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1. Introduction

From the viewpoint of chemical engineering, our objective is to understand

the diffusion controlled rate for a surface reaction 2A + B → D in terms of a

coupled pair of rapid irreversible binary reactions2

A + B
λ→ C, A + C

µ→ D (1.1)

involving an intermediate complex C. Mathematically, this will lead us to con-

2The system (1.1) in a ‘film’ (cf., [5]) was also treated as a model problem in [2], there

involving much different considerations. For a perspective of one general setting in which

problems of this sort arise, see [3] for a discussion of some of the modeling issues arising in the

context of bubble reactors. We are here indebted to J. Romanainen, of Kemira Chemicals, for

raising the question discussed in this paper.
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sider3 the system of ordinary differential equations

a1u
′′ − λuv − µuw = 0

a2v
′′ − λuv = 0

a3w
′′ + λuv − µuw = 0

on (0, 1) (1.2)

with the boundary conditions

u = α > 0, v′ = 0, w′ = 0 at x = 0,

u′ = 0, v = β > 0, w′ = 0 at x = 1
(1.3)

and the paper will be concerned primarily with the limiting behavior as λ →∞

(with α, β, and µ fixed) for solutions of (1.2)-(1.3). In particular, our objective

will be the determination of q :=
∫

λuv for large λ (→∞), which corresponds to

the rate of production of C and of consumption of B — and also to the rate of

production of D, since the assumed boundary conditions for w ensure that the

second reaction in (1.1) must go to completion.

This analysis is interesting in its own right — both for the application and as

leading to some interesting analysis — but may also serve as a model problem in

3The variables u, v, w of (1.2) represent normalized concentrations of A,B, C, respectively;

we have omitted consideration of the reaction product D as well as of any other species whose

reactions, if coupled at all with (1.1), are negligible within the membrane. The quadratic

terms λuv and µuw are then the usual kinetics for reactions in dilute solution. The variable x

represents position transverse to the membrane thickness; we are assuming that this situation

is effectively constant in directions parallel to the surface. We have chosen units to scale the

membrane thickness to 1 and the diffusion coefficients by a to get aj = O(1). Note that this

means that the original reaction rates have been multiplied by h2/a; as they appear here, we

have µ = O(1) and λ � 1 (with λ →∞ later). [It would also have been be possible, using the

structure of the equation, to normalize the concentrations so as to have µ = 1 as well, but we

have chosen not to do this.] The boundary conditions (1.3) correspond to the situation we will

be describing.
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that the techniques developed here may also be of use for similar situations. To

this end, part of our analysis is presented in greater generality than is actually

needed for (1.2) and Remark 4 in Section 5 provides some brief further indication

of the scope of these ideas.

Following the framework of Chapters 13–15 of [1], which we recommend as a

reference for the determination of diffusion controlled reaction rates and applica-

tions, we first sketch the heuristic analysis of (1.1) when both λ, µ are effectively

infinite. Our point will be that this must be modified — the objective of our

analysis from the viewpoint of the application — when the second reaction in

(1.1) is less rapid than is appropriate for that argument.

For our purposes, one postulates steady state in a thin diffusive layer4 (such

as a membrane) of thickness h with the concentration of A maintained at A∗ on

one side (x = 0) and, similarly, B = B∗ on the other (x = h). For both reactions

in (1.1) taken to be ‘instantaneous’, we then have a reaction plane (x = x∗h)

within the diffusive layer with pure diffusion of B (i.e., with no reaction in the

absence of A) for x∗h < x < h and pure diffusion of A for 0 < x < x∗h so

one has straight-line concentration profiles. To obtain the overall stoichiometry

2A + B → D, the second reaction in (1.1) must go to completion so we must

4Diffusion is, e.g., on the order of 10−5cm2/sec — which is slow for a ‘normal’ length scale

but fast enough (on the scale of a layer thickness h which may be about 10−3cm) that approach

to steady state would be rapid compared to the ‘normal’ time scale; in particular, one would

expect quasi-steady state ‘tracking’ of comparatively slower parameter variations.
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assume that it takes place at the same reaction plane.5 The relevant slopes are

−A∗/x
∗h, B∗/(1 − x∗)h and the flux balance for this stoichiometry then gives

a1A∗/x
∗ = 2a2B∗/(1 − x∗) where a1, a2 are the diffusion coefficients for A, B,

respectively. As the flux of B necessarily equals the production of D, the surface

reaction produces D at the rate

Ḋ =: q = (a1/2h)A∗ + (a2/h)B∗ (1.5)

per unit area. Note that the situation is ‘diffusion controlled’ as, even with

this approximating assumption of infinitely fast reaction speeds λ, µ in (1.1), the

effective composite reaction rate is finite, depending on the diffusion coefficients

a1, a2 (normalized by the thickness h).

We actually wish to consider (1.1) in a setting with the reaction rate µ = O(1)

(on the diffusive time scale) but still with the first reaction very much faster:

λ � 1. Thus, we take λ →∞ and anticipate a well-defined reaction plane within

the membrane for the first reaction while noting that the second will now be

distributed over the region 0 < x < x∗h where the component A is available.

This means, of course, that in this region one will not have the straight line

profile which made possible the simple analysis above.

We do continue to want the second reaction to go to completion, as above,

and so assume that the membrane is such as to give ‘no flux conditions’ for the

5Otherwise we would get

(1 + ρ)A + B → ρD + (1− ρ)C (1.4)

where ρ here represents the fraction of the C produced which does become involved in the

second reaction so (1 − ρ) is the remaining fraction which does not become so involved —

presumably ‘escaping’ by transport across x = h. This problem is not our present concern, but

we will comment on it in Section 5, Remark 4.
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complex C on each side, so C cannot leave the membrane once produced. This

is a somewhat difficult situation to work with, since the Dirichlet conditions for

u, v imply ‘potentially infinite’ sources of the reagents A, B which produce it.

Thus, a steady state can only be possible if the net production of C would be

0, i.e., if the production of C in the first reaction would always be balanced by

its consumption in the second, slower reaction. It is not at all clear a priori

whether such a balance should occur, but the consumption of C from the second

reaction might be expected to ‘grow’ (from a time-dependent viewpoint) as the

concentration of C would build up and so one might hope that ‘eventually’ it

would become high enough to give this balance — provided enough A remained

to maintain the slower reaction at this level.

Section 2 will be devoted to obtaining suitable estimates and showing that

one does, in fact, have steady state solutions for finite λ > 0; the first part

of Section 3 obtains an estimate giving enough compactness to ensure, at least

for subsequences, some convergence as λ → ∞. These arguments of Sections 2

and 3 already depend somewhat delicately on the interaction of reactions and

boundary conditions in our model problem but have a ‘PDE flavor’ and are

presented from that point of view, although with final emphasis on the specifically

one-dimensional case consistent with our original motivation.

