Stability of Pull Production Control Methods
for Systems with Significant Setups

Thomas I. Seidman* Lawrence E. Holloway!

[EEE-Trans. Auto. Control 47, pp. 1637-1647, (2002).

Abstract

In manufacturing, a pull production control method is a method
of authorizing production based on replenishing current and past con-
sumption, as opposed to forecasts or orders for future consumption.
In this paper, we consider special classes of pull systems for opera-
tions that involve significant setup times. In particular, we present
a model for variations of the Signal Kanban method and the Pattern
Production method, each of which is used in industry when conven-
tional Kanban methods are inappropriate. This paper examines such
systems under demands with unpredictable load content but an upper
bound on the total load. It is shown that, under appropriate condi-
tions, such systems are stable in the sense that cumulative production
at any time trails cumulative demand by no more than a constant.
We determine buffer parameters under each protocol (including re-
order points in the Signal Kanban case) such that the backorder queue
will clear to zero and remain empty thereafter. The results are then
extended to consider multiple machines fulfilling production autho-
rizations in parallel.

KEY WORDS: Production control, Signal Kanban, Pattern Production,
lean manufacturing, round robin.

*Department of Mathematics and Statistics, University of Maryland Baltimore
County, Baltimore, MD 21250, e-mail: (seidman@math.umbc.edu)

fCenter for Robotics and Manufacturing Systems University of Kentucky, Lexing-
ton, Kentucky 40506-0108 e-mail: (holloway@engr.uky.edu) This work has been sup-
ported in part by NSF Grant ECS-9807106, USARO Grant DAAHO04-96-1-0399, and the
University of Kentucky Center for Robotics and Manufacturing Systems.

1 Introduction

Pull production control is an important tool used by companies operating
under “just-in-time” manufacturing or “lean manufacturing” [9, 16, 15]. In
concept, the pull production control method constrains the buildup of inven-
tory by only authorizing production based on actual downstream consump-
tion of product. Thus, in pull systems, authorizations for production come
from downstream stations (hence, with demand arriving at the end of the
line), in contrast to “push” production control systems, where orders arrive
at the start of the line based on forecasts or orders for future consumption
9].

Most work in the literature on pull production control focuses on single-
card Kanban®, two-card Kanban, and pull system variants such as CONWIP.
A recent survey of Kanban methods is presented by Akturk and Erhun [1],
and a comparison of these and other methods is given by Bonvik, Couch, and
Gershwin [2].In these classic implementations of Kanban, there are multiple
production authorizations associated with a given product, and each one is
associated with a standard lot of product. Whenever such a lot begins to be
consumed, the authorization associated with it is released to the producing
system, authorizing production to replenish it. Inventory is directly capped
by only having fixed numbers of such authorizations circulating in the system.

Such a system works well when the producing station is able to change
over between products relatively quickly and easily. In systems with sig-
nificant costs or time associated with setups, the classic Kanban methods
are inappropriate. A balance must be reached between the need to limit the
number of setups to avoid sacrificing capacity and the goals of small lot sizes,
minimum inventories, and production smoothing which are emphasized in a
lean manufacturing operation. Instead, two different kinds of pull control are
commonly used. The first of these is the “Signal Kanban”. In contrast to
classical Kanban methods, a single production authorization (called a signal
kanban) is associated with each product, and, in particular, with a specific
level of inventory. When inventory falls below that level, the authorization is
released to replenish the consumption. Signal Kanban production control is
discussed by Monden [9]. In traditional inventory control theory, the Signal
Kanban method is often called a reorder point policy, or a two-bin system [8].

1 As is common in the literature, we use the capitalized term Kanban to indicate the
production control method, and the non-capitalized term kanban to indicate a production
authorization within the method.

Such systems are commonly used in industry for operations with significant
setups or minimum batch sizes. In fact, our investigation of Signal Kanban
systems was motivated by the production control systems formerly in use at
the metal stamping line at Toyota Motor Manufacturing Kentucky (TMMK).

A second type of production control for use in systems with significant
setup costs is Pattern Production. In this control method, there is a fixed
production sequence (pattern) and whenever the system receives such an au-
thorization, it produces up to a fixed level to replenish past consumption.
When the replenishment is complete, the machines are changed over to re-
plenish the next product in the sequence. There is no specified minimum
batch size and no idle time for such a system. The time between repetitions
of the cycle is variable, in contrast to the cyclic productions considered in
Economic Lot Scheduling Problems [4].

