. ū > 0 on [0, x̄0), ū ≡ 0 on [x̄0, 1]; v̄ = β(x− x̄0)/(1− x̄0) > 0 on (x̄0, 1], v̄ ≡ 0
on [0, x̄0], and κ̄ = β/(1− x̄0).

6. dU/dω < 0 (see Lemma 4.2, below).

Lemma 4.1. Define x0 so that u(x0) = v(x0), and set ζ := u(x0) = v(x0). Then
ζ = O(ε1/3).

Proof: We temporarily set φ := v′(x0), ψ := −u′(x0). Note that φ, ψ ≥ 0 and

(u′ − v′)′ = u′′ − v′′ = −uw

so

φ+ ψ = −(u′ − v′)|x=1 −
∫ 1

x0

uw dx = κ−
∫ 1

x0

uw dx ≤ κ.

On the other hand, setting [··]+ = max{0, [··]}, we use the convexity of u, v to write:

κ =
∫ 1

0
K dx =

∫ 1

0
λuv dx

≥ λ
∫ 1

0
[ζ + φ(x− x0)]+[ζ − ψ(x− x0)]+ dx

=
λ

2
[ζ3/φ+ ζ3/ψ],

where the final equality assumes ζ ≤ φx0, ψ(1 − x0), as is necessarily true for large λ. It
follows that

λζ3 ≤ 2κ

1/φ+ 1/ψ
≤ κ2

since either φ or ψ ≤ κ/2, so either 1/φ or 1/ψ ≥ 2/κ. Thus, ζ ≤ κ2/3ε1/3. 2

Corollary. Let δ̄ denote a vector consisting of the restrictions of u(·) to [x0, 1] and of

3In [5] this was interpreted as convergence in the sense of H−1, the dual of H1
0 (0, 1), but we will see

here that it is more appropriate to consider this in Y = Lip∗, the dual of the space W 1,∞(0, 1) of Lipschitz
continuous functions.
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v(·) to [0, x0] together with a variety of related terms4 boundedly dependent on these. Then
δ̄ = O(ε1/3).

Proof: It is sufficient to note that u(·) is decreasing so 0 < u(x) ≤ ζ = O(ε1/3)
for x0 ≤ x ≤ 1 and correspondingly for v on [0, x0] and then to note that we have uni-
form bounds for, e.g., w(·) and κ (and 1/κ) in considering the examples noted. 2

We now construct a function U = U(ω, δ̄) generalizing the function U = U(ω) introduced
in the uniqueness argument in [5] — indeed, U(ω) of [5] is now U(ω, 0). This function is
defined as follows: First, solve the differential equation5

−η′′ = (η + κ−2/3v)(η − κ−2/3v + ω − 2s),

η(0) = 0, η′(0) = 1 +
1

κ

∫ 1

x0

uw dx.
(4.2)

Note that κ−2/3v (more specifically, κ−2/3v(x0−κ−1/3s) for s > 0) and the term
∫ 1
x0
uw dx/κ

occurring in the initial condition were explicitly noted as components of δ̄ so η = η(s) =
η(s;ω, δ̄). Next, solve the equation η′(s̃) = 2 for s̃ = s̃(ω, δ̄) and then, given s̃, define
ξ = ξ(ω, δ̄) ∈ (0, 1) as the unique real root of the cubic

β̃ξ3 + σξ − σ

with σ = s̃3, β̃ = β +
[
u(1) +

∫ 1

x0

∫ 1

x
uw dx̂ dx

]
,

where we note that β̃ − β is part of δ̄. Finally, set

κ̂ = κ̂(ω, δ̄) :=
β̃

1− ξ
= (s̃/ξ)3 (4.3)

and define
U(ω, δ̄) := κ̂2/3η(s̃) + v(0).