As in the earlier heuristic argument, it is intuitively clear that A, B effectively

cannot coexist for very large λ — if they were together they would ‘immediately’

react to form C — so, in the limit λ →∞ we must have uv ≡ 0 (i.e., A, B must

occupy distinct geometric regions). Section 3 is concerned with a mathemati-

cal demonstration of the corresponding characterization of ‘limit solutions’, for

the subsequences noted above, with a return to the specifically one-dimensional
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setting for the more detailed convergence analysis.

The chemical engineers’ principal concern here would be with the determi-

nation, as the parameters α, β (and µ) vary, of the rate of production of D or,

equivalently, the rate at which an external supply of B is being consumed by flux

into the membrane. [As already noted, this is q :=
∫

λuv.] For this determination

to be well-defined, it is necessary to show that the characterization of the limit

solution implies uniqueness, which is demonstrated in Section 4. This also com-

pletes the convergence argument as λ → ∞ by eliminating the need to extract

subsequences.

The uniqueness argument seems rather specialized to the ODE context and to

the particular system at hand. Indeed, there seems no reason on physical grounds

to expect uniqueness generally for problems of this sort. Although we do not, at

present, know any actual example of such behavior, one might anticipate ‘track-

ing’ (in quasi-steady state), for slowly varying data in the boundary conditions,

with the physical selection from among multiple steady states depending hys-

teretically on the history of that variation.

Finally, we note that the present paper is to be viewed as the initiation of a

more complete program of investigation. In particular, we note that: (1) while

we are exclusively concerned here with the steady state problem we anticipate

related results for the time-dependent evolution and (2) the present results may

be viewed as providing the leading term of a singular perturbation expansion in

powers of ε1/3 (cf. Remarks 1,2 in Section 5 and [4]) for the small parameter

ε := 1/λ.
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2. Existence of a steady state solution

While our principal interest is with the one-dimensional problem (1.2)-(1.3),

the considerations of this section and the next extend to a higher-dimensional

setting so the results will be presented in that more general context, especially as

this exposition seems likely to provide a deeper understanding of the underlying

argument. In this section we present the argument for existence of (at least one)

solution of the steady state problem. As already noted in the Introduction, the

major difficulty will be to bound the production rate of C (i.e., to bound the

generation term
∫

λuv) and then to bound the total amount of C at steady state

(i.e.,
∫

w).

We will now be considering a bounded region Ω ⊂ IRm (physically, m =

1, 2, 3, but mathematically we may have any m ≥ 1) and the steady state reac-

tion/diffusion system takes the form

a1 4 u− λuv − µuw = 0

a2 4 v − λuv = 0

a3 4 w + λuv − µuw = 0

on Ω

u = α on ΓA with uν = 0 on ∂Ω \ ΓA

v = β on ΓB with vν = 0 on ∂Ω \ ΓB

wν = 0 on ∂Ω.

(2.1)

Here ΓA, ΓB are separated portions of the boundary ∂Ω and α, β are (traces6 on

ΓA, ΓB, repectively, of) functions such that

α, β ∈ H1(Ω) with 0 ≤ α ≤ ᾱ, 0 ≤ β ≤ β̄

and
∫
ΓA

α =: α > 0
(2.2)

6We need, e.g., 0 ≤ α ≤ ᾱ only on ΓA but note that the global assumption involves no further

loss of generality: else, just replace α pointwise on Ω by min{ᾱ, α+} with α+ := max{α, 0}.
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for positive constants ᾱ, β̄, α. For the region Ω, we assume sufficient regularity

for the usual trace theorems; we will later state some further mild conditions

(automatic for the one-dimensional case) which will be used in obtaining relevant

estimates.

We will prove existence by an argument using the Schauder Fixpoint Theorem.

With M > 0 to be determined later, we set

S = SM := {(u, v, w) : 0 ≤ u ≤ ᾱ, 0 ≤ v ≤ β̄, 0 ≤ w,
∫
Ω w ≤ M}

⊂ L2(Ω)× L2(Ω)× L1(Ω)
(2.3)

and then define on S a map M : (û, v̂, ŵ) 7→ (u, v, rw) with u, v, w, r given by

the steps:

1. Solve for u the linear problem

a1 4 u− λuv̂ − µuŵ = 0 with

u = α on ΓA and uν = 0 on ∂Ω \ ΓA

(2.4)

2. Using u from (2.4), solve for v the linear problem

a2 4 v − λuv = 0 with

v = β on ΓB and vν = 0 on ∂Ω \ ΓB

(2.5)

3. Using u, v from (2.4), (2.5), solve for w the linear problem

a3 4 w + λuv − µuw = 0 with wν = 0 on ∂Ω (2.6)

4. Set r := M/‖w‖1 if ‖w‖1 ≥ M and r := 1 if ‖w‖1 ≤ M .

There is no question about the solvability of (2.4) when v̂, ŵ ≥ 0. Maximum

Principle arguments then give u ≥ 0 and u ≤ ᾱ; we briefly sketch the argument
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for the latter. [Take z := (u− ᾱ)+ := max{0, u− ᾱ} ≥ 0 as test function in the

weak form of (2.4) — noting that z = 0 on ΓA so the boundary term vanishes

after application of the Divergence Theorem, that ∇z · ∇u = |∇z|2, and that

uz ≥ 0 — to get

a1

∫
Ω
|∇z|2 = −

∫
Ω
[λv̂ + µŵ]uz ≤ 0

whence z is a constant, necessarily 0 as z = 0 on ΓA. To show u ≥ 0 one

correspondingly takes z := u− := min{0, u} ≤ 0.] Given u ≥ 0, similar arguments

give 0 ≤ v ≤ β̄ from (2.5). At this point we have an estimate

0 ≤
∫
Ω

λuv =: q ≤ q̄ (2.7)

with q̄ = λᾱβ̄|Ω| for the moment, although we shall later be at pains to obtain

an estimate for q̄ independent of λ.