A key point of the systems that we consider is that the inventory behavior
for each product depends on the state of all other products which consume
capacity of the production system. In the case of Signal Kanban systems,
the lead time of a production authorization depends on the number of other
different products which are also waiting to be replenished, and in some cases
on the volume of each product that must be replenished for each. Thus, the
lead time depends indirectly on the past demand for all of the products
that rely on a given machine or set of machines. In the case of the Pattern
Production system, the period between replenishments of a product depends
on the run-lengths of all other products run in the intervening period, and
so again is dependent indirectly on past demand for all other products.

Our focus in this paper is on the stability of such pull production control
methods for systems with significant setups. A production system is said
to be stable if all its buffers are bounded so cumulative production can trail
cumulative demand by no more than a constant lag [10]. Certainly, tradi-
tional capacity constraints are needed to have any possibility of stability.
However, examples are known of layouts and systems with such simple con-
trol policies as clearing [7] or first-come first-served [11] which satisfy those
constraints but are nevertheless unstable. Seidman and Humes [14] have ob-
served examples of instability in the context of a production kanban system
with orders based on consumption but serviced according to a clearing pol-
icy. A principal distinction between that setting and our present concerns is
the treatment of multiple machines supplying each other. This is outside the
scope of this paper, restricted to a single focus (whether comprised of one
machine or several), but is deferred to [13].

3

Our main result here is that, for appropriate selections of buffer param-
eters, we show that Signal Kanban policies and Pattern Production policies
will be stable (the queue of backorders is bounded) and even strongly clearing
(the backorder queue eventually becomes empty and remains there), subject
to a capacity constraint and a limit on the burstiness of total demand. One
important implication of this result is that demand among different products
can be reallocated, as long as the burstiness bound on the total demand is not
exceeded. We emphasize that the policies we consider determine production
solely in response to demand, and no prior schedule or demand forecasts are
assumed. Thus, the policies require no prior knowledge of the composition of
the load or of the nature of the burstiness except that the limit is maintained.

In the next section, we describe our basic model of a production system.
Section 3 shows stability of two common variations of Signal Kanban systems,
fixed-fill and fixed-batch for a single machine operation. Section 4 presents
results for pattern production control for a single machine. Section 5 consid-
ers these protocols operating with a bank of machines servicing production
authorizations in parallel.

2 System Overview

The structure of the systems we consider is shown in figure 1. There are
N products (each associated with a buffer,, of size B,). Demand (orders)
arrive to the queue Q. If there are no backlogs, then the order immediately
proceeds to the head of Q. The order at the head of Q is then filled with
product from the corresponding buffer,, if it is nonempty. Otherwise, the
order remains as a backlog and also blocks subsequent orders until it can be
filled.

Let U,(t) be the cumulative number of orders for product,, arriving by
time ¢ — including any ‘initial condition’. Thus, U,(0) = 0 means that
buffer,, is initially full and, in addition, that Q contained no orders for
product,,.

The n-th product has a ‘relative difficulty’ (in terms of production effort)
of p,. We use the relative difficulties to scale the load, setting u,(t) :=
pnU,(t) and then letting u(t) be the N-vector with entries w,(t). Note that
for non-negative N-vectors, we may write ||z|| = 1-z where 1 is the N-vector
of ‘1’'s and we are using the ¢;-norm so, e.g., |[u(t)| is the total cumulative
load: all orders (scaled) up to time t.

Figure 1: A production system with signal kanbans (triangles) determining
the production of product by the machines. The release of the signal kanbans
is determined by the consumption of parts from the buffers.

We will assume that we have a bound A on the (scaled) arrival rate of
orders so, with some allowance ¢ for ‘burstiness’, we assume that, using this
{1-norm,

[u(®) —als)| <A-(t —5)+¢ (2.1)
for arbitrary intervals (s, t]; when (s,] is understood, we set
Emlut)—u()| -\ (t—s), requng <& (22)

Figure 2(a) shows that £ represents a bound on the burstiness of the order
over any interval. Note that it is quite possible to have £ < 0 for a particular
interval, but the condition that & < & must hold for every subinterval. The

Figure 2: (a.) The burstiness restriction limits demand bursts above the
nominal. (b.) Extended drops in demand shifts down the demand bound for
all future time.

effect of this is shown in figure 2(b). Any extended drop below the nominal
rate of \ results in a downward shift in the bound, so future bursts cannot
make up the loss.

