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Abstract The convergence of finite element methods for elliptic and parabolic
partial differential equations is well-established if source terms are sufficiently
smooth. Noting that finite element computation is easily implemented even
when the source terms are measure-valued — for instance, modeling point
sources by Dirac delta distributions — we prove new convergence order results
in two and three dimensions both for elliptic and for parabolic equations with
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1 Introduction

This paper is concerned with two related problems: the parabolic (time-dependent)
diffusion problem

ut −∇·D∇u = ϕ with u |t=0= 0 (1)
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on Q = QT = [0, T ] × Ω (with homogeneous boundary conditions and 0
initial state), which is our primary concern, and the corresponding steady
state problem

−∇·D∇u = ϕ (2)

on Ω (again with homogeneous boundary conditions), restricting attention to
autonomous linear problems so D = D(x), etc.

Our focus will be on convergence order error estimates of the form

‖u− U‖Y ≤ Khα‖ϕ‖X (3)

where u is the solution of (1) or (2), U = UV is the corresponding finite
element solution of each problem, using the finite element space V, and h =
h(T ) → 0 is the mesh parameter of the triangulation T determining V. The
convergence order estimate will always be expressed in terms of the regularity
of the data ϕ ∈ X , rather than that of the solution u. Thus (3) would be
estimating approximation error in the space Y for data in the space X —
assuming, of course, that V ⊂ Y, that X embeds in the dual V∗ and that the
solution u would be in Y for data in X .

Throughout we will take Y to be L2(Ω) for measuring approximation error
for (2) and a space of spatially L2(Ω)-valued functions of t for (1). One well-
known example of the form (3) (cf., e.g., [12]) is for ϕ ∈ X = L2 data:

One has α = 2 in (3) for (2) when X = L2(Ω), Y = L2(Ω). (4)

The use of finite element spaces of continuous piecewise affine functions cer-
tainly admits the formal possibility of using the Finite Element Method (FEM)
for such problems with measure data and our concern here is to justify and
analyze this formal procedure.

Our own contact with these problems started when modeling calcium flow
in heart cells, where the injection of calcium ions at locations throughout
the interior of the cell is modeled as point sources represented by Dirac delta
distributions; see [8], [5] and references therein for the application background.
In both of these papers, heuristic arguments and numerical evidence for time-
dependent problems of the form (1) suggest estimates of the form (3) with
α ≈ 2− d/2 for domains Ω ⊂ Rd; one version of that numerical evidence will
be shown in Figure 1.

Thus, the purpose of this paper is to prove rigorous results of the form
(3) for cases when the source term ϕ in (2) is not a function in L2, but is
permitted to be a delta function or, somewhat more generally, a measure µ in
M = [C(Ω̄)]∗. There has been considerable interest recently in such equations
and their numerical solution. See, e.g., [10], [4], [1], etc., but one may go
farther back, almost 40 years, to Ridgway Scott [11]. The papers [4], [1] are
not quite comparable with our present concerns and, despite its title, [2] does
not consider measure-valued data. Most significantly, we note that [11] gives
an O(h2−d/2) error estimate for a single delta function as the right-hand side,
but the relevant result there is not in the form (3) and does not apply directly
to more general source terms.



Finite element approximation for time-dependent diffusion 3

We will also be concerned to get estimates for finite element approximation
of (1). Indeed, we are thinking of the time-dependent problem (1) as our
primary interest. The source term ϕ in (1) would then be a time-dependent
M-valued function µ(t) with results depending on our assumptions for its t-
variation. The equations (1) and (2) are closely related structurally and it
seems appropriate to consider them together and, in fact, to treat the more
easily handled (2) first. Our arguments will largely follow [11] in spirit with
the use of [12] and semigroup theory for the parabolic problem.

This paper is organized as follows: Section 2 states the formulation and
defines the notation used throughout. Sections 3 and 4 analyze the stationary
problem (2), with the main new result in Theorem 4.2. Section 5 provides
the main result for the time-dependent problem (1) in Theorem 5.1. Finally,
Section 6 presents the computational studies that accompany the analytical
results.

