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Abstract

The numerical approximation of Antman and Seidman’s model [AS] of the longitudinal
motion of a viscoelastic rod is investigated. Their constitutive assumptions ensure that infinite
compressive stress is needed to produce total compression of the rod. Analyses of the regularity
of the solution of the continuous problem, the convergence of a semi-discrete finite element
method, and the properties of a space-time finite element scheme are furnished. Results of a
sample computation are also provided.

1. Introduction:
Consider the following model for the longitudinal motion of a visco-elastic rod:

wtt = [n (ws, wst)]s + f (1)

where w = w(s, t) is the position at time t of the point with reference position s so ws is the
strain and wst is the strain rate; n is then the contact force and f is the body force. A natural set
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of boundary conditions for this problem consists of the specification of the contact forces at the
endpoints;

n (ws, wst)
∣∣∣
s=0

= n0(t) n (ws, wst)
∣∣∣
s=1

= n1(t) (2)

where n0 and n1 are given. The initial conditions we use are

w(·, 0) = w0 and wt(·, 0) = v0 (3)

where w0 and v0 are given. For simplicity we have restricted our attention to a homogeneous rod
with constant mass density equal to 1 and the constitutive function n independent of s.

This model was considered in [AS] under assumptions on the constitutive function n permitting
fully nonlinear dependence on the strain rate while ensuring well-posedness and that one never
develops ‘infinite compression’: that is, ws is pointwise bounded away from 0.

Observe that in terms of the function w the equation (1) is essentially hyperbolic. However, if
we reformulate it in terms of u := ws and v := wt to obtain

ut = vs and vt = [n(u, vs)]s + f (4)

the second equation is parabolic in v if we think of u as being known.
It will also be convenient to split the contact force:

n(y, z) = φ′(y) + σ(y, z) (5)

so φ is the elastic potential and σ(y, z) is the viscous part. Here we will impose the following set
of constitutive hypotheses: (much as in ‘Note Added in Proof’ of [AS])

(H0) (Properties of φ) The elastic potential φ(y) is minimized at y = 1 (equilibrium) so that
φ : (0,∞)→ [0,∞) and one has φ′(y)→∞ as y → 0,∞.

(H1) (uniform ellipticity) There is some m > 0 such that

nz(y, z) ≥ m for z ∈ IR, y > 0, (6)

and thus σ(y, z)z ≥ mz2.

(H2)(Control of compression) There are A,M > 0 and a (nonincreasing) function ψ : (0, y∗) →
(0,∞) with ψ(y)→∞ as y → 0+ such that, for some y∗ > 0,

n(y, z) ≤ A+Mψ(y)− ψ′(y)z (7)

for z ∈ IR, 0 < y < y∗.

(H3) (Growth of n) For each η > 0 there exists λ = λ(η) such that

|ny(y, z)| ≤ λnz(y, z) and |ny(y, z)| ≤ λ
√
nz(y, z)

√
|σ(y, z)|
|z|

(8)
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for z ∈ IR, y > η.
In this report we provide a survey of our initial investigations into numerical methods for this

highly nonlinear problem. In section 2 an analysis of the solution to the continuous problem, (1)–
(3) is given. We show several energy estimates and demonstrate the lower bound estimate for the
strain ws. In section 3 an example is given by explicit formula for a contact force function n which
satisfies hypotheses (H0)–(H3) (as well as (H4) and (H5) which will be introduced later). In sections
4 and 5 a semi-discrete finite element is introduced (discrete in the space variable s and continuous
in time t), energy estimates and the strain lower bound property are derived for the approximation
function wh and an error estimate is provided. In section 6 an implicit fully discrete numerical
method is used in a sample computation. This scheme uses the finite elements from section 4 and
a simple centered difference scheme for the time discretization. Finally, in section 7 another fully
discrete method is described using finite elements in both space and time. The special feature of
this third method is that it preserves the lower bound property for the numerical strain, whks .

We will use C generically to denote a positive constant for which we have an upper bound
either absolute or depending only on the various parameters in (H0)-(H3), on the data norms, on
T , and on previous occurrences of C, but not dependent on the particular data or the particular
solutions involved. In particular, C will never be dependent on the mesh parameter h which we
will introduce in section 4.

We note that this paper is a continuation of the work by the first two authors in [FJ]. In that
paper energy properties of a space-time finite element method which resembled those for a certain
viscoelastic rod problem were derived. In that model, however, the possibility of total compression
was not considered as it is in this work.

Acknowledgement: The second author, Søren Jensen, passed away during the course of this work.
He is greatly missed by us all. We acknowledge his significant contributions and participation in
all aspects of this project except the final writing.

2. The Continuous Problem:

In this section we will provide a simplified version of the principal results of [AS], restricted to the
context described above. The principal effort is to obtain a priori estimates for the solution, in
particular obtaining pointwise estimates for the arguments ws and wst. We fix T > 0 arbitrarily
and assume the following, in addition to the constitutive hypotheses (H0)–(H3) above:

(A0) The data for the problem, functions f, n0, n1, w0 and v0 are as smooth as needed. Also
w0,s ≥ y∗ > 0 with y∗ as in (H2).

First energy estimate:

The total energy for the rod (kinetic plus elastic potential) is

E(t) =
1

2
‖wt‖2 +

∫ 1

0
φ(ws) ds
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where || · || is the L2(0, 1) norm (‖ · ‖∞ will denote the L∞(0, 1) norm) and the work done by
dissipated stress is

W (t) :=

∫ t

0

[∫ 1

0
σ(ws, wst)wst ds

]
dt.

Using the equation (1) and an integration by parts gives

d

dt
[E +W ] =

∫ 1

0
fwt ds+ n1wt

∣∣∣
s=1
− n0wt

∣∣∣
s=0

≤ 1

2
‖f‖2 +

1

2
‖wt‖2 +

1

2
|n1|2 +

1

2
|n0|2 + ε

∫ 1

0
σ(ws, wst)wst ds+ Cε‖wt‖2

where we used the fact that for any ε > 0 there is a constant Cε such that

|g(s)| ≤ ε‖gs‖+ Cε‖g‖

for any s ∈ (0, 1) and any g ∈ H1. In view of (H1),

‖wst‖ ≤ C
[
‖wt‖2 + 2

∫ 1

0
σ(ws, wst)wst ds

]1/2

.