We emphasize that our treatment assumes a bound only on the total
demand input, without any consideration for its composition. For this treat-
ment, then, it is not required to have any information as to how the total
demand is partitioned into demand for individual products — nor need that
composition remain even roughly stationary over time. A separate concern
as to how one might take advantage of such compositional information if it
were available is adduced in our discussion, but will not be treated in any
relevant detail.

Orders are filled with product,, from buffer,, and those buffers are replen-
ished by a set of machines according to a production policy to be discussed
later. Production authorizations (kanbans) are collected first to a queue K,
and then released to any of M machines. Each machine has a speed factor o™
(simply o when M = 1). There is also an allowance 6, for a (relative) setup
delay (in terms of production units) needed in preparation for processing
product,,. This is here taken to be independent? of the machine used and of

2Since 6, is only a bound on the setup delay, this represents no loss of generality —
although sharper estimates than we obtain might become available at the price of further

the prior product processed. Thus, the actual processing time for product,,
at machine™ is 7" < p, /0™ units of time per item of product, excluding
setup and when considering a batch of size k processed at machine™, the
total run time, including the setup, will be bounded by (kp, + d,)/c™.

Let V,(t) be the cumulative amount of product,, released from the system
by time t, so v,,(t) := p,V;,(t) is the scaled released production for product,,;
let v(t) be the N-vector with entries v, (t). If the level within buffer, is
L at time ¢, set x,(t) := pn[B, — L]; let x = x(t) be the N-vector with
entries x,(t). [Note that x is necessarily bounded, as we always have x,,(t) <
prnByp.] Similarly, let Y,,(t) be the number of orders in Q at time ¢ for product,,
and let y = y(¢) be the N-vector with entries y,(t) := p,Y,(t).

Example: To illustrate the meaning of the scaling factors, consider a set
of metal stamping machines. In such a stamping operation, a “production
unit” could be a stroke of the stamping press. We assume each machine
can accept each part die. If machine® is capable of 10 strokes/minute and
machine’ runs at 15 strokes/minute, then o* = 10 and ¢” = 15. If part 1 is
produced two at a time for its die, then p; = 1/2, and 7 = 1/20, 7/ = 1/30.

All orders and buffers are then scaled according to these production units
(strokes). Thus:

e 1,(t) is the number production units at time ¢ that are required to refill
buffer,, to level B,;

e y,(t) is the number of production units at time ¢ required to empty the
present order backlog queue, Q, of all orders it contains for product,;

e u,(t) is the cumulative number of production units for product, de-
manded up to time t;

e v,(t) is the cumulative number of production units corresponding to
the filled demand for product,, up to time t¢.

As an example, suppose that up to time ¢, only product; is being de-
manded, so ||u(t)|| = u1(¢). If demand for product; up to time ¢ is 400 units,
then ||u(t)|| = w1 (t) = 200 press strokes.

Suppose that A = 100. Then the nominal total demand rate for all
products is 100 production units (strokes) per minute. If £ is 20, then over a

complication of the analysis.

period of 1 minute, demand could be as high as A+& = 120 production units.
Over 10 minutes, however, its demand could only be as high as 10\4+¢& = 1020
units.

Similar examples can be constructed for other manufacturing processes
such as injection molding, extrusions, etc., where a unit of production may
correspond to a fixed number of items. If we considered production of kits of
like parts, then instead we may have a single “product” (kit) require multiple
units of production (p > 1), instead of fractional units.

Note that x,(t) is the number of production units required to fill buffer,,
to By, and y,(t) is the number of production units required to fill the orders
for product,, in the backlog Q. Thus, y,(t) > 0 implies z,(t) > 0, and the
sum of them can be considered a deficit of those products (in production
units) required to have no backorders and no empty portion of the buffer for
that product.

We can thus look at the change in this deficit over time as the arriving
orders less the filled orders over the period. The basic ‘bookkeeping’ identity
is then:

(x +yl(t) = [x +yl(s) = [u(t) —u(s)] = [v(t) = v(s)] (2.3)
for any (arbitrary) time interval (s,¢] (0 < s < t) and vectors indexed by
product (n=1,..., N).