We relate U , etc., to our system as follows. Set y = u−v, so y′′ = −uw = −(y+v)w and
set ω̃ := (w−u+2v)|x=x0 = w(x0)+ ζ. Since (w−u+2v)′′ = 0, we have (w−u+2v)′ ≡ 2κ
and w = u− 2v + ω̃ + 2κ(x− x0). Thus

y′′ = −(y + v)[y − v + ω̃ + 2κ(x− x0)],
y(x0) = 0, y′(x0) = −κ+

∫ 1
x0
uw dx

(4.4)

If we now set

s := −κ1/3(x− x0), ω := κ−2/3ω̃ = κ−2/3[w(x0) + ζ],

4We note κ−2/3v(x0 − κ−1/3s) for s > 0,
∫ 1

x0

uw dx/κ, and
∫ 1

x0

∫ 1

x

uw dx̂ dx as examples of the terms

taken (e.g., in the proofs of Lemmas 4.2, 4.3, below) to be components of δ̄.
5In (4.2), ′ denotes d/ds for s > 0. To see what is going on, note that eventually we will have s =

−κ1/3(x− x0), so s > 0 will correspond to x < x0.
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then η(s) := κ−2/3y(x) will satisfy (4.2). Note that η′ := dη/ds = −κ−1 dy/dx and that
the initial conditions give y′(0) = u′(0) = −2κ so taking s̃ = κ1/3x0 corresponding to
taking x = 0 gives η′(s̃) = 2 as specified. This specification of s̃ together with the definitions
of η, U and our choices above of s, ω then give U(ω, δ̄) = y(0) + v(0) = u(0) = α, provided
we show that κ̂ = κ. To this end we note that

u(1)− β = y|1x0
=
∫ 1

x0

y′ dx =
∫ 1

x0

[−κ−
∫ 1

x
y′′dx̂] dx

= −κ[1− x0] +
∫ 1

x0

∫ 1

x
uw dx̂ dx

so, with β̃ as above and recalling that the choice of s̃ gave κ = [s̃/x0]
3, we see that our

definition of ξ gave ξ = x0: we do, indeed, have κ̂ = κ.
Lemma 4.2. Let ω̄ be the limit value for ω when δ̄ = 0, i.e., ω̄ := κ̄−2/3w̄(x̄0).

Then dU(ω, 0)/dω < 0 at ω = ω̄.

Proof: This was already shown as one of the principal results of [5], but we take the
opportunity to sketch the argument here again.

For δ̄ = 0 we have η = η(s, ω) satisfying: η′′ = η(η + ω − 2s) with η(0) = 0, η′(0) = 1
and note that on the relevant interval we have η, (η+ω− 2s) > 0 so η′′ > 0 and z = z(s, ω)
is positive and strictly increasing: z > 0, z′ = zs > 0. Further, ηω satisfies:

η′′ω = [2η + ω − 2s]ηω + η with ηω(0) = 0 = η′ω(0) [= zω(0)]

so ηω > 0 and η′ω = zω > 0. [Note that the strict inequality for ηω is for 0 < s ≤ s̃.] Solving:
z(s, ω) = ζ gives s = σ(ζ, ω) for 1 ≤ ζ ≤ 2 and zsσω + zω = 0 then gives σω < 0 for ζ > 1;
note that s̃ = σ(2, ω) so ds̃/dω < 0. At the same time we note that implicit differentiation
of the defining cubic gives dξ/ds̃ = 3s̃2(1 − ξ)/[3βξ2 + s̃3] > 0 so ξ must also be a strictly
decreasing function of ω as is κ̂ = β/(1− ξ).

The trick now is to reformulate the differential equation using t = η′ as independent
variable, since this is strictly increasing on the relevant interval [0, s̃]. We now write
Y (t, ω) = η(σ(t, ω), ω) and note that

Y ′
[
=
∂Y

∂t

]
=

∂η/∂s = t

∂η′/∂s = η′′
=

t

Y (Y + ω − 2σ)
with Y (1) = 0.