2 Formulation and notation

For (2) with homogeneous Dirichlet boundary conditions one considers the
solution u as satisfying the weak form

〈∇v,D∇u〉 = 〈v, ϕ〉 for all admissible v (5)

and, given a finite element space V (e.g., of piecewise affine functions on some
triangulation T , vanishing at the boundary), the finite element Galerkin ap-
proximation U ∈ V is obtained as satisfying

〈∇v,D∇U〉 = 〈v, ϕ〉 for all v ∈ V. (6)

For simplicity we will assume throughout that the spatial region Ω ⊂ Rd
is open, bounded and connected with adequately regular boundary ∂Ω. We
further assume that d ≤ 3 and that the diffusion coefficient D is smooth
enough to ensure that for (2) with homogeneous Dirichlet conditions

We have u ∈ H2(Ω) ∩H1
0 (Ω) for data ϕ ∈ L2(Ω).

H2(Ω) ∩H1
0 (Ω) ⊂ C0,λ(Ω) for (some) 0 < λ < 2− d/2.

(7)

[Here H2, H1
0 are the usual Sobolev spaces and C0,λ is the Hölder space with

exponent 0 < λ < 1.] By standard elliptic regularity results and the Sobolev
Embedding Theorem, we note that this is effectively a mild geometric assump-
tion on the regularity of ∂Ω supplemented, e.g., by requiring D ∈ W 1,∞(Ω)
as well as uniform ellipticity. What we will actually use is a consequence of
this: that the map: ϕ 7→ u is continuous from L2(Ω) to C0,λ(Ω) so, by duality
and noting the divergence form of the equation (2), we have

S :Mλ(Ω) = [C0,λ(Ω)]∗ → L2(Ω) is continuous, i.e., ‖S‖ <∞ (8)

for the solution operator S of (2).
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Throughout this paper, for our concern with spatial discretization we will
let T denote a regular partition of the region Ω and will let V denote the
associated space of continuous piecewise affine functions. Thus we assume that
the region Ω is to be partitioned by a triangulation T , consisting of simplices E
with compatible faces; the mesh parameter h = h(T ) = maxE∈T {diam(E)}
then indicates the scale of the triangulation. The notion of regularity here
means that the elements have roughly the same shape as the reference simplex
E‡ and, for each value h > 0 of the scale parameter are of roughly the same
size, taking diam(E‡) = 1. We make this precise by assuming that: for each
E ∈ T there is an affine map of the form:

ψ = ψE : E‡ → E : x‡ 7→ x = v + hAEx‡ (9)

with h = h(T ) and all the matrices {AE} restricted to some fixed compact
set A ⊂ GL(d). We then denote by T = TA the family of all such triangulations
with the same set A and let Th = {T ∈ T : h(T ) ≤ h}.

Corresponding to each such triangulation T ∈ T is the space W = W(T )
consisting of all functions on Ω which are affine on each simplex E ∈ T . The
finite element space under consideration is then V = W ∩ C0(Ω), noting the
homogeneous Dirichlet boundary conditions. It will also be convenient to let
W(E) be the (d+1)-dimensional space of affine functions on E for each E ∈ T ,
so W(E) = ψ−1E W(E‡) and W(T ) = ⊕W(E).

No norm is specified for V or W(T ), but when desired we may use appro-
priate subscripts to indicate use of a specified norm: e.g., we writeW =Wp(T )
for use of the Lp(Ω)-norm ‖·‖p. We will write ‖·‖ for the L2-norm, identifying
other norms by appropriate subscripts.

In our estimations we will use K to denote an arbitrary positive constant
(replaceable by any larger constant and not necessarily the same at each ap-
pearance) which may depend on d,Ω,A, . . . or prior instantiations of K, but
does not depend on any particular ϕ, u,V, etc., and specifically does not de-
pend on the mesh parameter h except that it may require that h > 0 be
‘sufficiently small’. It follows from the regularity assumption that we have

‖AE‖ ≤ K, 1/K ≤ |det AE | ≤ K, h/K ≤ diam (E) ≤ Kh

for all E ∈ T as consequences of the compactness of A.

3 An elliptic estimate based on [11]

We begin here with the relevant estimate from [11].

Theorem 3.1 [Scott] Let Ω ⊂ Rd with d = 2, 3 and let ϕ = δξ, a delta func-
tion located at the point ξ ∈ Ω. Let V be the finite element space of piecewise
affine elements on a regular triangulation T . Then, for each ξ ∈ Ω there is a
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function f = fξ ∈ L2(Ω) satisfying

a) 〈f, Φ〉 = 〈δξ, Φ〉 = Φ(ξ) for all Φ ∈ V ⊂ W(T )

b) ‖f‖L2(Ω) ≤ c(ξ)h−d/2

c) ‖f − δξ‖X− ≤ Khα∗ with α∗ = 2− d/2.