Since these vectors x,y,u, v are inherently non-negative, taking the dot
product with 1 in (2.3) gives

¢ t
I+ 310 = <+ 91 + [= o] 24)
where u‘t = u(t) — u(s) is the total (scaled) units demanded over the in-

t
terval (s,t], and V‘ = v(t) — v(s) is the total (scaled) units of production
released from the system over the interval. Let the total deficits at times s
and t be the positive scalars (5 and (; (respectively):

G = Ix+yI) = lIx()I + [y)l G = lIx+yl@l,
Then equation (2.4) becomes simply:

t
v
s

G =G ul’
ZCs+/\'(t—s)+§~—HV’t

s

(2.5)
for arbitrary intervals (s, t].

Note that for each machine™ our scaling of production just gives the total
demand filled over the period as

t
m

> o™ - ((t —s) — [setup time]™ — [idle time]™)

s

X

and summing over m we have

HV’t > o* - ((t — s) — [setup time] — [idle time])

s (2.6)
t—s < HV’tH Jo* + [setup time| + [idle time]).
where ¢* := Y, 0™ is the collective capacity of the set of M machines.

In order that the backorder queue Q stay bounded, the cumulative orders

demanded must not substantially exceed the orders fulfilled: over long time
t t

intervals we must have |ju

S S

< bound. Comparing equation (2.6)

with (2.1), we get the necessary constraint that this collective capacity o*
must exceed the total demand rate A:

o > A where % ;=) o™ (2.7)

In this paper, we consider several protocols which dictate when machines
will produce a product and how many will be produced in sequence. A proto-
col thus specifies how the queue K of production authorizations is maintained
and how it determines the activity of the machines (processors). A key con-
cept of interest is whether our protocols will guarantee a bounded order
backlog O, and further, whether that order backlog will eventually empty
and remain empty.

Definition 1 A protocol is stable — for given load scalings p,, , speeds o™ ,
and configuration (buffer sizes) — if Q@ remains bounded (i.e., ||y (t)|| remains
bounded for all t) for arbitrary initial state, subject only to the burstiness ar-
rival constraint equation (2.1), and the capacity constraint (2.7). A protocol
is uniformly stable if the bound on the queue size ||y|| depends only on the
mitial queue size, uniformly for all admissible input.

Definition 2 A protocol is clearing if, for arbitrary initial state and ad-
missible input as above, Q necessarily empties; it is strongly clearing if, in

addition, Q stays empty from some time on. A protocol is uniformly clear-
ing if there is some bound on the time to clearing, depending on the initial
queue size, but uniform for all admissible inputs; it is uniformly strongly
clearing if this also holds for the time until the queue remains clear.

Theorem 1 FEwvery stable protocol is uniformly stable. Similarly, every clear-
ing protocol is uniformly clearing and every strongly clearing protocol is uni-
formly strongly clearing. Finally, clearing protocols are necessarily stable and
so are uniformly stable.

PROOF: As this theorem is somewhat tangential to our principal inter-
ests we only sketch the arguments.

(stable = uniformly stable) Suppose not. Then each trajectory (i.e.,
sequence of states®) is bounded, but there is some sequence {y"”(-)} of such
trajectories for which ||y”(¢,)|| > v for suitable times ¢,. Without loss of gen-
erality we can assume there are no state repetitions (at least, earlier than ¢,)
in any of the trajectories under consideration here: else one can skip the in-
tervening segment of the trajectory (noting that our definition of ‘protocol’
requires that the ‘reduced’ trajectory must again be admissible). By a diago-
nal argument one can find a subsequence of trajectories with common initial
segments of increasing length: all trajectories agree up to the N-th event
from some point v(IN) on. This determines a common ‘limit trajectory’,
which must also be admissible and so should be bounded by the assumed
stability. On the other hand, it cannot be bounded since the absence of rep-
etitions ensures a bound on the number of steps until ||y|| > ¢ for any ¢ (as
there are only finitely many distinct states with ||y|| < ¢). This contradiction
shows the existence of a uniform bound for fixed initial conditions whence,
since there are only finitely many initial conditions satisfying any bound, we
have uniform stability.

(clearing = uniform clearing) Again, suppose not. Then there would
be a sequence of trajectories with increasing times to clearing and increas-
ing number of arrivals before clearing* Again by a diagonal argument, we

3Without loss of generality we need consider only those evolutionary histories for which
the input is close enough to the rate A of (2.1) that (uniformly) one can work with sequences
of orders and states (buffer and queue contents) without explicit regard to times.