[This is singular at t = 1, so a power series computation6 is needed there to get started.]
Now Yω satisfies

Y ′
ω = −t[Y (Y + ω − 2σ]−2 [(2Y + ω − 2σ)Yω + (1− 2σω)] with Yω(1) = 0

so, as we already know σω < 0, we have Yω < 0. In particular, d[η(s̃, ω)] |ω=ω̄= Yω(2, ω̄) < 0
— i.e., η(s̃, ω) is a strictly decreasing function of ω. Since we have already noted that κ̂

6Note that the original ode for η (as a function of s) is analytic in s, ω so η is analytic in s, ω. From the
ode and the data, we see that at s = 0 one has η = 0, η′ = 1, η′′ = 0, and η′′′ = ω so η has an expansion
η = s + (ω/6)s2+[higher order terms]. This gives t = η′ = 1 + (ω/2)s2+[higher order terms] and we may
invert this to get η2 ∼ s2 ∼ 2(t − 1)/ω whence η2 (and so η) is strictly decreasing in ω for small enough
t− 1 > 0.
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is a strictly decreasing function of ω, the asserted result now follows from the definition:
U := κ̂2/3η(s̃). 2

Lemma 4.3. x0 = x̄0 +O(ε1/3), κ = κ̄+O(ε1/3).

Proof: One easily sees that U is well-defined and suitably differentiable for (ω, δ̄) near
(ω̄, 0). By Lemma 4.2 we have ∂U/∂ω |(ω̄,0) 6= 0, so the Implicit Function Theorem ensures
that one can locally solve for ω the equation

U(ω, δ̄) = α

to get ω = ω(δ̄) for δ̄ in a neighborhood of 0 with ω = ω̄ +O(δ̄). Then

x0 = ξ(ω(δ̄), δ̄) = x̄0 +O(ε1/3)
κ = κ̂(ω(δ̄), δ̄) = κ̄+O(ε1/3)

as desired, using the Corollary to Lemma 4.1 and, as in [5], ξ(ω̄, 0) = x̄0, κ̂(ω̄, 0) = κ̄. 2

We next wish to estimate the norm of4 = (K−K̄). Since K̄ has the form K̄ = κδ(·−x̄0)
with both κ and x̄0 to be determined from the problem, we must be careful in our choice of
the norm to use for this estimation: it turns out that the right space to work with is

Y = Lip∗ := [dual space of {Lipschitzian functions}] =
[
W 1,∞(0, 1)

]
=: W−1,1(0, 1).

Lemma 4.4. ‖K − K̄‖Y = O(ε1/3).

Proof: Let f be any function in Lip = W 1,∞(0, 1) with ‖f‖Lip = 1, i.e., |f(x)| ≤ 1 and

|f(x1)− f(x2)| ≤ |x1 − x2| on [0, 1]. Then

〈4, f〉 =
∫ 1

0
Kf dx− κ̄f(x̄0)

=
∫ 1

0
K[f − f(x̄0)] dx+ (κ− κ̄)f(x̄0).

Note that |f(x̄0)| ≤ 1 and we have already shown that (κ− κ̄) = O(ε1/3). Also∣∣∣∣∫ 1

0
K[f(x)− f(x0)] dx

∣∣∣∣ ≤
∫ 1

0
K|x− x0| dx

=
∫ 1

0
v′′|x− x0| dx = −

∫ x0

0
v′′(x− x0) dx+

∫ 1

x0

v′′(x− x0) dx

=
∫ x0

0
v′ dx+ v′(x− x0)|1x0

−
∫ 1

x0

v′ dx

= v|x0
0 − v|1x0

+ (1− x0)v
′(1) = 2ζ − v(0)− β + κ(1− x0)

= 2ζ − v(0) + [−u(1) +
∫ 1

x0

∫ 1

x
uw dξdx] = O(ε1/3).

This proves Lemma 4.4. 2

Now consider the ‘solution operators’ Sj : γj 7→ ωj (j = 1, 2) such that{
ω′′1 − w̄ω1 = γ1; ω1(0) = 0 = ω′1(1);
ω′′2 − ūω2 = γ2; ω′2(0) = 0 = ω′2(1).

(4.5)
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It is easily seen that each Sj is a well-defined compact operator: Y := Lip∗ → Y (For S2

this uses positivity of ū; for S1 the non-negativity of w̄). Now define

F (γ̄,4) =

(
γ1 −4− ūS2γ2 − (S1γ1)(S2γ2)
γ2 +4− w̄S1γ1 − (S1γ1)(S2γ2)

)
, where γ̄ =

(
γ1

γ2

)
. (4.6)

It is easy to verify that F (0̄, 0) = 0 and to compute the Frechet derivative at (0̄, 0):

A :=
∂F

∂γ̄

∣∣∣∣∣
(0̄,0)

=

(
1 −ūS2

−w̄S1 1

)
.