Taking ε = 1
2 to subtract that term from dW/dt, integrating over (0, t), and applying the Gronwall

inequality, we obtain the estimates:

‖wt(·, t)‖, Φ(t) :=

∫ 1

0
φ(ws) ds, W (t) ≤ C. (9)

Lower bound for ws:

Suppose one has ws(s̄, t̄) < y∗ for some (s̄, t̄) ∈ Q := (0, 1)× [0, T ]. Then there is a τ > 0 such that
ws(s̄, t) < ws(s̄, τ) = y∗ for τ < t ≤ t̄. Integrating (H2) with y = ws, z = wst over (τ, t) then gives

ψ(ws(s̄, t))− ψ(y∗) =

∫ t

τ
ψ′(ws)wst dt̂ ≤

∫ t

τ
[A+Mψ(ws)− n(ws, wst)] dt̂.

Since integrating (4) over (0, s̄) gives n(ws, wst)
∣∣∣
s̄,t

= n0 +
∫ s̄

0 [wtt − f ] ds, we then have

ψ(ws(s̄, t)) ≤
[
ψ(y∗) +A(t− τ)−

∫ t

τ
n0dt̂+

(∫ s̄

0
wt ds

)
|t̄τ −

∫ t

τ

∫ s̄

0
fdsdt̂

]
+M

∫ t

τ
ψ
(
ws
∣∣∣
s̄

)
dt̂.

The bracketed terms on the right can all be estimated (using (9) for the
∫
wtt ds terms) so the

Gronwall inequality gives an upper bound for ψ(ws(s̄, t̄)), which we note is uniform for any (s̄, t̄) ∈
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(Q) for which ws(s̄, t̄) < y∗. Since ψ(y) → ∞ as y → 0, this implies a positive pointwise lower
bound:

ws(s, t) ≥ ȳ∗ > 0. (10)

Second energy estimate:

The equation (1), formally differentiated with respect to t, gives

wttt = [nywst + nzwstt]s + ft. (11)

Using 2wtt as test function in the weak form of this gives

‖wtt‖2 + 2

∫ t

0

∫ 1

0
nzw

2
stt ds dt̂ = ‖wtt(·, 0)‖2 + 2

(∫ t

0
n1wtt

∣∣∣
s=1

dt̂+

∫ t

0
n0wtt

∣∣∣
s=0

dt̂

)
+

∫ t

0

∫ 1

0
(ftwtt − nywstwstt) ds dt

≤ ‖wtt(·, 0)‖2 +

∫ t

0
a‖wstt‖ dt̂+ 2λ

∫ t

0

∫ 1

0
|
√
nzwst|

√
σwstt ds dt̂

where a ∈ L2(0, T ) depends on the data f, n0, n1. This gives∫ t

0
a‖wstt‖ ≤ ‖a‖2 + ε

∫ t

0

∫ 1

0
nzw

2
stt dt̂+ Cε

∫ t

0
‖wtt‖ dt̂,

and we have estimated

|nywstwstt| ≤ λ |
√
nzwstt|

√
|σwst| ≤ εnzw 2

stt + Cε|σwst|

using (8) with y = ws, z = wst. It follows that

‖wtt‖2 +

∫ t

0

∫ 1

0
nzw

2
stt ds dt̂ ≤

[
‖wtt(·, 0)‖2 + ‖a‖2 + Cε

∫ t

0

∫ 1

0
σwst ds dt̂

]
+ Cε

∫ t

0
‖wtt‖2.

Noting that the double integral term on the right side of the equation is just W (t), for which we
already have the bound (9), we apply the Gronwall inequality and obtain the estimates:

‖wtt‖ ,
∫ t

0
‖wstt‖2 dt̂ ≤ C. (12)

Third energy estimate:

If we rewrite (4) as wtt = [nywss + nzwsst] + f we can solve for wsst

wsst =
wtt − f
nz

−
(
ny
nz

)
wss.
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Taking norms and using (H1), (H3), gives

‖wsst‖ ≤ C
[
‖wtt‖+

1

m
‖f‖

]
+ λ‖wss‖ (13)

and, integrating,

‖wss‖ ≤ ‖wss(·, 0)‖+
1

m

∫ t

0
[‖wtt‖+ ‖f‖] dt̂+ λ

∫ t

0
‖wss‖ dt̂.

Applying the Gronwall inequality to this bounds ‖wss(·, t)‖ and using that in (13) gives:

‖wss‖ , ‖wsst‖ ≤ C. (14)

Pointwise bounds for ws and wst:

To obtain pointwise bounds for ws and wst we need (14) and knowledge that ws and wst are bounded
at some point s on [0, 1] to apply the Poincaré inequality: in particular at s = 0 and s = 1.

Observe from (H1) that n is invertible in its second argument. Thus there is a function g =
g(u, n) such that g(y, n(y, z)) = z. Further, from (H1) and (H3) we have,

gu = −ny
nz

so |gu| ≤ λ

and

gn =
1

nz
so |gn| ≤

1

m
.

Since n = n0 at s = 0 and n = n1 at s = 1 we have that n is a C1 function at s = 0 or s = 1. The
new definition of the function g allows us to specify ws by an ordinary differential equation (ODE)
which is

d

dt
ws = g(ws, n)

where as noted above n is specified as a function of t at s = 0 and s = 1. Combining the results on
the bounds for g and the defining ODE we conclude that both ws and wst are bounded at s = 0
and s = 1 as asserted. These facts combined with (14) and (10) allow us to conclude that

0 < ȳ∗ ≤ ws ≤ ȳ∗ and |wst| ≤ z̄∗ (15)

where both results are on the space time domain Q. From now on, keeping (15) in mind, we will
assume pointwise uniform bounds on n, ny, nz, nzy and nzz.