41f there would be a long enough interval without input, then (as our definition of
‘protocol’ ensures the system will not idle for long when the queue Q is not empty) the
system will clear. This clearing can only be delayed if input continues.

10

can extract a subsequence with increasingly long common initial segments
(again determining a ‘limit trajectory’) and with increasingly long periods
to clearing. The limit trajectory is necessarily admissible but never clears —
contradicting the assumed clearing property.

(uniform clearing = uniform stability) Over a uniformly bounded
time before clearing, the condition (2.1) bounds arrivals so the possible queue
length is bounded.

(strong clearing = uniform strong clearing) The proof is by the
same kind of diagonal argument as above. [

In this paper we consider two protocols: the Signal Kanban protocol (in
two variations) and the Pattern Production protocol.

For the Signal Kanban protocols we let R, (with 0 < R, < B,,) be a
‘reorder level’” such that kanban,, is to be transmitted to K to ‘order’ produc-
tion by the machine(s) to replace the ‘deficit’ when the buffer level gets down
to R,; i.e., the kanban is transmitted when x,, reaches b, := p,[B,, — R,] > 0.
Each kanban,, is then transferred back to buffer,, when the corresponding pro-
duction run (consisting of ‘setup’ plus actual processing time) is completed.

There are two common variants of the Signal Kanban protocol:

e fixed-batch: In the fixed-batch version of a Signal Kanban, the pro-
duction authorization is for a fixed lot size (scaled) of exactly b,. This
is the version of Signal Kanban discussed by Monden [9], and seems
to be most common in industry. This is the same as the reorder-point
(“two-bin”) methods in inventory theory. We normally assume prod-
uct is transferred to the appropriate buffer immediately (continuously
during processing), but we note an alternative subvariant with product
delivery of the entire batch made at completion of the production run.

o fixed-fill: In the fixed-fill protocol, the signal kanban authorizes pro-
duction to fill the buffer, i.e., up to B,. The production runs may be
of different lengths depending on the demand for this product from
the time of issuance of the kanban authorization until completion of
the run with the buffer filled. Queuing delays in K due to other pend-
ing authorizations make the initial buffer level at the start of the run
variable, but it is no higher than the reorder level, so b, represents a
manimum batch size. The disadvantage of this system in practice is
that the variable run lengths require monitoring the buffer levels while

11

running, as opposed to the simpler fixed-batch scheme. However, from
initial simulation studies, the fixed-fill appears to have a better behav-
ior [5]. It is interesting to note that in the limit where the buffer levels
become continuous variables instead of discrete, the “fixed-fill” vari-
ant is equivalent to the “switched arrival” system shown to be chaotic
(the behavior is highly sensitive to initial conditions, and it is highly
unlikely that the system will settle into a periodic pattern) by Chase,
Serrano, and Ramadge [3].

We emphasize that for either variant the authorized production run will have
a (scaled) ‘batch size’ at least b,, i.e., b, is the minimum run length. Signal
kanbans are discussed in more detail in the next section.

For the Pattern Production protocols we have a specified ‘cycle’ of
kanbans in fixed sequence (n(1),...,n(J)) with every index n included at
least once in the cycle. Each of these kanbans is transferred to the rear end
of the queue K as soon as the corresponding production run is initiated. For
the special case where each product appears exactly once in the pattern and
there is only one machine, this is equivalent to a Signal Kanban system with
R, = B,,. Thus, an authorization is released immediately upon the filling of
the buffer. Pattern Production protocols are examined in Section 4.

3 Signal kanbans: amortizing batch sizes

We wish to consider a set of M machines, working collaterally (in parallel) to
serve a common set of buffers with a common input stream to the queue Q. In
a Signal Kanban system, we associate a reorder point R, with each buffer,,.
Whenever the buffer level falls to this level (corresponding to z, reaching
by, := pu[Bn — R,] > 0), then a production authorization (kanban) is released
to the kanban queue K to replenish product,,.

The specification of a minimum run length is the substantial point of
the Signal Kanban protocol in the presence of setup times: we will choose
each R, (and so b,) so as to amortize the setup times. Choosing o > 1, set
o' := o*/a. For any production run of length b (in terms of scaled product),
the time taken by the run, including setup time, will then be bounded by
(b + 0,)/0. If we would know, by the specification of the minimum, that
b > 6,/(a — 1), then this total run time would be bounded by b/0’ and o
becomes a reduced ‘effective capacity’ for the set of machines, subsuming

12

consideration® of setup times.