Since 0 ≤ u 6≡ 0 as α > 0, the Neumann problem (2.6) is solvable for w: one

consequence of the estimates we will shortly obtain is that one has a Fredholm

operator of index 0 for which 0 cannot be an eigenvalue, i.e., there cannot be a

nontrivial solution of the equation with λ = 0. Since Q := λuv ≥ 0, another

Maximum Principle argument (now taking z := w− := min{0, w} ≤ 0) shows

that w ≥ 0. [We may note here that the positivity u, v, w ≥ 0 is certainly

necessary for a physical interpretation of these as concentrations.] The definition

of r now ensures that M = MM maps SM to itself for any choice of M > 0. We

will obtain estimates showing that M may be chosen (large enough) to ensure

that r = 1 at a fixpoint of M so one has a solution of (2.1). First, however, to

ensure the existence of a fixpoint by the Schauder Theorem we must comment

on the continuity and compactness of M. Taking z = (u−α) as test function in

10



the weak form of (2.4), one gets

a1‖∇u‖2 = a1

∫
∇u · ∇α +

∫
[λv̂ + µŵ]uα−

∫
[λv̂ + µŵ]u2

≤ a1‖∇u‖‖∇α‖+ ᾱ [
∫

λuv̂ + µᾱM ]

‖∇u‖2 ≤ ‖∇α‖2 + 2ᾱ[λᾱβ̄|Ω|+ µᾱM ]/a1

(2.8)

and, similarly, ‖∇v‖2 ≤ ‖∇β‖2 +2β̄q̄/a2 — giving H1(Ω) bounds (whence L2(Ω)

compactness) for those components. Given this compactness and the uniqueness

for the equations, one easily gets continuity of the maps: v̂, ŵ 7→ u and then;

u 7→ v.

Most of our effort must be devoted, as indicated in the Introduction, to esti-

mating w. To this end, we first note from (2.6) that

∫
Ω
[λuv − µuw] = a3

∫
Ω
4w = 0 so

∫
µuw =

∫
λuv =: q (2.9)

as wν = 0 on ∂Ω. Next, we write w =
◦
w +ω where

∫
Ω

◦
w= 0 and ω is a constant

(so ω|Ω| =
∫
Ω w = ‖w‖1). Now (2.6) gives −a34

◦
w= [λuv − µuw] with

◦
wν= 0

whence, using (2.7),

‖ ◦
w ‖W ≤ K‖λuv − µuw‖1 ≤ 2Kq̄ (2.10)

for some suitable space W depending on the dimension m and the geometry

of Ω. For our present purposes, we only need compactness of the embedding7

W ↪→ L1(Ω) with the consequent L1 estimate

‖ ◦
w ‖1 ≤

◦
K q̄. (2.11)

7This is a very mild restriction on Ω — for a smooth boundary one would expect a ‘shift

theorem’ giving W = W 2,1(Ω). Certainly we have this for the one-dimensional setting with

W = W 2,1(0, 1) ↪→ C0,1[0, 1].
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Now suppose we were to have a lower bound on the amount of A in the system:

∫
Ω

u ≥ α1 > 0. (2.12)

Observing that
∫

uw =
∫

u
◦
w +ω

∫
u, we get from (2.11) that

µωα1 ≤ µω
∫
Ω

u =
∫
Ω

µuw − µ
∫
Ω

u
◦
w

≤ q̄ + µᾱ‖ ◦
w ‖1 ≤

(
1+

◦
K

)
q̄,

(2.13)

with compactness since ω is one-dimensional. As before, this will give continuity

as well as compactness for the map: u, v 7→ w — once we can verify (2.12) — so

the Schauder Theorem will apply to ensure existence of a fixpoint of M. Note

that we have bounded ‖w‖1 = |Ω|ω independently of the choice of M , so one can

choose M >
(
1+

◦
K

)
q̄/µα1 and be certain of obtaining r = 1 in step 4 at the

fixpoint so this gives the desired solution of (2.1).

It seems plausible that our next argument, verifying (2.12), could be modified

to apply to more general geometries, but we avoid considerable complication by

presenting this only for the case of a region which is cylindrical near ΓA — i.e.,

such that we may coordinatize position in Ω near ΓA by (x, y) with y ∈ Y ⊂ IRm−1

for 0 < x < δ so the relevant portion Ωδ ⊂ Ω has the form Ωδ = (0, δ)× Y with

ΓA = {0} × Y . We set

U(x) := a1

∫
Y

u(x, y) dy for 0 ≤ x ≤ δ.

Note that

0 < −U ′(0) = −a1

∫
Y ux dy

∣∣∣
x=0

= a1

∫
ΓA

uν = a1

∫
∂Ω uν

=
∫
Ω a1 4 u =

∫
Ω λuv +

∫
Ω µuw,

≤ 2q̄.

(2.14)
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Further, for 0 < x < δ and y ∈ ∂Y we have (x, y) ∈ ∂Ω \ ΓA with coincidence of

the normals to ∂Ω and to ∂Y whence
∫
Y4yu =

∫
∂Y uν = 0 for 0 < x < δ so

U ′′ =
∫
Y

a1 4 u =
∫
Y
[λuv + µuw] ≥ 0

whence U ′(x) ≥ U ′(0) ≥ −2q̄ on (0, δ). Since (2.2) gives U(0) = a1α > 0, we

then have U(x) ≥ max{0, a1α− 2q̄x} which gives

∫
Ω

u ≥ 1

a1

∫ δ

0
U(x) dx ≥ min

{
δα

2
,
a1α

2

4q̄

}
=: α1. (2.15)

This completes the proof of our existence result.

3. Estimates; Convergence as λ →∞

In this section we consider the convergence (for subsequences) of solutions of

(1.2)-(1.3) as λ → ∞. The section naturally divides into two parts: showing

that all solutions we consider will lie in a fixed compact set, independent of

λ, assuring the existence of convergent subsequences with λ = λk → ∞ and

then characterizing the limit functions [ū, v̄, w̄]. The first part essentially consists

of bounding q :=
∫

λuv (which is just the production rate of C) and, as in the

previous section, it is reasonable to do this in the PDE context for (2.1), obtaining

a λ-independent estimate for q̄ in (2.7). For the second part, we will first comment

briefly on the PDE context but will then return to the one-dimensional setting

of (1.2)-(1.3) for detailed treatment. In that context we will obtain convergence
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on [0, x∗], where x∗ ∈ (0, 1) is a new unknown variable, to a solution of

a1ū
′′ = µūw̄ = a3w̄

′′, v̄ ≡ 0 on (0, x∗),

ū = α > 0, −a1ū
′ = 2q, w̄′ = 0 at x = 0,

ū = 0, −a1ū
′ = a3w̄

′ = q at x = x∗

(3.1)

with convergence on [x∗, 1] to

ū ≡ 0, v̄ = β
x− x∗

1− x∗
, w̄ = const = w̄(x∗) =: w∗. (3.2)

For the first part, in reconsidering (2.7), it is convenient to introduce a function