The above results and arguments can be easily used to prove there exists a unique solution to
the problem. We refer the reader to [AS] for more on these technical aspects. We are now in a
position to state our main theorem on the continuous problem.
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Theorem 1: (Global existence and uniqueness): Suppose the data for the problem satisfy as-
sumption (A0) and the constitutive function n satisfies the hypotheses (H0)–(H3). Then the ini-
tial/boundary value problem defined by (1)–(3) has a unique solution, w, on the domain Q for any
T > 0 and w satisfies the uniform norm inequalities (9), (12), (14), and (15).

3. Example Constitutive Law:

To show the consistency of the set of hypotheses (H0)–(H3) (as well as (H4) and (H5) which will
be introduced later) we provide an explicit formula for n(y, z) which satisfies them. It is this con-
stitutive law which will be used later for the computational example. The functions n and nz will
be continuous and the derivatives ny, nyz and nzz will be defined on the domain of definition which
is y > 0 and −∞ < z <∞.

We take

φ(y) =
2

y
+ y2 (16)

to satisfy the hypothesis (H0). The definition of σ is much more complicated;

σ(y, z) =



z − 1
2z

2 if z ≤ 0 and y ≥ 1

z − 1
2z

2 − 1
2(1− y−2)2 if z ≤ 0 and (1− z)−1/2 ≤ y < 1

zy−2 if z ≤ 0 and 0 < y < (1− z)−1/2

z if z > 0 and y ≥ 1
z + (y−2 − 1)β(z) if z > 0 and 0 < y < 1

(17)

where

β(z) =

{
z + z2 − z3 if 0 ≤ z ≤ 1
1 if z > 1.

Note that σ(y, z)/z ≥ 1; this will be used later to verify the second part of (H3). To check hypothesis
(H1) we differentiate σ with respect to z. This gives

σz(y, z) =


1− z if z ≤ 0 and y ≥ (1− z)−1/2

y−2 if z ≤ 0 and 0 < y < (1− z)−1/2

1 if z > 0 and y ≥ 1
1 + (y−2 − 1)β′(z) if z > 0 and 0 < y < 1

where

β′(z) =

{
1 + 2z − 3z2 if 0 ≤ z ≤ 1
0 if z > 1.

It follows that (H1) holds with m = 1; a crucial step is to note that β′(z) ≥ 0 for 0 ≤ z ≤ 1. Also
note here that σyz and σzz are defined and piecewise continuous.
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To verify (H2) we take ψ(y) = y−1 and y∗ = 1. It follows that ψ′(y) = −y−2 and thus the upper
bound on n is

A+My−1 + zy−2

in the region where 0 < y ≤ 1. Perhaps the most difficult verification is in the region where
(1− z)−1/2 ≤ y ≤ 1 and z ≤ 0. Here, we have

n(y, z) = 2(−y−2 + y) + (z − 1

2
z2 − 1

2
(1− y−2)2) ≤ 1 + z ≤ 1 + zy−2

which gives (H2) if we take A ≥ 1 and M ≥ 2.
To verify (H3) we will need to evaluate the y-derivative.

ny(y, z) = (−4y−3 + 2) + σy(y, z)

with

σy(y, z) =



0 if z ≤ 0 and y ≥ 1

2(1− y−2)y−3 if z ≤ 0 and (1− z)−1/2 ≤ y < 1

−2zy−3 if z ≤ 0 and 0 < y < (1− z)−1/2

0 if z > 0 and y ≥ 1
−2y−3β(z) if z > 0 and 0 < y < 1.

Thus, in the region where z ≥ 0 and y ≥ η > 0 we have

|ny(y, z)| ≤ 6y−3 + 2 ≤ (6η−3 + 2)
√
|σz(y, z)|

√
σ(y, z)

z
= (6η−3 + 2)

√
|nz(y, z)|

√
σ(y, z)

z
.

The other inequalities follow similarly in the other regions.

4. The Semi-Discrete Finite Element Method:

Let V h be the space of continuous piecewise linear functions defined on the partition with nodes
sp = ph and parameter h = P−1 where P is a positive integer; we embed this in L2(0, 1) with the

induced inner product. Let Ip = (sp−1, sp) and wh,ps (t) = whs (·, t)
∣∣∣
Ip

which is a constant. A spatially

discrete finite element method can then be constructed as follows: Find wh(·, t) ∈ V h for 0 < t < T
such that

(whtt, χ) + (n(whs , w
h
st), χs) = (f, χ) + n1χ(1)− n0χ(0) (18)

for all χ ∈ V h where wh(·, 0) ∼= w0 and wht (·, 0) ∼= v0. We observe that this problem has a unique
solution, at least for short time. Since V h is a finite dimensional space, a basis for it can be found
and from this a system of ordinary differential equations can be derived. As long as n is well defined
there exists at least a short time solution.

For the error estimate we will make the following regularity assumption:
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(A1) Function wstt ∈ L∞(Q) and for all t ∈ [0, T ], wsstt ∈ L2(0, 1).

We also will need an extra smoothness assumption on the constitutive law, valid for our example.

(H4) Functions nyz and nzz are piecewise continuous in y, z.

Note that our explicit constitutive formula (16)–(17) satisfies (H4). We also note that, without
proof, an argument similar to those of section 2 (differentiate (11) yet again with respect to t,
expand, and estimate the term on the right to get a differential inequality for ‖wttt‖2) gives (A1)
for some time interval.

Energy bounds for wh:

One can apply the first energy argument of section 2 to the semi-discrete problem and show that,
similarly, ∫ t

0
‖whst‖2dτ, ‖wt‖,

∫ 1

0
φ(whs )ds ≤ C. (19)

One can also apply the lower bound argument to obtain

whs (s, t) ≥ ȳSD∗ > 0

on Q where ȳSD∗ is a constant that is independent of h. The notation SD stands for semi-discrete.
The second energy argument can be applied by differentiating the variational equation defining wh

with respect to t. This gives

(whttt, χ) + (nyw
h
st + nzw

h
stt, χs) = (ft, χ) + n′1χ(1)− n′0χ(0).