We use the obvious specification of queue dynamics: If a production run
is in progress, it continues according to the variant selected; in each case the
minimum run length is b,. When the machine finishes such a run, it returns
that kanban to its buffer and then immediately begins the new run associated
with the kanban now at the head of IC, if any. If IC is empty, then the machine
idles until a kanban arrives to I and that run is initiated. A production run,
once initiated, consists of the setup, followed by the actual processing; it
is possible that two (or more) consecutive production runs may involve the
same product® and in that case we assume (or, as an alternative variant, may
not!) that the setup time is omitted or reduced for all but the first of these
runs. We allow the variants of the Signal Kanban protocol regarding ‘fixed
batch size’ or ‘fill the buffer’ as above. Our analysis will accommodate any
of these variants without distinction, assuming the capacity condition (2.7).

The specification of system dynamics requires some further consideration
when M > 1: How should one handle the possibility of partial idling (some,
but not all, of the machines being active at ¢)? If we accept this as a possibil-
ity while imposing the capacity condition in the form (2.7), then partial idling
means that the battery of machines may be operating below its collective ca-
pacity o* and it should not then be surprising that stability might fail.” To

5Tt will be important to take advantage of the strict inequality in the capacity condi-
tion (2.7), to choose a < o* /X so ¢’ > A. Otherwise, one easily sees that with run lengths
short enough that the capacity condition now fails — i.e., if o/ < A in (2.7) — then the
system cannot be stable: too high a proportion of the time would be taken up by the
setups and the effectively reduced capacity becomes inadequate to keep up with demand
input.

The significance of our choice of & > 1 is that a larger « (farther from 1) means smaller
batch sizes and requires smaller buffers — but somewhat limits the load which could be
handled, corresponding to a possible increase in \.

6This can happen if there is an intervening idle period or if we are working with a
fixed batch size and, when the kanban is returned to the buffer, the buffer level is already
at or below the reorder level (due to further demand since the kanban was previously
transmitted to K) and the kanban is then immediately retransmitted to IC. Of course, this
also assumes that no other kanban is transmitted between these occurrences.

"Consider the scenario (say, in the ‘fill the buffer’ variant) in which, from some mo-
ment on, the external demand stream becomes entirely composed of orders for some one
product. The kanban; has initiated a production run for product; (e.g., at machine™)
and, after a while, all the other machines would be idle while machine™ works at speed o".
The capacity condition (2.7) permits arrival of orders at a (scaled) rate A. Although A < o*
by assumption, it remains possible that A > ¢™ — the input rate dominating the pro-

13

obtain a positive result we must include some ‘assistance rule’ in extending
the protocol to the collateral case, rather than having a kanban exclusively
assign a production run to a single one of the machines. We will think of
K as consisting of two disjoint parts: K, := {those kanbans in K already
assigned to some machine (so a production run is already in progress)} and
Ko := {those kanbans in K awaiting assignment}. A machine, on completing
a production run, is assigned a new run from K if that is nonempty and
otherwise initiates a run ‘in assistance’ from K, (e.g., the first, although this
choice does not affect our argument); if Ko and I, are both empty, then the
system is (entirely) idle with K empty. While we have described a particular
version of the assistance rule for definiteness, we will really need only two
properties of this for our proof:

e When the system is idle each buffer must be above its reorder level.

e When several machines participate in a compound production run, we
will have a setup time for each (with the possibility of omitting this ap-
plicable on a machine-by-machine basis), but cannot have more than M
such altogether for any single such run.

It would be convenient to have also the property that all machines involved
in a compound production run finish simultaneously (with a ‘priority rule’
to determine order of subsequent assignment). In this situation, we would
be concerned with the possibility of a machine assigned to to the production
of a part being within a setup process when the production is completed by
the others machines. In the case of ‘fixed batch size’ this would necessarily
be predictable and we modify the assistance rule to assign this machine to
that run, but not have setup actually performed — although the time until
the run is completed might be counted as setup time, rather than as idling.
In the case of ‘fill the buffer’ this predictability might fail and we will allow
for this possibility of incomplete setup in our analysis.