(10)

Letting u = uξ be the solution of (2) with ϕ = δξ and U be the FEM approxi-
mation, satisfying (6), one then has

‖u− U‖ ≤ c(ξ)hα∗ . (11)

Of course, to have α∗ > 0 we need the dimension d to be less than 4. The
auxiliary space X− used in the paper [11] is the space Ξ−2 defined in [9] as
the dual space to

Ξ2 =

v ∈ L2(Ω) : ‖v‖
Ξ2 =

∑
|α|≤2

∥∥∥∥%|α| ∂|α|v

∂xα1
1 · · · ∂x

αd
d

∥∥∥∥ <∞
 ,

where % is a smooth function on Ω satisfying

c1dist(ξ, ∂Ω) ≤ %(ξ) ≤ c2dist(ξ, ∂Ω)

for some c2 > c1 > 0; we note that the asymptotics

c(ξ) = O(dist(ξ, ∂Ω)−2) as dist(ξ, ∂Ω)→ 0 (12)

of c(ξ) in (11) comes from this choice; cf. [11].
Since c(ξ)→∞ as dist(ξ, ∂Ω)→ 0, we cannot expect to deduce from this

an O(hα∗) estimate of the form (3) with X =M. Instead, we may introduce
the c-weighted norm

‖µ‖c =

∫
Ω

c(x) |µ|(dx). (13)

and consider as the space of source terms only those signed measures for which
this norm is finite.

Theorem 3.2 Let X be the the space Mc = {µ ∈M(Ω) : ‖µ‖c <∞} . Then
one has the O(h2−d/2) convergence order, i.e., with α∗ = 2− d/2 one has

‖u− U‖ ≤ hα∗ ‖ϕ‖X for source terms ϕ = µ ∈ X =Mc(Ω). (14)

Proof: Write ũ = ũ(ξ, ·) for the solution u with ϕ = δξ as ξ varies over
Ω and observe that (ξ, x) 7→ ũ(ξ, x) is then just the fundamental solution of
the system. In much the same way we have Ũ(ξ, ·) as the corresponding FEM
solution, satisfying (6) with finite element space V.

As is standard, linearity gives
∫
ũ(ξ, x)ϕ(ξ) dξ as the solution Sϕ of (2)

for, e.g., smooth ϕ. We have continuity of S : M → Y = L2(Ω) so, by the
density in M of such smooth functions, we have the representations

u = Sµ =

∫
Ω

ũ(ξ, ·)µ(dξ), U =

∫
Ω

ŨV(ξ, ·)µ(dξ) (15)
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for u and U satisfying (2) and (6), respectively. Using (11), this gives

‖u− U‖ =

∥∥∥∥∫
Ω

[ũ(ξ, ·)− Ũ(ξ, ·)]µ(dξ)

∥∥∥∥
≤
∫
Ω

[c(ξ)hα∗ ] |µ|(dξ) = hα∗‖µ‖Mc
.

which is just (14).

As a possibly useful corollary we obtain the following slightly simpler result
(provided we can restrict attention to measures with support in a subset Ω′

compactly contained in Ω).

Corollary 3.1 Fix Ω′ b Ω and let M(Ω′) = [C(Ω′)]∗ be identified with the
subspace {µ ∈ M : µ(S) = 0 forS ⊂ [Ω \ Ω′]} of measures in M = M(Ω)
with support in Ω′, taking ‖µ‖M(Ω′) = ‖µ‖M =

∫
Ω′
|µ|(dξ). Then one has

‖u− U‖ ≤ K h2−2/d ‖ϕ‖M for source terms ϕ = µ ∈M(Ω′). (16)

Proof: Take K = KΩ′ = max{c(ξ) : ξ ∈ Ω′} in replacing ‖µ‖c by
‖µ‖M(Ω′); this gives K <∞ as Ω′ since bounded away from ∂Ω.

Remark 3.1 The use of the space Ξ−2 from [9] also leaves a regularity gap since
[9] assumes, for simplicity, that Ω has a C∞ boundary — yet any possibility
of exact triangulation by simplices means that ∂Ω must be piecewise affine.
In [11] this issue is parenthetically addressed by the suggestion that one might
consider the use of elements at the boundary with curved faces. In relying
on Theorem 3.1 to obtain Theorem 3.2 we are conforming to the treatment
in [11].