ϑ on Ω such that8

0 ≤ ϑ ≤ 1, 4ϑ = 0 on Ω

ϑ =

 0 on ΓA

1 on ΓB

ϑν ∈ L1(∂Ω)
(3.3)

Note that the boundary conditions in (3.3) and (2.1) give

(1− ϑ)uν ≡ 0 ≡ ϑvν on ∂Ω. (3.4)

Now, with ϑ∗ ∈ (0, 1), set Ω< := {x ∈ Ω : ϑ ≤ ϑ∗}, Ω> := {x ∈ Ω : ϑ ≥ ϑ∗}. On

Ω< one has (1− ϑ∗) ≤ (1− ϑ) and λuv ≤ a1 4 u so one obtains

(1− ϑ∗)
∫
Ω<

λuv ≤
∫
Ω<

(1− ϑ)a1 4 u ≤
∫
Ω
(1− ϑ)a1 4 u =

= −a1

∫
∂Ω

uϑν ≤ a1ᾱ
∫

∂Ω
|ϑν | .

8To have 0 ≤ ϑ ≤ 1 on Ω just requires interpolation between 0 and 1 on the remainder of

∂Ω. It may be a mild restriction on Ω that this can be done so as to have ϑν ∈ L1(∂Ω). We

note that one could omit the equation 4ϑ = 0, asking instead only that 4ϑ ∈ L1(Ω) with

a minor modification of (3.5). In the one-dimensional case we could take ϑ(x) = x, giving

q̄ = 4[a1α + a2β] in (3.5) — although we note that (3.11) gives half that and further note

(3.16).
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Similarly, one has ϑ∗ ≤ ϑ on Ω> and λuv = a2 4 v so

ϑ∗

∫
Ω>

λuv ≤
∫
Ω>

ϑa2 4 v ≤
∫
Ω

ϑa2 4 v =

= −a2

∫
∂Ω

vϑν ≤ a2β̄
∫

∂Ω
|ϑν | .

Adding these estimates and minimizing over the choice of ϑ∗ gives q̄: one obtains

the desired form of (2.7),

q :=
∫
Ω

λuv ≤
[√

a1ᾱ +
√

a2β̄
]2 ∫

∂Ω
|ϑν | =: q̄. (3.5)

From (2.8), taken at the fixpoint of M, and the similar estimate for v, one

has

‖u‖(1) ≤
[
‖∇α‖2 +

2ᾱq̄

a1

+ |Ω|ᾱ2
]1/2

‖v‖(1) ≤
[
‖∇β‖2 +

2β̄q̄

a2

+ |Ω|β̄2

]1/2 (3.6)

(where ‖ · ‖(1) denotes the usual H1(Ω)-norm) so these are now bounded inde-

pendently of λ, µ. Similarly, we have (2.11) bounding9 ‖ ◦
w ‖W independently of

λ, µ. Using (2.12) — whether or not obtained as (2.15), in a somewhat special

geometry — one has (2.13) bounding ω independently of λ and of µ ≥ µ∗.

Thus, for solutions (u, v, w) of (2.1) one has

(u, v, w) bounded in H1(Ω)×H1(Ω)× [W + IR], uniformly as λ →∞. (3.7)

By compactness it follows that: for any sequence λ = λk → ∞, there is a

subsequence for which one has convergence in, e.g., L2(Ω)× L2(Ω)× L1(Ω)

(u, v, w) → (ū, v̄, w̄).

9We also note that the bound for v ∈ H1(Ω) immediately bounds Q = 4v ∈ H−1(Ω)

— in terms of q̄, of course, but without assuming an embedding L1(Ω) ↪→ H−1(Ω) which is

unavailable for the higher dimensional case. This, in turn, would easily bound
◦
w in H1(Ω)

without using (2.10).
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One can also ask of the subsequence that u, v each converge weakly in H1(Ω) and

pointwise ae on Ω with some similar convergence for w, depending on the nature

of W .

Fixing any such subsequence and its limit, we now turn to the second part of

the section: characterization of the limit functions (ū, v̄, w̄).

The first observation is that all the uniform estimates we have obtained also

apply in the limit — so 0 ≤ ū ≤ ᾱ, etc. The product uv converges pointwise ae

to ūv̄ and is uniformly dominated by the (integrable) constant ᾱβ̄ so uv → ūv̄ in

L1(Ω) by Lebesgue’s Dominated Convergence Theorem. Since ‖uv‖1 ≤ q̄/λ → 0,

one then must have ūv̄ ≡ 0 (ae on Ω) as expected. Next, we observe that

|u − ū|w̄ is dominated by ᾱw̄ and converges pointwise to 0 so uw̄ → ūw̄ in

L1(Ω); we have ‖uw − uw̄‖1 ≤ ᾱ‖w − w̄‖1 → 0 so uw − uw̄ → 0 in L1(Ω).

Thus, µuw → µūw̄ in L1(Ω). Since 4 is continuous from H1(Ω) to H−1(Ω),

hence also continuous between weak topologies, Q = 4v ⇀ 4v̄ =: Q̄ ∈ H−1(Ω).

[Somewhat independently, we note that L1(Ω) embeds (isometrically) in the dual

space [C(Ω̄)]∗ (= {measures on Ω̄}) and that Q := λuv is uniformly bounded

in L1(Ω) so we have weak-∗ convergence there: Q
∗
⇀ Q̄ and Q̄ is a measure on

Ω̄. We know that ‖Q̄‖m ≤ q̄.] Since each Q is positive (λ, u, v ≥ 0), one has

immediately that Q̄ is a positive measure. We similarly note that 4u ⇀ 4ū in

H−1(Ω) so µūv̄ ∈ L1(Ω) ∩H−1(Ω).

Since the boundary conditions are independent of λ, we see that the limit func-

tions satisfy these as well (in some suitable sense; classical for the one-dimensional
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case) and so satisfy the limit system

a1 4 ū− Q̄− µūw̄ = 0

a2 4 v̄ − Q̄ = 0

a3 4 w̄ + Q̄− µūw̄ = 0

on Ω

ū = α on ΓA with ūν = 0 on ∂Ω \ ΓA

v̄ = β on ΓB with v̄ν = 0 on ∂Ω \ ΓB

w̄ν = 0 on ∂Ω.

(3.8)

Either again taking limits or directly from (3.8), we have

∫
ΓA

ūν = 2q = 2
∫
ΓB

v̄ν with q := 〈Q̄, 1〉 = lim
λ→∞

∫
Ω

λuv =
∫
Ω

µūw̄. (3.9)

It is reasonable to conjecture that the distribution Q̄ is supported on an

interface (of codimension 1) partitioning Ω into the subregions on which one has

ū > 0, v̄ > 0, respectively, where it just gives the jump in the gradient across this

‘reaction surface’. We do not pursue this characterization for the general PDE

setting (although, note Remark 3 in Section 5), but now restrict our attention to

(1.2)-(1.3) for more detailed treatment.