By taking χ = 2whtt, integrating over time, one can show the same estimates for wh as was done in
section 2 for w:

‖whtt‖,
∫ T

0
‖whtts‖dτ ≤ C. (20)

Bounds at the boundary:

Define

χp(s) =


0 if 0 < s < sp−1

s− sp−1 if sp−1 < s < sp
1 if sp < s < 1 .

(21)

Then, taking χP as the test function in (18) gives the equation

hn(wh,Ps , wh,Pst ) = (f, χP ) + h(n1(t)− n0(t))− (whtt, χP ).

Multiplying by wh,Pst and noting that ‖χp‖L∞(0,1) ≤ h we have

m|wh,Pst | ≤ (‖f‖L1(0,1) + |n1(t)|+ |n0(t)|+ ‖whtt‖)
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and, since the quantities on the right are bounded, we conclude that

|wh,Pst | ≤ C

Since

wh,Ps (t) = wh,Ps (0) +

∫ t

0
wh,Pst (τ)dτ

we have that
|wh,Ps | ≤ C.

A similar bound can be found for wh,0s (t).

Interior pointwise upper bound for whs :

Using χ = χp in (18) we obtain

hn(wh,ps , wh,pst ) = (f − whtt, χp)

for each 0 < p < P . Subtracting the (p− 1) equation from the p equation, we obtain

h(n(wh,ps , wh,pst )− n(wh,p−1
s , wh,p−1

st )) = (f − whtt, χp − χp−1)

where, using the Taylor theorem along the segment joining (wh,p−1
s , wh,p−1

st ) to (wh,ps , wh,pst ),

wh,pst − w
h,p−1
st =

(f − whtt, χp − χp−1)

hnz(γ, ζ)
− ny(γ, ζ)

nz(γ, ζ)
(wh,ps − wh,p−1

s )

for some pair (γ, ζ) on the segment. Define ∂pu
h = uh,p−uh,p−1, where uh is any piecewise constant

function defined on the mesh, as whs and whst. Then

P∑
p=1

|∂pwhst| ≤
1

m

P∑
p=1

‖f − wtt‖L1(Ip) + λ
P∑
p=1

|∂pwhs | (22)

where λ is defined in (H3). Since ‖f − whtt‖L1(0,1) is bounded independently of h, it follows from a
Gronwall argument that

P∑
p=1

|∂pwhs | ≤ C

and using this in (22) gives
P∑
p=1

|∂pwhst| ≤ C.
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To obtain an upper bound on wh,ps we have

wh,ps = ∂pw
h
s + wh,p−1

s

= ∂pw
h
s + ∂p−1w

h
s + . . . ∂1w

h
s + wh,0s

so

|wh,ps | ≤
P∑
p=1

|∂pwhs |+ |wh,0s | ≤ C.

In the same way we as for (15) we also find

|wh,pst | ≤ C.

We are now in a position to state our first theorem on the properties of the semi-discrete method.

Theorem 2 (Stability of the semi-discrete scheme): Assume the hypotheses (H0)–(H3) hold on
n and assumption (A0) is valid for the data. Then the numerical method defined by (18) has a
unique solution which satisfies the inequalities (19), (20), and the pointwise bounds

0 < ȳSD∗ ≤ whs ≤ ȳSD,∗ and |whst| ≤ z̄SD,∗. (23)

As with the continuous solution we can assume pointwise bounds for n, ny, nz, nzy, and nzz —
uniform on the relevant domain.

A redefinition of n(·) off the estimated domain occurs in the existence proof but is not needed
for implementation. It is important to realize that the implementation of this scheme does not
involve any computation of the bounds (23) which we have noted to justify it.

5. Error Estimate for the Semi-Discrete Method:

In this section we will use the uniform bounds obtained in the previous section and a nonlinear
Ritz projection to obtain an error estimate. We first define and analyze our projection, which is
used in the error estimation but not in the actual computations.

Ritz Projection:

Consider finding νh(·, t) ∈ V h so for each t

(n(ws, ν
h
s ), χs) = (n(ws, wst), χs) (24)

for all χ ∈ V h where ∫ 1

0
νhds =

∫ 1

0
wtds. (25)

We will now show that there exists a unique νh that satisfies (24) and (25) and view this construction
as a nonlinear map, called the Ritz projection: wt → νh.
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Existence of the Ritz projection:

We will use the following version of Brouwer’s fixed-point theorem to show there exists a solution
to (24) (see [GR], Corollary 1.1, p. 279):

Let H be a finite-dimensional Hilbert space with inner product 〈·, ·〉 and corresponding norm | · |.
Let Ψ : H → H be a continuous mapping with the following property. There exists a µ > 0 such
that

〈Ψ(g), g〉 ≥ 0 ∀g ∈ H with |g| = µ. (26)

Then, there exists a g∗ ∈ H with |g∗| ≤ µ such that Ψ(g∗) = 0.
To apply this to our situation, we first rewrite (24) as follows: Instead of νh we seek ν̃h ∈ V h

0 =
{χ ∈ V h :

∫ 1
0 χds = 0} such that

(n(ws, ν̃
h
s ), χs) = (n(ws, wst), χs)

where ν̃h = νh −Mv with

Mv =

∫ 1

0
wtds =

∫ 1

0
νhds.

Note that this problem is equivalent to (24). We set the Hilbert space H = V h
0 with the inner

product

〈ξ, ζ〉 =

∫ 1

0
ξsζsds

and take g = ν̃h. Then

〈Ψ(g), ζ〉 := (n(ws, gs), ζs)− (n(ws, wst), ζs),

but

〈Ψ(g), g〉 = (n(ws, gs), gs)− (n(ws, wst), gs)

≥ m‖gs‖2 − ‖n(ws, wst)‖‖gs‖

= m

(
µ2 − α

m
µ

)
where α = ‖n(ws, wst)‖ and µ = ‖gs‖. For µ ≥ α/m the inequality (26) holds, implying there
exists a solution to the projection problem (24).