4 An alternative approximation theorem

Our goal in this section is to prove another approximation result, now applying
to more general measures µ ∈M with approximation by elements of the space
V ⊂ W(T ) of continuous piecewise affine functions on a regular triangulation
T of Ω. The properties (17) of the selection ΠV : µ 7→ f will be comparable
to (10) for the approximation of δξ by an L2 function used in [11] and we also
apply this to get a convergence order for the elliptic (steady state) problem of
the form (3) for X =M. Now relying on the assumption (7), the key distinc-
tion between this construction and that of Theorem 3.1 is the replacement of
the auxiliary space X− = Ξ−2 from [9] used there by the use here of the dual
of a Hölder space, taking X− =Mλ(Ω) = [C0,λ(Ω)]∗, for which see (21). The
resulting Theorem 4.1 can then be used for estimating the FEM convergence
order when X =M.
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Theorem 4.1 Take 0 < λ < 1 as in (7) and V as above with h = h(T ). Then,
for any measure µ ∈M there is a function f = ΠVµ ∈ L2(Ω) satisfying

a) 〈f, Φ〉 = 〈µ, Φ〉 for all Φ ∈ V ⊂ W(T )

b) ‖f‖L2(Ω) ≤ Kh−d/2 ‖µ‖M
c) ‖f − µ‖

X−
≤ Khλ ‖µ‖M

(17)

now with X− = Mλ(Ω) = [C0,λ(Ω)]∗ where C0,λ(Ω) is the space of Hölder
continuous functions with exponent λ.

We begin with the observation that, for any triangulation T and for any
1 ≤ p < ∞ one has Lp(Ω) = ⊕Lp(E): for any function f ∈ Lp(Ω) there are
(unique) functions fE = f |E ∈ Lp(E) for E ∈ T and, using (9), one has

‖f‖pLp(Ω) =

∫
Ω

|f(x)|p dx =
∑
E∈T

∫
E

|fE |p dx

=
∑
E∈T

∫
E‡

|fE ◦ ψ|p |det (ψ′)| dx‡

= hd
∑
E∈T
|det (AE)| ‖fE ◦ ψ‖pLp(E‡)

so: ‖f‖Lp(Ω) ≤ Khd/p
∑
E∈T

‖fE ◦ ψ‖Lp(E‡)

(18)

Having introduced the space of (signed) measures M = [C(Ω)]∗, we now also
note that one can analogously decompose each measure µ ∈M as

µ =
∑
E

µE ‖µ‖M(Ω) =
∑
E∈T

‖µE‖M(Ω) supp (µE) ⊂ E. (19)

[This decomposition is almost unique: we note, however, that a bit of selection
may be needed in case |µ| might assign nontrivial measure to some subset
of a face E ∩ E′, requiring that this be split, somewhat arbitrarily, between
µE and µE′ . This consideration is relevant only to the analysis, not to the
computation.] Note that each µE is in M = M(Ω), but can also be viewed
in M(E) = [C(E)]∗ with ‖µE‖M(E) = ‖µE‖M since each ϕ ∈ C(E) can be
extended to Ω without increase in norm. We also note that we may use (9)
here again to get

‖µE‖M(E) =

∫
E

|µE | dx =

∫
E‡

|det (ψ′)| |µE ◦ ψ| dx‡

= hd |det(AE)| ‖µE ◦ ψ‖M(E‡)

(20)

For the Hölder space C0,λ(Ω) for 0 ≤ λ < 1 and its dual Mλ =Mλ(Ω) =
[C0,λ(Ω)]∗ we use the norms

‖ϕ‖C0,λ(Ω) = sup
x∈Ω
{|ϕ(x)|} + sup

x6=y∈Ω

{
|ϕ(x)− ϕ(y)|
|x− y|λ

}
(21)
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with the corresponding dual norm for µ ∈Mλ

‖µ‖Mλ = ‖µ‖[C0,λ(Ω)]∗ = sup {〈µ, ϕ〉 : ‖ϕ‖C0,λ(Ω) ≤ 1}. (22)

Clearly C0,λ(Ω) ↪→ C(Ω) so, by duality, M ↪→ Mλ. [If µ ∈ M is de-
composed as in (19), then each µE is in Mλ(Ω), but can also be viewed in
Mλ(E) = [C0,λ(E)]∗. Note that ‖µE‖Mλ(E) = ‖µE‖Mλ(Ω) since, again, each

ϕ ∈ C0,λ(E) can be extended to Ω without increase in C0,λ-norm.] With these
preliminaries we are ready to prove Theorem 4.1.