In the one-dimensional case we have H1(0, 1) ↪→ C0,(1/2)−[0, 1] and W =

W 2,1(0, 1) ↪→ C0,1[0, 1] so the convergence we have been discussing in the argu-

ment for (3.8) implies uniform convergence on [0, 1]; we have a pointwise uniform

upper bound for w and so for w̄. A key observation in the one-dimensional setting

is that the positivity of u′′, v′′ means that u′, v′ are monotone increasing so, with

the boundary conditions u′(1) = 0 = v′(0), one has

0 ≤ a2v
′(x) ≤ a2v

′(1) = q = q(λ), 0 ≤ −a1u
′(x) ≤ −a1u

′(0) = 2q (3.10)
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— a2v
′(x) =

∫ x
0 a2v

′′ =
∫ x
0 λuv ≤

∫ 1
0 λuv =: q, etc. This also gives

1− x

a2

∫ x

0
λuv = (1− x)v′(x) ≤

∫ 1

x
v′ = β − v(x) ≤ β,

x

a1

∫ 1

x
λuv ≤ −xu′(x) ≤ −

∫ x

0
u′ = α− u(x) ≤ α;

adding gives q ≤ [a2β/(1−x)+a1α/x] and minimizing over x gives the alternative

bound

q ≤
(√

a1α +
√

a2β
)2

= q̄ ≤ 2(a1α + a2β) (3.11)

in this setting.

We have L2-weak convergence for these derivatives10 so also 0 ≤ v̄′ ≤ q,

0 ≤ −ū′ ≤ 2q in the limit. This also implies that u, ū are decreasing and v, v̄

increasing on [0, 1]. Since we have ūv̄ ≡ 0, it follows that v(0) → v̄(0) = 0 < α

as ū(0) = u(0) = α > 0 and, similarly, u(1) → ū(1) = 0. Thus, for each λ (large

enough to ensure v(0) < α and u(1) < β) there is some ξ = ξ(λ) ∈ (0, 1) such

that

u(x) ≥ v(x) on [0, ξ), u(x) ≤ v(x) on (ξ, 1].

We have u(x) ≥ α − 2qx so we also have ū(x) ≥ α − 2qx > 0 for 0 ≤ x < α/2q;

similarly, v(x) ≥ β−q(1−x) > 0 for 0 ≤ (1−x) < β/q. Thus, ξ ∈ [α/2q̄, 1−β/q̄].

Again extracting a subsequence if necessary, we have convergence ξ → x∗ for

some x∗ ∈ [α/2q̄, 1 − β/q̄]; in the limit one has (not merely ‘ae’, since u, v, ū, v̄

are continuous)

ū ≥ 0, v̄ ≡ 0 on [0, x∗], v̄ ≥ 0, ū ≡ 0 on [x∗, 1]. (3.12)

Since v̄ ≡ 0 on [0, x∗], one has v̄′′ = 0 on (0, x∗) in the sense of distributions;

since v̄′′ = Q̄, this shows that Q̄ vanishes on (0, x∗) — i.e., that
∫ b
a λuv → 0 as

10Actually, one has uniform convergence on compact subsets of [0, 1]\{x∗} with ū, v̄, w̄ smooth

except at x∗.
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λ → ∞ for any 0 < a < b < x∗. Similarly, ū ≡ 0 on [x∗, 1] so Q̄ = ū′′ − µūv̄

vanishes on (x∗, 1). Thus, the support of Q̄ can only be in {0, x∗, 1}. Now choose

some small a > 0 such that, e.g., 5q̄a < α so α ≥ u ≥ α/2 (for large λ) on [0, 2a]

whence u(x) ≤ 2u(x + a) on [0, a]. Then, as v(x) ≤ v(x + a) on [0, a], we have∫ a
0 λuv ≤

∫ 2a
a λuv → 0 and we see that the endpoint 0 is not in the support of Q̄.

Similarly, we eliminate 1 and see that the support of Q̄ is the singleton {x∗} so

Q̄ = qδ(x− x∗):∫ b

a
λuv → q := 〈Q̄, 1〉 = lim

∫ 1

0
λuv if x∗ ∈ (a, b) ⊂ [0, 1],∫ b

a
λuv → 0 for [a, b] ⊂ [0, x∗) ∪ (x∗, 1].

(3.13)

By interpretation of the differential equations of (3.8), restricted to (0, x∗)∪(x∗, 1)

where Q̄ = 0 or by taking the limit of (1.2), we obtain the differential equations

a1ū
′′ = µūw̄ = a3w̄

′′ on (0, x∗),

a2v̄
′′ = 0 = a3w̄

′′ on (x∗, 1)

which can here be interpreted classically so ū, w̄ are smooth on [0, x∗] (with v̄ ≡ 0)

and v̄, w̄ are linear on [x∗, 1]. In this setting, we still have the original boundary

conditions ū(0) = α, v̄(1) = β, w̄′(0) = 0 = w̄′(1) (whence w̄ =const. on [x∗, 1])

and (3.9) just gives −a1ū
′(0) = 2q, a2v̄

′(1) = q. Since v̄(x∗) = 0, it follows that

v̄(x) = β(x− x∗)/(1− x∗) on [x∗, 1] so we have verified (3.2) and have

q = a2v̄
′(1) = a2β/(1− x∗); (3.14)

this is just the jump in a2v̄
′ across x∗. For a < x∗ < b we have convergence∫ b

a
λuv +

∫ b

a
µuw = a1[u

′(b)− u′(a)] → −a1ū
′(a)

→ q +
∫ b
a µūw̄

and letting a → x∗−, b → x∗+ (so
∫ b
a µūw̄ → 0) gives −a1ū

′(x∗−) = q; similarly,

we obtain a3w̄
′(x∗−) = q, completing the verification of (3.1).

19



Note that (3.1) and the monotone decrease of ū′ give 2q ≥ −a1ū
′ ≥ q on

(0, x∗) so, integrating, we have x∗(2q/a1) ≥ α − 0 ≥ x∗(q/a1). Combining this

with (3.14) from (3.1) gives

a1α

a1α + 2a2β
≤ x∗ ≤ a1α

a1α + a2β
. (3.15)

An immediate consequence of (3.15), using (3.14) again, is that

a2β + 1
2
a1α ≤ q ≤ a2β + a1α (3.16)

— with the minimal value corresponding (with our normalization) to (1.5), where

we also had µ → ∞, and the maximal value corresponding to a similar compu-

tation of the rate of consumption of B from the reaction A + B
λ→ C alone, i.e.,

λ → ∞ with µ = 0. Of course, the maximal value in (3.16) also provides a new

bound q̄ in the limit.