Theorem 2 Consider a Signal Kanban protocol as described above for col-
lateral operation of a set of M machines satisfying (2.7). We choose a so
1 < a<o*/\ and suppose the reorder levels R, > 0 are set so that

b = pulBr — Ry] > M6, /(o — 1) (3.1)

duction rate so the system cannot keep up, i.e., instability. The problem obviously is that
o* truly represents system capacity only in that multiple machines can combine to handle
the load and, for our setting, this must be allowed to hold even when the composition of
the load might be concentrated on a set of products smaller than the number of machines.

14

for each n. The following statements can then be made for either the fixed
batch or fixed fill variants of the protocol:

1. The protocol is uniformly stable.

2. The protocol is uniformly clearing: the maximum length of any active
interval (s,t] is at most

G+ ¢
Tmez ' = ————
max 0'*/0[—)\

where we note that, except initially, (s < biot := Y, bn.

(3.2)

3. If the buffer sizes are large enough [see (3.5) and, e.g., (3.7), below),
then the protocol is (uniformly) strongly clearing.

PROOF: Fix a time s at which the system becomes active (i.e., either
s = 0 or s ends an idle period. Our protocol description ensures that if
any machine is ‘idle’ then all machines are idle and Q is empty soy = 0
and ||x|| < bgot := X, by, whence (5 < byor when s # 0 here. We then fix
an interval (s,t] during which the system remains active without any idling.
Indexing production runs (whether simple or compound) during this interval
by v, we have

o"(t—s) < Z[b + 0]

where [b,6]”" here represent the shares of (scaled) production and setup,
respectively, for run, within (s,t] by machine™ and we have no idle time to
consider. Summing over m we get

ot —s) < {Z+Z} b+ 0],

where we have separated the sum into }_', consisting of those (complete) runs
occurring entirely within (s,¢], and 3", the remaining (partial) runs: note
that this latter sum consists of those runs not yet finished by ¢ since our
choice of s ensures that none of the runs involved here is incomplete because

it was initiated before s. We then have {Z/ + Z”} b, =

For each of the complete runs in Y.’ we know that b > b, with n =
n(v) and that we have at most one setup time for each of the machines,

t
V]
s

15

whence [§], < Mé,. Thus, using (3.1), we have [b+ 6], < afb], for each of
these runs. To estimate >.” we note that there can be at most M machines
involved in those runs in process at time ¢ so, altogether, their setup ‘costs’
can be at most Mgy with dper = max,{d,}: ie., Y"[0], < Momas
Combining these gives, since a > 1,

ot —s) = {Z’ + Z”} b+ 0],
<aS Bl + { Mépas + Z”[b]y} (3.3)

t
< Momaz + ‘V

s

Using (2.5) in (3.3) gives
Yo

g

t
G < Gt &+ (Vo) Mbyas— (1 -) .
and, as Aa/o* < 1 by assumption, the last term above can be omitted and
we have

G <G +HEF+ (Ao)Mmag- (3.4)

Since (; := ||[x+y](¢)|| and (, is uniformly bounded (either {y or < byy¢), this
shows that the protocol is uniformly stable, so statement 1 of this theorem
is proved.

Next we determine the maximum time the system can be busy without
returning to idle. Taking ¢ above to be the end of the active interval, we have
" empty so we can omit the M§y,qz term of (3.3). From (2.5) we then have

GSCGHA(t—8)+E—(07/a)(t —s).
Solving for (¢t — s) and recognizing that (; > 0, we arrive at

G +¢
o*fa— N

which gives us the desired bound (3.2).

To prove result 3 of the theorem, our simplest argument is to note that
xn(T) < by for 7 within any idling period while for 7 in a non-initial active
period (s,t] we have, as s < 7 <t < s+ Tyaz,

(t—s) <

() < zp(s) + M7 —) + & < ba + ANz + &

16

with Tz computed as in (3.2) using (5 < byop. Clearly, if the buffer size Bj
is set large enough that

btot + &

ﬁBﬁ>bﬁ e\
P - +§+0*/a—)\

(3.5)
then this buffer could not empty as would be necessary to have an order for
product; at the head of the backlog queue Q. If this holds for every n, then
Q must remain empty since no order could be at its head.

While proving statement 3, this universal and explicit estimate (3.5)
is clearly unreasonably pessimistic, since an input stream maximizing the
length of the active interval as in (3.2) would not be expected to maximize
xn(T) at T = 1.