For future reference, we note that if we set 4 = K − K̄ and

ω1 := u− ū, γ1 := 4+ ūω2 − ω1ω2

ω2 := w − w̄, γ2 := −4+w̄ω1 − ω1ω2

then it is again easy to verify from the equations that we have

F (γ̄,4) = 0. (4.7)

with u− ū = S1γ1 and w − w̄ = S2γ2.

Lemma 4.5. N (A) is trivial.

Proof. Suppose γ̄ =

(
a
b

)
is in N (A) and set φ := S1a, ψ := S2b so, from the definition

of A,
a− ūψ = 0, b− w̄φ = 0,

and, by (4.5),
φ′′ − w̄φ = a = ūψ, ψ′′ − ūψ = b = w̄φ,

Then (φ − ψ)′′ = 0 so, as (4.5) gives φ′(1) = 0 = ψ′(1), we have ψ − φ = const =: c and
ūψ = ūφ+ cū, Thus,

φ′′ − (ū+ w̄)φ = cū with φ(0) = 0 = φ′(0) and φ′(1) ≥ 0.

Multiplying by φ− := min{0, φ} ≤ 0, we get

0 ≤
[∫ 1

0
(φ′−)2 dx+

∫ 1

0
(ū+ w̄)φ2

− dx
]

= −c
∫ 1

0
ūφ− dx

whence either c ≥ 0, or φ− ≡ 0. Similarly, multiplying by φ+ := max{0, φ} ≥ 0, we get

0 ≤
[∫ 1

0
(φ′+)2 dx+

∫ 1

0
(ū+ w̄)φ2

+ dx
]

= −c
∫ 1

0
ūφ+ dx,

whence c ≤ 0, or φ+ ≡ 0.
Case 1. [c = 0 so φ ≡ ψ]. Then φ′′− (ū+ w̄)φ = 0 with φ(0) = 0 = φ′(0), whence φ ≡ 0

and ψ ≡ 0, so a = 0 = b.
Case 2. [c > 0]. Note that if c > 0, then we have shown φ+ ≡ 0, i.e., φ ≤ 0. We know

from [5] that ū > 0 in some neighborhood of 0; let cū ≥ 2δ > 0 on some [0, ε]. By continuity,
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since φ(0) = 0, we have |φ| ≤ δ′ on [0, ε] (with ε = ε(δ′) > 0 for arbitrary δ′, and we now
take δ′ = δ/M̃ , where 0 ≤ ū + w̄ ≤ M̃). Then φ′′ = cū + (ū + w̄)φ ≥ 2δ − M̃δ′ = δ > 0 on
[0, ε], whence

φ′(x) = φ′(0) +
∫ x

0
φ′′dξ ≥ δx

on [0, ε], so φ(x) ≥ δx2/2 > 0, which is contradicting with φ ≤ 0. Thus we cannot have
c > 0.

Case 3. [c < 0]. Much as in Case 2, if c < 0, then φ− ≡ 0, so φ ≥ 0 and cū ≤ −2δ < 0
on [0, ε] with |φ| ≤ δ′ = δ/M̃ on [0, ε]. As above, we now get φ′′ ≤ −δ, so φ′(x) ≤ −δx, so
φ(x) ≤ −δx2/2, which is contradicting with φ ≥ 0. Thus we cannot have c < 0 either.

This leaves only Case 1, and so proves Lemma 4.5. 2

Completion of the proof of the Theorem. We note that A has the form “identity
+ compact” on Y = Lip∗ with N (A) trivial and so is boundedly invertible there. By
the Implicit Function Theorem (IFT) in Y , it then follows that there is a unique local C1

solution Γ : 4 7→ γ̄ of (4.7) in a neighborhood of 0 in Y — i.e., F (γ̄,4) = 0 for γ̄ = Γ(4)
with Γ(4) = O(‖4‖Y) so, using Lemma 4.4, we have γ1 = O(ε1/3) and γ2 = O(ε1/3) in the
sense of Y .