4. Uniqueness of the limit solution

In this section we show uniqueness of the solution of the limit problem (3.1)∪(3.2).

Recalling that v̄ = 0 in [0, x∗], we consider the problem (3.1); note that x∗ is here

unknown, except for (3.15), with q and w̄(x∗) =: w̄∗ also unknown except for

(3.16).

Subtracting the first differential equation of (3.1) from the other and integrat-

ing twice with the additional conditions at x∗, we obtain a3w̄ = a1ū + a3w̄
∗ −

2q(x∗ − x) whence

a1ū
′′ = µū[a1ū + a3w̄

∗ − 2q(x∗ − x)]/a3 for 0 < x < x∗.
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At this point we suppress the unknowns x∗ and q by a substitution: if we set

s :=
[

µq

a1a3

]1/3

(x∗ − x), y :=

[
a2

1a3

µq2

]1/3

u, ω :=

[
a2

3

µq2a1

]1/3

w̄∗, (4.1)

then, with a bit of manipulation, the equation and initial conditions for the new

variable y = y(s) = y(s, ω) take the form:

yss = y(y + ω − 2s)

y(0) = 0, ys(0) = 1,

(4.2)

with ω an unknown parameter. As −a1ū
′(0) = 2q, we also have

ys(s0) = 2 (4.3)

where s = s0 corresponds to x = 0 so (4.1) gives s0 = (µq/a1a3)
1/3x∗. We may

reformulate this, using (3.14) to eliminate q, as an equation for x∗ in terms of s0:

γ(x∗)3 + x∗ − 1 = 0

(
γ :=

a2

a1a3

µβ

s3
0

)
. (4.4)

We note also that, since ū, w̄ > 0 on (0, x∗), we must have

y > 0, y + ω − 2s > 0 for 0 < s < s0. (4.5)

Since the definition (4.3) of s0 gives ys < 2 on (0, s0) and so y(s) − 2s < 0, it is

only the strict positivity of ω which makes it at all possible to have y+ω−2s > 0;

on the other hand, that condition certainly ensures that y > 0.

The key idea of our argument is to introduce a function: ω 7→ U(ω) as follows:

Given ω, solve the initial value problem (4.2), for s > 0 until ys attains

the value 2, defining s0 = s0(ω) by (4.3) and then setting

γ = γ(ω) :=
a2

a1a3

µβ

s3
0(ω)

, η = η(ω) := y(s0(ω), ω), (4.6)
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— with s0, γ, η undefined if (4.5) fails. (Note that (4.5) gives yss > 0 so

one has uniqueness for the determination of s0 > 0 with γ > 0, η > 0

also unique.) Now solve for x∗ = x∗(ω) as the unique positive root of

the cubic (4.4), noting that this gives 0 < x∗ < 1 since γ > 0, and so

determines q = q(ω) := a2µβ/(1− x∗) > 0. Finally, set

U = U(ω) :=
[
µ q2(ω)/a2

1a3

]1/3
η(ω). (4.7)

While this construction of U(ω) is independent of our derivation from (3.1), etc.,

it certainly is motivated by that, and we note from (4.1) (and the derivation)

that when ω, . . . do correspond to a solution of (3.1), then U(ω) is just ū(0).

The desired uniqueness is then an immediate consequence of the fact, whose

proof we defer momentarily, that U is a strictly decreasing function of ω — more

precisely, that we will show the following.

Lemma: There is some ω0 > 0 such that U(·) is undefined for ω ≤ ω0 and

is defined for ω > ω0 with a vertical asymptote at ω0. Where defined, U(·) is a

strictly decreasing positive function of ω with U → 0 as ω →∞.

We keep µ, β > 0 fixed for our analysis, but do remark that the definitions of

ω0, y, s0, η are entirely independent of µ, β and that, for fixed ω > ω0, γ obviously

increases with the product µβ so x∗, q, U decrease as µ, β increase.

Since U(ω) should correspond to ū(0) for a solution of (3.1), we must have

U(ω) = α. (4.8)

From our present viewpoint, noting the lemma, we may use (4.8) to determine ω

uniquely — with existence of a solution ensured by our previous analysis — and
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so, as in the construction of U , to determine y, x∗, q, w∗. This then gives [ū, v̄, w̄]

on [0, x∗] satisfying (3.1) and the boundary conditions and then (3.2) also gives

[ū, v̄, w̄] on [x∗, 1]. Thus, the uniqueness of ω implies uniqueness of the triple

[ū, v̄, w̄], which completes the uniqueness proof for the solution of the limit system

(3.1)–(3.2). Note that this uniqueness of the limit ensures that [u, v, w] → [ū, v̄, w̄]

as following (3.7), but now without considering any extraction of sequences or

subsequences.

Proof of the Lemma: From (4.8) and our work in the preceding sections

which showed existence of solutions to (3.1)–(3.2) for each α > 0, we see that

U(ω) is necessarily defined for some values of ω and that the range of U(·) is

(0,∞). We have already noted that (4.5) cannot hold if ω ≤ 0 and a continuity

argument then shows that U(ω) must be undefined for ω < ω0 for some ω0 > 0.

Fix any ω1 for which U(ω1) is defined and set s1 := s0(ω1) > 0 so (4.5) holds

on (0, s1]. A standard Maximum Principle argument shows that for ω > ω1 we

will have a strict increase in y, ys, yss at each fixed s ∈ (0, s1] so (4.5) holds on

(0, s1] for any ω > ω1. Thus, if U(ω1) is defined, then U(ω) is defined for any

ω > ω1 and we may fix ω0 > 0 so that U(ω) is undefined for any ω < ω0 and is

defined for any ω > ω0; we will later show that U(ω0) is itself undefined.

Now set z = z(s) := ys(s). Since yss > 0 by (4.5), z(·) is strictly increasing

in s so we can invert to get s = σ(z) = σ(z, ω). By the Maximum Principle

argument above, we have z(s, ω) strictly increasing in ω for each fixed s > 0

so, inversely, σ(z, ω) must be strictly decreasing in ω for each fixed z > 1. In

particular, noting that s0(ω) = σ(2, ω), we see that s0(·) is a strictly decreasing

function of ω where defined. From (4.6), it then follows immediately that γ is

a strictly increasing function of ω. Further, implicit differentiation of (4.4) gives
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dx∗/dγ = −(x∗)3/[3γ(x∗)2+1] < 0 so we have x∗(ω) a strictly decreasing function

of ω and, immediately, q = q(ω) := µa2β/(1 − x∗) is also a strictly decreasing

function of ω.