Proof:
Step 1: We begin by decomposing µ as in (19) and considering each E
separately. Each W(E) is a finite dimensional subspace of C(E) and we let
µ̃E be the restriction of µE to W(E) so an element of [W(E)]∗. In considering
W(E) as a subspace of C(E) we are implicitly using the sup-norm for W(E)
— denoting this by W∞(E) — and observe that, as a restriction, we have

‖µ̃E‖[W∞(E)]∗ ≤ ‖µE‖[C(E)]∗ = ‖µE‖M (23)

Since W(E) is finite dimensional, there is then a unique fE ∈ W(E) — i.e.,
with supp (fE) ⊂ E — such that

〈µE , w〉 =

∫
E

fE w dx for all w ∈ W(E). (24)

[Given any basis {bj} for W(E), we may find coefficients αjk such that

∫
E

(∑
k

αjkbk

)
bj dx = 〈µ̃E , bj〉

for each j.] If we were to use the L2(E)-norm for W(E), getting W2(E), we
could equally well consider µ̃E as an element of [W2(E)]∗ since W2(E) is a
Hilbert space: we then get

‖fE‖W2(E) =

[∫
E

|fE |2 dx
]1/2

= ‖µ̃E‖[W2(E)]∗ (25)

Now define f ∈ L2(Ω) as f =
∑
E fE giving f ∈ W(T ) = ⊕W(E). For any

Φ ∈ W(T ), decomposed as Φ =
∑
ΦE , one then has

〈µ, Φ〉 =
∑
E∈T
〈µE , ΦE〉 =

∑
E∈T
〈µ̃E , ΦE〉 =

∑
E∈T

∫
E

fE ΦE dx =

∫
Ω

f Φ dx

so we have (17-a).



Finite element approximation for time-dependent diffusion 9

Step 2: We have ‖µ̃E‖[W∞(E)]∗ ≤ ‖µE‖M and, using (24) and (9), we obtain

‖µ̃E‖[W∞(E)]∗

= sup

{∫
E

fE w dx : w ∈ W(E), |w| ≤ 1

}
= hd|det(AE)| sup

{∫
E

[fE ◦ ψ] [w ◦ ψ] dx : w ◦ ψ ∈ W(E‡), |w| ≤ 1

}
= hd|det(AE)| ‖fE ◦ ψ‖[W∞(E‡)]∗

while, for comparison, we have

‖fE‖W2(E) =

[∫
E

|fE |2 dx
]1/2

= hd/2|det (AE)|1/2‖fE ◦ ψ‖W2(E‡).

Since W(E‡) is a fixed finite dimensional space, we note that all norms on it
are equivalent so there is a constant K such that

‖w‖W2(E‡) ≤ K‖w‖[W∞(E‡)]∗ for all w ∈ W(E‡). (26)

Note that [fE ◦ ψ] = w ∈ W(E‡) in each of our cases so

‖fE‖W2(E) = hd/2|det (AE)|1/2‖fE ◦ ψ‖W2(E‡)

≤ hd/2|det (AE)|1/2K‖fE ◦ ψ‖[W∞(E‡)]∗

= h−d/2|det (AE)|−1/2K‖µ̃E‖[W∞(E)]∗ ≤ Kh−d/2‖µE‖M.

The triangle inequality then gives (17-b).

Step 3: For (17-c) we again proceed for each E separately. We begin, some-
what similarly to the above, by noting that

‖fE‖M = sup

{∫
E

fE w dx : w ∈ C(E), |w| ≤ 1

}
≤ ‖fE‖W1(E) ≤ hd|det(AE)|‖fE ◦ ψ‖W1(E‡)

≤ hd|det(AE)|K‖fE ◦ ψ‖[W∞(E‡)]∗

= K‖µ̃E‖[W∞(E‡)]∗ ≤ K‖µE‖M.