Setting ω3 := v− v̄, we note that ω′′3 = 4 with ω′3(0) = 0 = ω3(1); thus, since Lemma 4.4
gives 4 = O(ε1/3) in the sense of Y , we immediately have v − v̄ = O(ε1/3) in the sense of
Y2 = {f : f ′′ ∈ Y}. Next, since S1, S2 are continuous from Y to Y2, we see from the above
that also u − ū = S1γ1 = O(ε1/3) and w − w̄ = S2γ2 = O(ε1/3) in the sense of Y2 Since Y2

embeds continuously (indeed, compactly) in C[0, 1], we note that this sense of the error will
certainly imply O(ε1/3) approximation also in the sense of sup norm.

5. Further remarks
Let us now consider another qualitatively different setting for the asymptotics. First,

note that if α = 0 in the time-dependent system with u(0, ·) = 0 (for any fixed λ — one can
then let λ → ∞) we have u ≡ 0 for all t, x and this goes to the steady state (independent
of λ)

ū ≡ 0, v̄ ≡ β, w̄ ≡ w∗ :=
∫ 1

0
w(0, x) dx.

Note that this is not of the form “(3.6) with x∗ = 0” and that w∗ is here given by the
initial data but is indeterminate from the steady state system alone (since no reactions
occur in the absence of the reactant A, we simply have a spatial redistribution of the initial
concentration w(0, x) of reactant C over the domain).

On the other hand, if we take λ → ∞ first and then let α → 0, it was observed in
Seidman and Kalachev [5] that we will get w∗ →∞, and so, no limit solution at all.

However, suppose we let α → 0, λ→∞ simultaneously, in a related fashion — say we
consider

α := α̃λ−ν = α̃εν ,

for some fixed α̃, ν > 0. Numerical experiments suggest that we would then also get no limit
solution. Heuristically this can be explained as follows. The first reaction, transforming the
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substances A and B into C, is very fast. If the concentration α of reactant A on the
boundary x = 0 is small (in our case, asymptotically small), all the molecules of A will
be used up for production of C and there will be no molecules of A left to participate in
the second “slow” reaction A + C → product. This will lead to continuous growth of the
concentration of C, with different positive values of ν giving different rates of growth. [Note
that in the case of α = O(1), there are enough molecules of A to deplete the concentration
of B in some region of the domain [0, 1], where now v = 0 so the first reaction cannot
consume any more molecules of A at its fast rate. This reaction still takes place, but now
its rate is diffusion limited: determined by the rate at which molecules of B diffuse into
the depleted region. The diffusion in our system is “slow”, and thus the production of C is
comparatively slow. At some point all the additional molecules of C produced by the first
reaction will be consumed by the second reaction. This process eventually leads to a limit
solution of the non-stationary problem.]

Let us now show how the asymptotic algorithm reflects these changes in the behavior of
the solution (2.1), (1.2) in this setting for the particular choice ν = 1/2 so α =

√
εα̃, where

ε = 1/λ� 1. Then we expect the asymptotic solution to be in the form

u(x, ε) = ū0(x) +
√
εū1(x) + . . .+ P0u(ζ) +

√
εP1u(ζ) + . . . ,

with similar expressions for v and w. Here ūi are the regular terms of the asymptotic
expansion, Pi(ζ) are the boundary functions in the vicinity of the boundary x = 0 and
ζ = x/

√
ε is the stretched variable. Substituting this form of the asymptotic solution into

the equation (2.1) and boundary conditions (1.2), and equating terms of like powers of
ε separately for different types of functions, we obtain the problems for the terms of the
asymptotic series.

For the regular functions of zeroth order, we have, as in the previous setting,

ū0v̄0 = 0,

and we expect that since α = O(
√
ε), the boundary conditions for ū0 are homogeneous, so

ū0(x) ≡ 0,

while the function v̄0(x) (as yet unknown) cannot vanish identically since it satisfies a non-
homogeneous boundary condition at x = 1.