Next we wish to show that η = y(s0) is a decreasing function of ω so, with

the above, (4.7) would give strict decrease for U(·). [We already know that y is

increasing in both s and ω but, since s0 is decreasing in ω, decrease of y(s0) is

not yet clear.] We now define

Y (z, ω) := [y(σ(z, ω), ω)]2

— i.e., Y (z) = y2(s), suppressing the dependence on ω — and conversely y =
√

Y .

By the chain rule,

2yz = 2yys =
dY

ds
=

dY

dz

dz

ds
=

dY

dz
yss =

dY

dz
y(y + ω − 2s),

whence

dY

dz
=

2z√
Y + ω − 2σ(z, ω)

, Y (1) = 0. (4.9)

[Note that (4.5) ensures positivity of the denominator.] Since ∂[ω − 2σ]/∂ω > 0,

the right hand side in (4.9) is decreasing in ω, so — again by a Maximum Principle

argument — Y is (strictly) decreasing as a function of ω for each fixed z ∈ (1, 2].

In particular, η(ω) =
√

Y (2, ω) decreases as ω increases.

At this point we note that U cannot be defined (finite) at ω0 — if it were,

then we would have U(ω) ≤ U(ω0) < ∞ wherever defined, which would con-

tradict our observation that the range of U(·) is all of (0,∞). We have thus

shown that ω 7→ U must have a vertical asymptote at ω = ω0+ and must then

decay monotonically to 0 as ω →∞. This completes the proof of the lemma.
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It is interesting to consider the dependence of w∗ = w(1) = [µa1/a
2
3]

1/3q2/3ω

on α. From the Lemma and (4.8) we see that ω →∞ as α → 0 and ω → ω0 > 0

as α → ∞. We then note that when α → ∞ the estimates (3.16) give q → ∞

and we have w∗ →∞. On the other hand, for α → 0 one has q → a2β and again

w∗ → ∞; this does not contradict our estimate (2.13) for w since α → 0 also

gives α1 → 0. Compare Remark 2 in the next section.

5. Further remarks

Remark 1. We have shown the uniform convergence as λ → ∞ of so-

lutions [u, v, w] of (1.2), (1.3) to the unique solution [ū, v̄, w̄] of the limit system

(3.1)∪(3.2) and it is then natural to inquire as to the rate of convergence. More

generally, one might seek more detailed knowledge of the nature of this conver-

gence in terms of a suitable asymptotic expansion, using methods of singular

perturbation theory since one obtains11

εu′′ = uv + εuw,

εv′′ = uv,

εw′′ = −uv + εuw

(5.1)

on dividing by λ and introducing the small parameter ε := 1/λ → 0+.

Following the approaches of [6], this program can be carried through to get

such an expansion in powers of ε1/3 with a ‘stretched variable’ ξ := (x−x∗)/ε1/3 in

the internal interface layer within which the fast reaction A + B
λ→ C is strongly

11For expository simplicity, we restrict attention here to the case a1 = a2 = a3 = a with the

scaling that a = 1 and µ = 1.
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active. We note here the principal result to be obtained:

u(x) = u(x, ε) = ū(x) + ε1/3z(ξ) +O
(
ε2/3

)
,

v(x) = v(x, ε) = v̄(x) + ε1/3z(ξ) +O
(
ε2/3

)
,

w(x) = w(x, ε) = w̄(x)− ε1/3z(ξ) +O
(
ε2/3

)
,

(5.2)

with an estimate

|z(ξ)| ≤ q2/3

2Ai′(0)
Ai
(
q1/3|ξ|

)
where Ai(·) is the Airy function and q is the limit value obtained (for the partic-

ular α, β) in Section 4.

In developing this, we have the advantage of our work of the previous sections

here, giving the leading terms [ū, v̄, w̄] and so permitting some simplification of

the general techniques of [6] for this application. We do note that the general

justificatory results of [6] (cf., in particular, the discussion on pp. 41–82 there)

do not apply directly to the present context without some technical modification.

All of this more detailed treatment will be deferred to another paper [4], focussing

on the singular perturbation analysis of (5.1).

Remark 2. It is interesting to note that setting α = 0+ in (3.1)–(3.2)

— i.e., considering limα→0 limλ→∞ — gives u ≡ 0, v = βx (and w undefined:

w ≡ ∞), whereas if we set α = 0 immediately in (1.3) then we again get u ≡ 0,

but now with v ≡ β and w ≡ [arbitrary constant ≥ 0]. We may then ask what

happens if α → 0, λ → ∞ in a coordinated way. For the particular relation
√

λα ≡ constant =: α̃, numerical computation shows, and analysis confirms, that

one then gets an expansion in powers of
√

ε (with ε := 1/λ → 0, as above). This

singular perturbation analysis also will be deferred to [4].

Remark 3. To indicate what might be done to continue the charac-
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terization of solutions of the system of partial differential equations (3.8), we

introduce z := a1u− a2v. This satisfies 4z = µuw, avoiding the term Q := λuv

for which the limit is necessarily singular. Letting λ →∞, we have z → z̄ with

4z̄ = (µw̄/a1)z̄+

z̄ = a1α on ΓA, z̄ = −a2β on ΓB,

z̄ν = 0 on ∂Ω \ [ΓA ∪ ΓB]

(5.3)

where we have noted that ūv̄ ≡ 0 with ū ≥ 0, v̄ ≥ 0 so a1ū = z̄+(:= max{0, z̄})

and, similarly, a2v̄ = −z̄−. Since the coefficient (µw̄/a1) is not actually given,12

this does not determine z̄ (and so ū, v̄), but it can be useful in extracting infor-

mation.

For example: assume ΓA connected with α strictly positive there. If there

would then be a (maximal) subregion Ω∗ ⊂ Ω not connected to ΓA on which

u > 0, then we would have z̄+ = z̄ there and z̄ = 0 on ∂Ω∗ by the assumed

maximality. A Maximum Principle argument would immediately give z̄ ≡ 0

on Ω∗, contradicting its definition. With a similar argument for v̄ to show there

cannot be enclosed pockets of B, one has a partition13 of Ω into simply connected

regions ΩA and ΩB, corresponding to (0, x∗) and (x∗, 1) for the one-dimensional

12We could also introduce the function y := a3w+2a2v−a1u and note that this is harmonic.