We then have

‖fE − µE‖Mλ = ‖fE − µE‖Mλ(E) = sup {〈fE − µE , w〉 : w ∈ B(E)}

where B(E) = {w ∈ C(E) : |w| ≤ 1, |w(x) − w(y)| ≤ |x − y| for x, y ∈ E}.
Given any w ∈ B(E), we pick xE ∈ E and set w0 ≡ w(xE) so, by definition,

|w(x)− w0(x)| = |w(x)− w(xE)| ≤ |x− xE |λ ≤ diam(E)λ ≤ Khλ

— i.e., ‖w − w0‖C(E) ≤ Khλ. Since the constant function w0 is in W(E), we
have 〈fE − µE , w0〉 = 0 by the definition of fE whence

〈fE − µE , w〉 = 〈fE − µE , w − w0〉
≤ ‖fE − µE‖M ‖w − w0‖C(E) ≤ Khλ‖µE‖M
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since ‖fE − µE‖M ≤ ‖fE‖M + ‖µE‖M ≤ K‖µE‖M. The triangle inequality
then gives (17-c), completing the proof.

For the elliptic problem (2) we then easily obtain the anticipated conver-
gence order:

Theorem 4.2 For dimensions d = 2, 3 and any 0 ≤ λ < α∗ = 2 − d/2 for
which (7), (8) hold, there is a constant K such that one has the L2(Ω) error
bound

‖u− U‖L2(Ω) ≤ Khλ‖µ‖M(Ω). (27)

Here, for an arbitrary measure in M(Ω) = [C(Ω)]∗, we have the solution
u = Sµ ∈ L2(Ω) of (2) and the corresponding FEM solution U = SV µ,
obtained by (6) for any regular triangulation T ∈ Th.

[We emphasize that K in (27) depends on Ω and on the choice of λ (pre-
sumably with K ↗ ∞ as λ ↗ α∗), but not on the particular µ or on the
particular triangulation used, subject to AE ∈ A.]
Proof: By Theorem 4.1 we can introduce f = ΠVµ ∈ L2(Ω), satisfying
(17). By (17-a) one then has the same right hand side in (6) for ϕ = f as
for ϕ = µ so these give the same finite element solution: U = SVµ = SV f
— although ũ = Sf will not be the same as u = Sµ. We now use (8) for
S : X− =Mλ(Ω)→ L2(Ω) so, using (17-c), we do have

‖u− ũ‖ = ‖S [µ− f ]‖ ≤ K‖f − µ‖X− ≤ Khλ‖µ‖M(Ω). (28)

Using (4) with (17-b) now gives

‖ũ− U‖ = ‖Sf − SVf‖ ≤ K h2‖f‖ ≤ Kh2−d/2‖µ‖M. (29)

Finally, combining (28) with (29),

‖u− U‖ ≤ ‖u− ũ‖+ ‖ũ− U‖ ≤ Khλ‖µ‖M +Kh2−d/2‖µ‖M

which just gives (27) for λ < α∗.

5 The parabolic problem

Our goal in this section is to show that the same approximation theorems just
used for FEM solution of the elliptic problem (2) also provide convergence
orders for FEM semidiscretization of the parabolic problem (1). [For results
on full discretization — in time as well as space — we refer to [12] with such
minor adaptation as may be made necessary for the setting here.]

For the parabolic problem (1) the results obtainable depend, to a large ex-
tent, on what is assumed about the right-hand side as a function: [0, T ]→M.
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For simplicity, we consider the problem here in continuous time (semidis-
cretization, corresponding to application of the Trotter-Kato Theorem) so the
finite element solution U = U(t) for (1) is given, much as in (6), by

U(t) ∈ V, U(0) = 0, 〈U ′, v〉+ 〈∇U,∇v〉 = 〈ϕ, v〉 for all v ∈ V (30)

for each t ∈ [0, T ]. As with Theorem 4.2, we will use a known finite element
error estimate ‖S − SV‖ ≤ Kh2 (cf.,e.g., [12]) for L2-valued data ϕ ; more
precisely, given some p ∈ [0,∞] and any ϕ ∈ Lp([0, T ] → L2(Ω)), one has for
V ∈ Vh

‖u− U‖Lp([0,T ]→L2(Ω)) ≤ Kh2‖ϕ‖Lp([0,T ]→L2(Ω)). (31)

We will also need some standard information regarding the equation (1).
For this we use a semigroup formulation, noting that the unbounded operator
A = (−∆) on L2(Ω) — with domain D = H2(Ω) ∩ H1

0 (Ω) — is selfadjoint
and positive definite so −A is the infinitesimal generator of an analytic semi-
group S(·) on L2(Ω). Thus, the mild solution of (1) is given by

u(t) =

∫ t

0

S(t− s)ϕ(s) ds (32)

provided ϕ(s) ∈ L2(Ω) and the integral in (32) is well defined. For fractional
powers of A (i.e., Aσ with σ ≥ 0), we note (7) and the estimate for analytic
semigroups