For the regular functions of the order O(
√
ε), we similarly obtain ū1(x) ≡ 0 but v̄1 is

still unknown. For the regular functions of the order O(ε), we write

ū0xx = 0 = ū0v̄2 + 2ū1v̄1 + ū2v̄0 + ū0w̄0,

v̄0xx = ū0v̄2 + 2ū1v̄1 + ū2v̄0,

w̄0xx = −ū0v̄2 − 2ū1v̄1 − ū2v̄0 + ū0w̄0,

whence
ū2 = 0, v̄0xx = 0, w̄0xx = 0.

This gives v̄0 = ax+ b and w̄0 = cx+ d, where the constants a, b, c and d must be obtained
from the additional conditions

v̄0x(0) + (P1v)ζ(0) = 0, v̄0(1) = β,
w̄0x(0) + (P1w)ζ(0) = 0, w̄0x(1) = 0.

(5.1)
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We must also take into account the conditions which involve boundary functions of the
zeroth order as well as P1u:

ū0(0) + P0u(0) = 0, so P0u(0) = 0,
(P0v)ζ(0) = 0, (P0w)ζ(0) = 0,

(5.2)

ū1(0) + P1u(0) = P1u(0) = α̃. (5.3)

To define v̄0x(0) and w̄0x(0) completely, we first solve the problems for the boundary
functions of orders O(1) and O(

√
ε). In the leading order, we have

(P0u)ζζ = P0u · [v̄0(0) + P0u] ,

with similar equations for P0v and P0w. With homogeneous conditions and the decay
conditions at infinity, these equations (5.2) have only trivial solutions.

For the O(
√
ε) boundary functions we obtain:

(P1v)ζζ = P1u · v̄0(0) = (P1u)ζζ = −(P1w)ζζ

from which, together with the conditions at infinity, we easily see that

P1u = P1v = −P1w.

The equation for P1u, with conditions (5.3) and P1u(∞) = 0, has a solution

P1u(ζ) = α̃e−
√

v̄0(0)ζ ,

where v̄0(0) is still unknown. Since P1v(ζ) = P1u(ζ), we can substitute this expression into
the first condition of (5.1) (for the v-functions at x = 0) to get

v̄0x(0)− α̃
√
v̄0(0) = 0

and, taking into account the form of v̄0(x), we obtain a − α̃
√
b = 0 or b = a2/α̃2. Since

v̄0(1) = a+ b = β, this gives

a2 + α̃2a− α̃2β = 0 so a = − α̃
2

2

[
−1 +

√
1 + β/α̃2

]
;

since a must be non-negative.
There is then no solution of the stationary problem for w̄0: w̄0(x) = cx + d, since

we come to a contradiction when attempting to define the constants in the expression for
w̄0 from corresponding boundary conditions. Indeed, w̄0x(x) = c, and on the one hand

w̄0x(0) = c = −α̃
√
v̄0(0) = −α̃

√
b 6= 0 (b now is a known constant), while on the other hand

w̄0x(1) = c = 0 (which follows from (5.1)).
Numerical computations for the original non-stationary problem (see (1.1)) with large λ

and small α confirm the absence of a stationary solution. Asymptotic algorithm applied to
the non-stationary problem with λ = 1/ε and α =

√
εα̃ will lead for w̄0(x, t) to the equation

w̄0t = w̄0xx with boundary conditions w̄0x(0, t) = ta
√
b < 0 and w̄0x(1, t) = 0. It can be

easily shown that this problem for w̄0(x, t) has a solution growing in t for every x ∈ [0, 1].
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It can also be checked that the behavior of w̄0(x, t) is similar to that of the function w(x, t),
determined numerically as the solution of the non-stationary problem.

6. Conclusion

In this paper a particular asymptotic algorithm (the so-called, boundary function method)
is applied to construct a formal asymptotic expansion of the solution of original problem
(2.1), (1.2). The theorem on estimation of the remainder is proved for the leading order
approximation. In contrast to the treatment in Seidman and Kalachev [5], where the passage
to the limit type of result was presented without establishment of the rate of convergence,
here we explicitly determined the rate of convergence to the leading order approximation
as the small parameter ε goes to 0.

The problem (2.1), (1.2) has many important applications in chemical engineering mod-
eling. Somewhat related problems (so-called, problems with exchange of stabilities) were
considered using different techniques (upper and lower solutions) in Butuzov et al. [1], [2].
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