One could then replace (5.3) by the system

4ȳ ≡ 0, 4z̄ = (µ/a1a3) [ȳz̄+ + z̄+z̄]

— except that we do not have boundary conditions for y, ȳ in any easily available form.
13Once one might obtain greater regularity for ū, v̄, a strong Maximum Principle argument

would show that there cannot be any intermediate subregion with ū, v̄, z̄ ≡ 0 so the interface

is a single surface Σ. One would then wish to investigate the regularity of this interface, a

problem of a sort which has been considered in a variety of comparable contexts, and of the

distribution Q̄, presumably expressible in terms of a function on Σ which (nominally pointwise)
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case.

Remark 4. To see a slightly different setting for some of these ideas,

we can consider the situation indicated in (1.4) above, in which the boundary

conditions for C no longer ensure confinement to Ω so the second reaction A+C
µ→

D need not go to completion. Slightly more generally, in the m-dimensional

setting we replace (2.1) by

a1 4 u− λuv − µuw = 0

a2 4 v − λuv = 0

a3 4 w + λuv − µuw = 0

on Ω

u = α on ΓA with uν = 0 on ∂Ω \ ΓA

v = β on ΓB with vν = 0 on ∂Ω \ ΓB

w = γ on ΓC with wν = 0 on ∂Ω \ ΓC

(5.4)

where we modify (2.2) to include the requirement14 that γ ∈ H1(Ω) with 0 ≤ γ ≤

γ̄. It is physically plausible to ask that ΓA, ΓC be separated (e.g., that ΓC = ΓB)

but this is not significant for the first part of the analysis.

We define a map M essentially as by (2.4), (2.5), (2.6), above — of course,

with the new boundary conditions used in (2.6), but also with the use of ‖w‖

rather than ‖w‖1 in defining SM and in Step 4. The Maximum Principle argu-

ments to see that 0 ≤ u ≤ ᾱ, 0 ≤ v ≤ β̄ are exactly as earlier and so is the

estimation giving (2.8), etc., to obtain (3.6).

What changes here is the treatment of w, which becomes easier with the

present boundary conditions. The Maximum Principle argument to see that

would give the derivatives of ū, v̄ and a jump in the derivative of w̄ normal to the interface —

i.e., the fluxes of A,B to this reaction surface and the local creation rate of C.
14There is, of course, absolutely no relation of this γ and that of (4.6).
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w ≥ 0 is now essentially as for u. We next estimate w in H1(Ω) — without the

need for (2.12) or for the splitting [
◦
w +ω]. Note that one now has a Poincaré

Inequality

‖z‖(1) ≤ CP‖z‖ if z = 0 on ΓC (5.5)

and that (3.6) bounds Q := λuv = a2 4 v in H−1(Ω). Taking z := w − γ as test

function in (2.6), we have

a3‖∇z‖2 = a3〈∇z,∇γ〉+ 〈Q, z〉 − 〈µuz, z〉 − 〈µuγ, z〉

≤ a3‖∇z‖‖∇γ‖+ ‖Q‖(−1)‖z‖(1) + µᾱ‖γ‖‖z‖

≤
[
a3‖∇γ‖+

(
‖Q‖(−1) + µᾱ‖γ‖

)
CP

]
‖∇z‖

which bounds ‖∇z‖ (uniformly in λ) whence ‖z‖(1) by (5.5) with ‖w‖(1) ≤ ‖z‖(1)+

‖γ‖(1). In particular, this gives existence of steady state solutions.

Since these estimates bound u, v, w in H1(Ω), uniformly in λ, we do not need

(3.5) to permit extraction of convergent sequences giving (3.8) — with the new

boundary conditions for w, of course. [This argument gives Q̄ ∈ H−1(Ω), but

the argument leading to (3.5) still applies, without (2.9), so we may use that to

bound Q := λuv in L1(Ω) and, as before, get Q̄ as a positive measure.] We now

define15 ρ := q2/q, but without expecting ρ = 1 so we may have q2 6= q. Without

(2.9) one has
∫
ΓA

uν = q + q2 with q2 :=
∫
Ω µuw and we must similarly replace 2q

by q + q2 in (3.10), with (3.11) holding as before in the one-dimensional case.

The argument for partitioning (0, 1) into (0, x∗) and (x∗, 1) is just as before.

Again we have straight line profiles on [x∗, 1] where ū ≡ 0:

v̄ = β
x− x∗

1− x∗
, w̄ = w∗ + [γ − w∗]

x− x∗

1− x∗
, (5.6)

15Note that the particularly interesting case, corresponding to (1.4), is to have γ ≡ 0. In this

case one must have wν ≥ 0 on ΓC so (2.6) then gives ρ ≥ 0; clearly, q2 ≥ 0 so ρ ≤ 1 always.
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with w∗ := w̄(x∗) and again we have

a1ū
′′ = µūw̄ = a3w̄

′′ for 0 < x < x∗

but with new boundary conditions: the jump across x∗ in ū′, v̄′, −w̄′ is again q,

giving −a1ū
′(x∗−) = q = a2β/(1− x∗), but now

a1ū
∣∣∣x∗−
0

= a3w̄
∣∣∣x∗−
0

= q2 = ρq.

Thus we have−a1ū
′(0) = q+q2 = (1+ρ)q and w̄ = w∗+[a1ū− (1 + ρ)q(x− x∗)] /a3

on [0, x∗]. Substitutions much like (4.1) now give

yss = y(y + ω − (1 + ρ)s)

y(0) = 0, ys(0) = 1, and ys(s0) = 1 + ρ,

(5.7)

corresponding to (4.2), (4.3). Note that we now have two unknown parameters

to determine — ω and now also ρ.

Temporarily fixing ρ, we use essentially the same construction of U(ω) =

U(ω, ρ) as earlier and the identical argument shows that U is a decreasing function

of ω so (4.8) determines ω, etc. — now, of course, as functions of ρ. Returning

to (5.6), we now have

w∗ + (βa2/a3)ρ = γ − (βa2/a3) (5.8)

since −a3w̄
′ = (1− ρ)q and a2v̄

′ = q at x = 1. Using w∗ = w∗(ρ) as determined

from (4.8), etc., we may consider (5.8) as an equation for the determination of

the parameter ρ (and so of the solution). Although relevant information as to

ρ-dependence can be obtained by arguments parallel to those used in the proof

of the Lemma of Section 4, we do not pursue this; it is not yet clear whether

[w∗(ρ) + (βa2/a3)ρ] would always be a strictly monotone function of ρ, which

would ensure a unique determination.
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