‖Aσ S(t)‖ ≤ K t−σ for 0 < t ≤ T (33)

and also note in the present case (cf., [3], [7]) that the domain D(Aσ) (say, for
1/2 < σ < 1 so the boundary condition is relevant) is H2σ(Ω) ∩H1

0 (Ω). We
then have

Lemma 5.1 Given (7) there is σ < 1 such that H2σ(Ω) ↪→ C0,λ(Ω) so we
have A−σ : L2(Ω) → C0,λ(Ω). By duality and selfadjointness we then also
have

‖A−σµ‖L2(Ω) ≤ K‖µ‖Mλ(Ω). (34)

We now turn to (1) with ϕ = µ(·) ∈ Lp([0, T ]→Mλ(Ω)). Choosing σ < 1 as
in Lemma 5.1, we can rewrite (32) as

u(t) =

∫ t

0

[Aσ S(t− s)] [A−σ µ(s)] ds

and (33) gives

‖u(t)‖L2(Ω) ≤ K
∫ t

0

(t− s)−σ ‖µ(s)‖Mλ(Ω) ds. (35)

We recognize (35) as bounding ‖u(·)‖ by the convolution of the integrable
function t−σ and the Lp function ‖µ(·)‖Mλ , hence bounding ‖u(·)‖ in Lp̂(0, T )
(for p < p̂ < p/[1− (1− σ)p]) by a standard convolution estimate to get

‖u‖Lp̂([0,T ]→L2(Ω)) ≤ K ‖µ‖Lp([0,T ]→Mλ(Ω)). (36)
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Theorem 5.1 For dimensions d = 2, 3 and any 0 ≤ λ < α∗ = 2 − d/2 for
which we have (7), one has the Lp([0, T ] → L2(Ω)) error bound (for each
1 ≤ p ≤ ∞)

‖u− U‖Lp([0,T ]→L2(Ω)) ≤ Khλ‖µ‖Lp([0,T ]→M(Ω)) (37)

for an arbitrary measure-valued function µ(·) ∈ Lp([0, T ] → M(Ω)). Here u
is the solution S ∗ µ of (1) with ϕ = µ and U = SV ∗ µ is the corresponding
FEM solution, obtained by (30) for regular triangulations T ∈ Th.
[Again we emphasize that K in (37) will depend on the choice of λ < α∗.]

Proof: As in the proof of Theorem 4.2 we introduce f , obtained pointwise
in t from µ. We did not assert any continuity or linearity of ΠV in Theorem 4.1,
but it is easy to see from the construction that the function [t 7→ f(t)] can be
taken measurable whence (17- b), gives f ∈ Lp([0, T ]→ L2(Ω) and, by (17- a),
the construction in the Finite Element Method gives the same right hand side
in (30) for ϕ = f as for ϕ = µ so these give the same finite element solution U ,
although the solution ũ of (1) is not u. Applying (36) to the difference ũ− u,
and using the known error estimate (31) along with (17- b, c) then gives

‖u− U‖Lp([0,T ]→L2(Ω))

≤ ‖ũ− u‖Lp([0,T ]→L2(Ω)) + ‖ũ− U‖Lp([0,T ]→L2(Ω))

≤ K ‖f − µ‖Lp([0,T ]→Mλ(Ω)) +Kh2‖f‖Lp([0,T ]→L2(Ω))

≤ K(hλ + hα∗) ‖µ‖Lp([0,T ]→M(Ω))

(38)

and so (37) as desired.

[Note also that taking µ ∈ M(Q) = M([0, T ] → M(Ω)) would correspond,
roughly, to taking p = 1 in Theorem 5.1.]

Finally, we note that the sup-norm estimate for p = ∞ here gives a con-
vergence order estimate pointwise in t: For dimensions d = 2, 3 and any
0 ≤ λ < α∗ = 2− d/2, one has

‖u(t)− U(t)‖L2(Ω) ≤ C hλ for each t ∈ [0, T ]

with C = K ‖µ‖L∞([0,T ]→M(Ω)).
(39)

[Again, C,K depend on λ. By a density argument, we note that u will be
in C([0, T ]→ L2(Ω)) even for µ(·) ∈ L∞([0, T ]→M(Ω)), discontinuous in t.