Uniqueness of the Ritz projection:

Suppose (24) might have two solutions νh and ν̄h. From the defining equation (24) and Taylor’s
theorem we have

(nz(ws, ξ)(ν
h − ν̄h)s, χs) = 0

12



for all χ ∈ V h where ξ lies between νh and ν̄h. Choosing χ = νh − ν̄h and using hypothesis (H1)
we have

m‖(νh − ν̄h)s‖2 ≤ 0

and, since also ∫ 1

0
(νh − ν̄h)ds = 0

we must have νh = ν̄h.

Error estimate for the Ritz projection:

Let b(z) = n(ws, z). We will need the following approximation results. We assume there is an
interpolation operator π : H1(0, 1)→ V h such that, for any z ∈ H1(0, 1) ⊂ L∞(0, 1),

‖(I − π)z‖ ≤ Ch‖zs‖ and ‖πz‖L∞(0,1) ≤ ‖z‖L∞(0,1). (27)

We will also use the following standard inverse inequality: for any χ ∈ V h

‖χ‖L∞(Ip) ≤ Ch−1/2‖χ‖L2(Ip) (28)

where Ip is an interval in the finite element mesh which has length h (see [C]). Let b̄ be a C1

function with b̄(z) = b(z) for |z| ≤ ‖wst‖L∞(0,1) + δ where δ > 0 and such that

‖b̄′‖L∞(0,1) ≤ R and b̄′ ≥ m.

We will analyze the problem: find ν̄h ∈ V h such that

(b̄(ν̄hs ), χs) = (b̄(wst), χs) (29)

for all χ ∈ V h and will show that this gives

‖ν̄hs − wst‖ ≤ Ch‖wsst‖. (30)

From this we will have that

‖ν̄hs ‖∞ ≤ ‖ν̄hs − πwst‖∞ + ‖πwst‖∞
≤ Ch−1/2‖ν̄hs − πwst‖+ ‖wst‖∞
≤ Ch1/2‖wsst‖+ ‖wst‖∞

Choosing h small enough so
Ch1/2‖wsst‖ ≤ δ

13



implies that b̄ = b for the range of ν̄hs considered so, since we have uniqueness for (24), it now
follows that ν̄h = νh and, setting ρ = νh − wt,

‖ρs‖ ≤ Ch‖wsst‖. (31)

We now show (30). Note that∫ 1

0
b̄′(wst + ζρ̄s)ρ̄s dζ = b̄(ν̄h)− b̄(wst)

where ρ̄ = ν̄h − wt. If we then let

B̄ =

∫ 1

0
b̄′(wst + ζρ̄s) dζ,

then (29) becomes
(B̄ρ̄s, χs) = 0

and m ≤ B̄ ≤M . Then
(B̄ρ̄s, ρ̄s) = (B̄ρ̄s, (π − I)wst)

so
m‖ρ̄s‖ ≤M‖(I − π)wst‖ ≤ Ch‖wsst‖

proving (30).
Finally, we need an estimate on the t derivative of the error. Differentiating the defining equation

(24) gives

(nz(ws, ν
h
s )νhst, χs) + (ny(ws, ν

h
s )wst, χs) = (nz(ws, wst)wstt, χs) + (ny(ws, wst)wst, χs)

or

(nz(ws, ν
h
s )ρst, χs) = −((nz(ws, ν

h
s )− nz(ws, wst))wstt, χs)− ((ny(ws, ν

h
s )− ny(ws, wst))wst, χs).

Then, applying the Taylor theorem,

(nz(ws, ν
h
s )ρst, χs) = (Dρs, χs)

where
D := −(nzz(ws, γ)wstt + nyz(ws, ξ)wst).

By our assumptions we have that D is bounded in L∞ and that γ and ξ each lie between νhs and
wst. Then

(nzρst, ρst) = (nzρst, ν
h
st)− (nzρst, wstt)

= (Dρs, ν
h
st)− (nzρst, wstt) + [−(Dρs, πwstt) + nzρst, πwstt)]

= (Dρs, ρst) + (Dρs, (I − π)wstt) + (nzρst, (I − π)wstt)

14



or
m‖ρst‖2 ≤ C(h‖ρst‖+ h2)‖wsstt‖

which implies
‖ρst‖ ≤ Ch‖wsstt‖. (32)

We are now in a position to state the key error estimate for the projection.

Lemma: Let νh be the Ritz projection of wt satisfying (24) and (25). Assume the conditions
(H0)–(H4) hold for n, the data are smooth, (A0), and the solution w is sufficiently regular, (A1).
Then the error ρ = νh − wt satisfies an estimate:

‖ρs‖ ≤ Ch‖wsst‖ and ‖ρst‖ ≤ Ch‖wsstt‖. (33)

Error estimate for the semi-discrete problem:

We start with a standard splitting for time dependent problems,

et = wt − wht = (wt − νh) + (νh − wht ) = ρ+ θh,

and then obtain
(θht , χ) + (n(ws, ν

h
s )− n(whs , w

h
st), χs) = −(ρt, χ).

Choosing χ = θh in (18) we obtain

1

2

d

dt
‖θh‖2 + (nz(ws, ξ)θ

h
s , θ

h
s ) = −(ρt, θ

h)− (ny(γ,w
h
st)es, θ

h
s )

= −(ρt, θ
h)− (ny(γ,w

h
st)

∫ t

0
(ρs + θhs )dτ, θhs )

where γ is between ws and whs and ξ is between wst and whst. Then

d

dt
‖θh‖2 + ‖θhs ‖2 ≤ C(‖ρt‖2 +

∫ t

0
(‖ρs‖2 + ‖θhs ‖2)dτ.

Apply the Gronwall inequality — assuming, for simplicity, that wht (·, 0) = νh(·, t). This gives

‖θh‖2 +

∫ t

0
‖θhs ‖2dτ ≤ Ch2

which, together with the estimates on ρ, gives the error estimate described in the theorem below.

Theorem 3 (Semi-discrete error estimate): Suppose wh is the solution of (18) and w is the solution
of (1)–(3). Assume the conditions (H0)–(H4) hold for n; the data are smooth, (A0); the solution
w is sufficiently smooth as in (A1), and wh(·, 0) is the nonlinear Ritz projection of wt(·, 0). Then

‖wst − whst‖L2(Q) ≤ Ch.
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6. Discretization in Time of the Finite Element Method:

In this section we describe a simple fully discrete numerical method. We use the piecewise linear
finite elements described previously for the spatial variable and introduce a centered finite difference
procedure for the time discretization. Because of the parabolic nature of this problem with respect
to wt we have chosen to make the scheme implicit. Partition [0, T ] into Q intervals of length
k = T/Q with nodes tq = qk. Let Jq = (tq−1, tq) and J = [0, T ]. We linearize the function n with
respect to the z variable using Taylor’s theorem about z0 ,

n(·, z) = n(·, z0) + nz(·, z0)(z − z0).

Taking

z =
wh,q+1
s − wh,q−1

s

2k
and z0 =

wh,qs − wh,q−1
s

k

leads to the finite element/finite difference method:

(wh,q+1
s − 2wh,qs + wh,q−1

s , χ) + k2

[
((n(wh,qs ,

wh,qs − wh,q−1
s

k
), χs)

+ (nz(w
h,q
s ,

wh,qs − wh,q−1
s

k
)
wh,q+1
s − 2wh,qs + wh,q−1

s

2k
, χs)

]
= k2 ((f, χ) + n1χ(1)− n0χ(0)) .

Specifying basis functions {χ0, . . . , χP }, we then obtain a system of equations of the form

(M + kKq)W q+1 = Fn

where M is the mass matrix, Kq is a stiffness matrix, W q has the coefficients of the basis functions
in wh,q, and F q has all the other terms that involve quantities on the q and q− 1 time levels. Note
that

Mij = (χi, χj), Kq
ij = (nz(w

h,q
s ,

wh,qs − wh,q−1
s

k
)χj,s, χi,s) and wh,q(s) =

P∑
j=0

W q
j χj(s).

As starting data for this multistep method we take

wh,0(sp) ∼= w(sp, 0) and wh,1(sp) ∼= w(sp, 0) + kwt(sp, 0)

for p = 0, 1, . . . , P . The trapezoid rule is used for the evaluation of all the spatial integrals that
arise.
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The accuracy of the method is of interest. To examine this we created a simple test example
with a known solution

w(s, t) = e0.2s(2− sin t), (34)

noting that ws(s, t) ≥ 0.2 for 0 < s < 1 and t > 0. For the data for this problem we let

f = wtt − ny(ws, wst)wss − nz(ws, wst)wsst, n0(t) = n(ws(0, t), wst(0, t)),

and
n1(t) = n(ws(1, t), wst(1, t))

where all quantities involving w are defined using (34). We then did several test runs on this
problem and found that the observed convergence rate for the L∞ norm of the difference of w(·, 1)

and wh,1/k was close to O(h2 + k2) as the table below shows.

h k ‖w − wh,1/k‖L∞(0,1) ‖w − wh,1/k‖L∞(0,1)/(h
2 + k2)

0.200 0.025000 0.002512 0.0618
0.100 0.012500 0.000519 0.0511
0.050 0.006250 0.000118 0.0465
0.025 0.003125 0.000029 0.0451

Since the errors divide by roughly four while the mesh parameter h and time step length k
divide by two we observe an order two rate of convergence. This is furthur confirmed by the fact
that the last column is tending to a constant.

We do note that nonphysical negative strains were observed in these computations when ∆t
was not sufficiently small.

7. Space-Time Finite Element Method:

We describe yet another space-time finite element method, now using piecewise linear functions
for both the spatial and temporal discretizations. The time discretization is called the continuous
Galerkin method (see [FS] or [FJ]). It has the desirable feature of keeping the strain positive and thus
modeling the behavior of the true solution. We are also able to obtain a discrete energy inequality
that resembles (9). We did not obtain the other energy estimates which involved differentiating the
defining equations. To compensate for this we add several new assumptions:

(H5) There exists a positive constant Λ(η) such that

|φ′′(y)| ≤ Λ(η) <∞ and |σy(y, z)| ≤ Λ(η)|z|

for η < y <∞ and −∞ < z <∞ where we recall the splitting (5).

Note that our example constitutive formula (16)–(17) does satisfy (H5).
We use the same grid as was defined in the previous section. Denote Qq = (0, 1)× Jq. Let Ck

be a set of continuous piecewise linear functions and let Dk be a set of piecewise constant functions,
not necessarily continuous, defined on the partition in time. Let Chk = V h⊗Ck and Dhk = V h⊗Dk.
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We are now in a position to define our numerical scheme. Find (whk, vhk) ∈ Chk×Chk such that

(whkt − vhk, χ)Q = 0 ∀χ ∈ Dhk (35)

(vhkt , ζ)Q + (n(whks , whkst ), ζs)Q = (n1, ζ(1, ·))J + (n0, ζ(0, ·))J + (f, ζ)Q ∀ζ ∈ Dhk (36)

where whk(·, 0) ∼= w0 and vhk(·, 0) ∼= v0 are given. For any domain A we use the inner product

(η, ξ)A =

∫
A
ηξdA giving ‖η‖A =

(∫
A
η2dA

)1/2

.