Remark 5.1 It might seem plausible that if we were to have a measure-valued
source term with support bounded away from ∂Ω or, somewhat more generally,
taking values in Mc(Ω) , then, as in the elliptic case of Theorem 3.2, this
convergence order could be improved somewhat from λ < α∗ in (37), (39) to
λ = α∗ by using (10) instead of (17). Certainly, in the context of Remark 3.1
and [9], we can take σ = 1 to replace Lemma 5.1 and the estimate (34) by

‖A−1µ‖L2(Ω) ≤ K‖µ‖Ξ−2(Ω)
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— however, we note that the convolution argument used above requires the
integrability of t−σ, so taking σ < 1, thus leaving us with the estimate of
Theorem 5.1 taking λ < α∗.

6 Computational results

In this section, we provide results of numerical tests which illustrate the con-
vergence result Theorem 5.1 of the previous Section 5 for the time-dependent
linear parabolic problem (1). The analogous numerical tests of Theorem 4.2
of Section 4 for the stationary problem (2) are already included in [6].

Specifically, we consider the linear parabolic heat equation (1) with D ≡ 1
in Ω, imposing homogeneous Dirichlet boundary conditions, u = 0 on ∂Ω,
in the spatial dimensions d = 2, 3 of interest. The domain is chosen to be
Ω = (−1, 1)d ⊂ Rd with the initial condition u = 0 for compatability with
the boundary conditions in order to focus the numerical studies on the non-
smoothness of the source term. As a test problem, we used a single Dirac delta
distribution as source term, constant in t so ϕ(x, t) = δ(x) for all t ∈ [0, T ],
positioning the injection site at the center of the domain. On physical grounds,
it is clear that the solution, starting with u = 0, will develop a sharp spike at
the injection site, growing over time as one unit of material per unit of time
is injected by the model. The form (39) of Theorem 5.1 applies.

The domain Ω has piecewise linear boundary and so can be discretized
exactly, using triangular elements in two dimensions and tetrahedra in three
dimensions. The convergence studies employ a sequence of meshes with h
halved in each refinement, starting from a coarse initial mesh to allow as
many refinements as possible. The shape of Ω enables us to have at each stage
a mesh point where δ(x) is centered.

The initial computations [8], [5] used special-purpose code in C to im-
plement the linear Lagrange finite elements. The more general tests of the
convergence behavior of finite elements used the software package COMSOL
Multiphysics (www.comsol.com), chosen for its convenience and reliability. See
[13] for a tutorial introduction, then [6] for a numerical investigation of La-
grange elements also of higher than linear order and of different domain shapes
for the elliptic problem (2); in effect these computational studies complement
the analytical results in [11] and Theorem 4.2. Based on this, we also use COM-
SOL in this paper to extend those studies to the time-dependent problem (1);
see [14] for more information on the techniques used.

Figures 1 (a) and (b) show log-log plots of the error ‖u(t) − U(t)‖L2(Ω)

vs. the reciprocal 1/h for d = 2 and 3, respectively. The predicted slopes of
−α∗ (−1.0 for d = 2 and −0.5 for d = 3, respectively) are shown as dashed
lines in each plot. The three solid lines show observed convergence orders at
three points in time t = 2, 3, 4, whose observed slopes λ clearly confirm the
theoretical prediction that we may take λ ≈ α∗ in estimating the error.

In the form (39), we computed C, λ by linear regression in the log-log
representation for each time t in these plots. This gives λ ≈ 0.97 for the lines
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(a) d = 2 triangular mesh (b) d = 3 tetragonal mesh

Fig. 1 Non-smooth test problem: log(‖u(t) − U(t)‖L2(Ω)) vs. log(1/h) at times t = 2, 3, 4
and dashed line for predicted slope.

in d = 2 dimensions and λ ≈ 0.47 in d = 3 dimensions. Both the plots and these
quantitative results confirm the predicted analytic result, that the asymptotic
convergence order is (approximately) given by α∗ = 2− d/2.
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Birkhäuser, Basel (2005)

5. Gobbert, M.K.: Long-time simulations on high resolution meshes to model calcium
waves in a heart cell. SIAM J. Sci. Comput. 30(6), 2922–2947 (2008)

6. Gobbert, M.K., Yang, S.: Numerical demonstration of finite element convergence for
Lagrange elements in COMSOL Multiphysics. In: V. Dravid (ed.) Proceedings of the
COMSOL Conference 2008, Boston, MA (2008)
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