The problem can also be defined in a slab-by-slab manner by the equations

(whkt − vhk, χ)Qq = 0 ∀χ ∈ V h ⊗ P0(Jq) (37)

and

(vhkt , ζ)Qq +(n(whks , whkst ), ζs)Qq = (n1, ζ(1, ·))Jq +(n0, ζ(0, ·))Jq +(f, ζ)Qq ∀ζ ∈ V h⊗P0(Jq). (38)

The discretization in time can be rewritten as a finite difference scheme. Let whk,q = whk(·, t) and
define vhk,q similarly. Assuming that whk,q−1 and whk,q are known, the approximation is found on
the next step by solving the following nonlinear system for whk,q+1

(whk,q+1 − 2whk,q + whk,q−1, χ) +
k2

2

(
N(whk,q+1

s , ∂tw
hk,q+1/2
s )−N(whk,qs , ∂tw

hk,q+1/2
s )

whk,q+1
s − whk,qs

+
N(whk,qs , ∂tw

hk,q−1/2
s )−N(whk,q−1

s , ∂tw
hk,q−1/2
s )

whk,qs − whk,q−1
s

, χs

)
= k2 (n̄1χ(1) + n̄0χ(0) + (f̄ , χ)

)
for all χ ∈ Vh where

n̄i =
1

k

∫
Jq
ni dt for i = 0, 1, f̄ =

1

k

∫
Jq
f dt,

∂tw
hk,q+1/2
s =

1

k

(
whk,q+1
s − whk,qs

)
, ∂tw

hk,q−1/2
s =

1

k

(
whk,qs − whk,q−1

s

)
,

and

N(y, z) =

∫ y

0
n(ỹ, z)dỹ.

Note that we are assuming that the spatial integrals are done exactly. In practice one would use
either a fixed point or Newton iteration to solve the nonlinear system on each time step.

Discrete energy bounds:
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We will develop a discrete version of the first energy inequality in this context. We first note some
simple inequalities that will be useful. Let

Au =

∫ 1

0
u ds

be an average of u so
|u(s)−Au| ≤ ‖us‖ (39)

and
‖Au‖Jq ≤ ‖u‖Qq . (40)

Defining the discrete kinetic energy

Khk
q =

1

2

∫ 1

0
(vhk,q)2 ds

we have, after taking χ = whkt in (37),

‖whkt ‖Qq ≤ ‖vhk‖Qq (41)

and, since vhk is linear in t,
‖vhk‖Qq ≤ 2kmax{Khk

q−1,K
hk
q }. (42)

Let χ = vhkt in (37) and ζ = whkt in (38). Then

Ehkq +

∫
Jq

∫ 1

0
σ(whks , whkst )whkst dsdt = Ehkq−1 + (n1, w

hk
t (1, ·))Jq − (n0, w

hk
t (0, ·))Jq + (f, whkt )Qq

where

Ehkq = Khk
q +

∫ 1

0
φ(whk,qs ) ds.

We now estimate the boundary terms,

(n1, w
hk
t (1, ·))Jq = (n1, (I −A)whkt (1, ·))Jq + (n1, Aw

hk
t (1, ·))Jq

≤ Cε‖n1‖2Jq +
ε

4
‖whkst ‖2Qq

+ 2kmax{Khk
q−1,K

hk
q }

where we used (39), (40), (41), and (42) as well as Young’s inequality

|ab| ≤ εa2 + Cεb
2

for ε > 0. A similar inequality can be found for the n0-term. Using the boundary term estimate
and applying Young’s inequality to the f -term gives,

Ehkq +

∫
Jq

∫ 1

0
σ(whks , whkst )whkst dsdt ≤ Ehkq−1+ε‖whkst ‖2Qq

+Cε(‖n0‖2Jq+‖n1‖2Jq+‖f‖2Qq
)+4kmax{Khk

q−1,K
hk
q }.
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Using hypothesis (H1), choosing ε = m/2, and noting that

max{Khk
q−1,K

hk
q } ≤ Ehkq−1 + Ehkq

gives

Ehkq +
1

2

∫ tq

0

∫ 1

0
σ(whks , whkst )whkst dsdt ≤

1 + 4k

1− 4k
(Ehkq−1 +

1

2

∫ tq−1

0

∫ 1

0
σ(whks , whkst )whkst dsdt)

+C(‖n0‖2Jq + ‖n1‖2Jq + ‖f‖2Qq
)

if k is sufficiently small. Iterating this estimation gives the discrete energy inequality

Ehkq +
1

2

∫ tq

0

∫ 1

0
σ(whks , whkst )whkst dsdt ≤ Ctq(Ehk0 +

∫ tq

0
n2

0dt+

∫ tq

0
n2

1dt+

∫ tq

0
‖f‖2dt. (43)

Total compression for the numerical Method

In this section we show that the approximation will imitate the true solution in that it never suffers
total compression. A mild restriction will be placed on the time step and spatial refinement to
achieve this. Just to simplify the presentation of the argument, we set n1 = 0 and f = 0.

From the energy inequality (43) there exists a constant C such that∫
Jq

∫
Ip

(whkst )2 ds dt ≤ C.

Since whkst is a constant on Jq × Ip this becomes

|whkst |
∣∣∣
Ip×Jq

≤ C√
kh
. (44)

We will now show that whks cannot jump from above y∗ to below y∗/2 in one time step provided√
k

h
≤ y∗

4C
. (45)

From Taylor and (44) we have

whk,qs = whk,q−1
s + kwhkst

∣∣∣
Ip×Jq

≥ y∗ − C

√
k

h
≥ y∗

2

Suppose y∗/4 ≤ whks (·, tq) < y∗ on Ip (Using the preceeding argument we can show that the strain
cannot jump from above y∗/2 to below y∗/4 on one step). If it increases above y∗ then total
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compression did not occur. If it stays below y∗ then we must address the possibility of whks → 0.
Recall that the function χp ∈ V h ⊗ P0(Jq) from (21). Substituting χp into (38) for ζ, we have

(vhkt , χp)Qq+1 =

∫
Jq+1

∫
Ip
n(whks , whkst ) ds dt

and, using hypothesis (H2), we now have

(vhkt , χp)Qq+1 ≤ Akh+M

∫
Jq+1

∫
Ip
ψ(whks ) ds dt−

∫
Jq+1

∫
Ip
ψ′(whks )whkst ds dt

Simplifying, we have on Ip that

ψ(whk,q+1
s ) ≤ ψ(whk,qs ) +M

∫
Jq+1

ψ(whks )dt+
1

h

(∫ 1

0
vhk,q+1χp ds−

∫ 1

0
vhk,qχp ds

)
+Ak.

Since ∫
Jq+1

ψ(whks )dt ≤ k(ψ(whk,q+1
s ) + ψ(whk,q+1

s ))

we have on Ip (for 1−Mk ≥ 1/2)

ψ(whk,q+1
s ) ≤ 1 +Mk

1−Mk
ψ(whk,qs ) +

2

h
(

∫ 1

0
vhk,q+1χp ds−

∫ 1

0
vhk,qχp ds) + 2Ak.

Iterating this inequality gives for any integer r > q and since tr − tq < T that

ψ(whk,rs ) ≤ CT (ψ(whk,qs ) +
2

h
(

∫ 1

0
vhk,rχpds−

∫ 1

0
vhk,qχpds) + 2AT

≤ CT (ψ(
y∗
4

) + 2Khk
r +Khk

q ) + 2AT ).

Since the right side of the equation is bounded there must be a constant ȳFD∗ such that

whks ≥ ȳFD∗ > 0. (46)

Existence and uniqueness for the space time method:

In this section we use the strategies given in section 3 to show that the numerical scheme (37)–(38)
has a unique solution under the constraint that k ≤ δh for some sufficiently small constant δ.

For existence we use the version of the Brouwer fixed-point theorem which we employed earlier.
Let H = V h ⊗ P0(In), with inner product (·, ·)Qq , and norm ‖ · ‖Qq with g = whkt . Then since

whk(·, t) = whk,q−1 +

∫ t

tq−1

g(·, s)ds
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we can reconstruct whk from g. Define

(Ψ(g), χ)Qq = (vhkt , χ)Qq + (n(whks , gs), χs)Qq − (n1, χ(1, ·))Jq − (n0, χ(0, ·))Jq − (f, χ)Qq

where vhk is defined from g and vhk,q−1 through (37). Taking χ = g and arguing as we did in the
energy inequality (to prove (43) ), we obtain

(Ψ(g), g)Qq ≥ (1− Ck)Ehkq − (1 + Ck)Ehkq−1 − C(‖n1‖2Jq + ‖n0‖2Jq + ‖f‖2Qq
) + C‖gs‖2Qq

.

Using the Poincaré inequality, there is a positive constant C such that

‖gs‖ ≥ C
(
‖g‖ −

∣∣∣∣∫ 1

0
gds

∣∣∣∣)
so

‖gs‖Qq ≥ C(‖g‖Qq − Ck(Ehkq + Ehkq−1))

Thus for sufficiently small k we have

(Ψ(g), g) ≥ C‖g‖Qq − C(Ehkq−1 + ‖n1‖Jq + ‖n0‖Jq + ‖f‖Qq)

We conclude that one can force
(Ψ(g), g)Qq > 0

by choosing µ = ‖g‖Qq large enough so the Brouwer theorem asserts the existence of a solution to
(37)–(38).

We now show there is only one solution. Let

ev = vhk − v̄hk and ew = whk − w̄hk

where ev(·, tq−1) = ew(·, tq−1) = 0 and (whk, vhk) and (w̄hk, v̄hk) are solution pairs of (37)–(38).
Then

((ev − ewt ), χ)Qq = 0 ∀χ ∈ V h ⊗ P0(Jq)

and
(evt , ζ)Qq + (n(whks , whkst )− n(w̄hks , w̄hkst ), ζs)Qq = 0 ∀ζ ∈ V h ⊗ P0(Jq).

Separating the nonlinear term into φ′ and σ components, adding and subtracting the term σ(w̄hks , whkst ),
and applying the mean value theorem the second equation becomes

(evt , ζ)Qq + (φ′′(ξ)ews , ζs)Qq + (σy(γ,w
hk
s )ews , ζs)Qq + (σz(w̄

hk
s , α)ewst, ζs)Qq = 0.

Let χ = evt and ζ = ewt . Using (H5) we obtain

‖ev(·, tq)‖2 +m‖ewst‖2Qq
≤ C((|φ′′|+ |σy|)|ews |, |ewst|)Qq

≤ C
(
(|ews |, |ewst|)Qq |+ (|whkst ||ews |, |ewst|)Qq

)
= C(I1 + I2).
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Hence
I2 ≤ ‖ews ‖L∞(Qq)‖whkst ‖Qq‖ewst‖Qq .

But the second factor is bounded from (43)

|ews (·, t)| =
∣∣∣∣∣
∫ t

tq−1

ewst(·, τ)dτ

∣∣∣∣∣ ≤ k1/2‖ewst‖Jq

and from an inverse inequality,

‖χ‖L∞(Ip) ≤ Ch−1/2‖χ‖L2(Ip)

(see [C]) we have

I2 ≤ C
(
k

h

)1/2

‖ewst‖2Qq
.

Thus

‖ev(·, tq)‖2 +m‖ewst‖2Qq
≤ Cε‖ews ‖2Qq

+

(
ε+ C

(
k

h

)1/2
)
‖ewst‖2Qq

≤
(
Cεk + ε+ C

(
k

h

)1/2
)
‖ewst‖2Qq

.

Choosing ε and δ sufficiently small and then h sufficiently small (so k is small) we have

‖ev(·, tq)‖2 ≤ 0.

It follows that ev ≡ 0 on Qq since ev(·, tq−1) = 0. From the projection equation between ev and ewt
we have that ewt ≡ 0. Since ew(·, tq−1) = 0 we have ew ≡ 0 proving there is a unique solution to
(37)-(38).

We summarize our results from this section in the following theorem:

Theorem 4: Assume n satisfies hypotheses (H0)–(H3), (H5) and the data is smooth, (A0). Then
there exist positive constants δ and h0 such that for all 0 < h ≤ h0 and 0 < k ≤ δh the problem
(35)–(36) has a unique solution pair (whk, vhk) which satisfies the energy bound (43) and has a
lower bound on the strain (46).
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