We would prefer a sharper estimate of the lower bounds for the buffer
sizes which will ensure strong clearing. For the general case with M > 1 the
situation is rather complicated, as one must consider combinatorial aspects of
the machine assignments and assistance to obtain a ‘good’ bound for z;(7)
in an active period. We will seek to obtain such an estimate only under
the additional assumption® that it requires all the machines to keep up with
demand arriving at the maximal rate of (2.1) — i.e., with (2.7) we would
have

ocf—ad" <A< Ym. (3.6)

We also continue to assume that (3.1) holds for each n. A simplifying con-
sequence of (3.6) is that a time 7 at which z;(7) attains its maximum must
immediately precede a period of production of product; with assistance by
all machines so all production runs during (s, 7| for products n # n are
completed and for such n we have®

i t

b

We note here that the expression (aA/c*)K,b, — [input], is then maxi-
mized (least negative) when x,(s) is as large as possible (for s— ending an

8This holds automatically for the single machine case M = 1 and we note that the
requirement we obtain will be sharp in that case. When M > 1 it seems possible that
some slight further improvement might still be achieved by a more detailed analysis (e.g.,
to show that one typically has one, rather than M setups for each production run), but
we do not pursue this and consider (3.7) sufficiently sharp.

9We also write [production]; = Kb; with K > 1, although K; will not, in general,
be an integer.

17

idle period: z,(s) = b, — p,) and the input is just what is needed to trigger a
run (i.e., [input], = p, so K,, = 1) for n # n. Further, each of these complete
runs is amortized so

[production + setup time], .5 < a[production|,; = a Z K,b,
n#n

while, as Kj; need not be an integer, we similarly have
[production + setup time|; < aK;bs + 5 (5 < 5ﬁ))

Note that (2.6) then gives
T — s < [production + setup time]/o* < (a > Kb, + 5) Jo*.

At this point we are ready to bound z;: using the observations above
and (2.1), we have

xﬁ‘T = [input]; — [production];
= [jnput] — [input]n?sﬁ — Kibs
<A1 = 8) + € — [input],zn — Knbn

< (N\o") <aZKnbn + 5) + & — [input],zn — Kby
=&+ (V0% — (1 — (@M /o) Knbs + > ((aX/o*) Kb, — [input],,)

n#n
<&+ (M0")0n — (1= (X /o)ba + Y ((@X/0")bn — pn)
n#n
za(T) = wa(s) + %‘L‘T < by — pa+ Tn i
<&+ (Mo")0n+ Y ((@A/o")bn — pu) -
Thus, as earlier for (3.5), we see that requiring
A A

for each 7 is sufficient, in the context of (3.6) and subject to (3.1), to ensure
strong clearing. [

18

Example: To illustrate the above results, consider a manufacturing
facility with two “machines”, with scaled production rates of o! = 0% = 9
units/min. Our machines produce six products with scaled setup for each
product of 0; = 09 = 03 = 04 = 80 (production units) and d5 = dg = 40.
These represent worst-case setups — when switching between certain pairs
of products, common settings between particular products may reduce the
setup effort. In our example, a production unit equals an item of product,
so p; = 1 for 1 < i < 6. For the production rates given, the average setup
time on machine! thus corresponds to 8.9 minutes.

Suppose that we have a demand of A = 15 units/minute. The collective
capacity is then o* = o! + 02 = 18 units/minute, and the utilization is
A o* = 83.3%. The parameter o« must be chosen between 1 < a < 0*/\ =
1.2. First let us consider the case where v := 1.15. In this case, by equation
3.1, bi|a=1.15 > 1067 units, which would correspond to at least 71 minutes
of supply if demand swings entirely to product 1. If demand did swing
entirely to one product, then the two machines must both eventually help,
since the rate of demand would exceed the capability of either machine by
itself. Note that regardless of the demand, each production run will take
(b + 0,) /0! = 127 minutes if run on just one machine.

Note that productg setup is only dg = 40. For this, bg|lo=1.15 > 533.3
units. This is significantly lower than for producty, illustrating (as we would
expect) that the minimum scaled buffer size (and thus the investment in
inventory) is reduced proportional to scaled setup time &;.

The parameter « must lie between 1 and ¢*/\. Moving « closer to one
effectively limits the load by forcing larger batches and less frequent setups.
Thus, it in effect reserves capacity that could cover a potential long-term
increase in A. To illustrate the effect of decreasing «, suppose now that
a = 1.05. Then by|a=1.05 > 3200 units.

The buffer bounds calculated above ensure that the system will be stable
and the backlog will be bounded. However, typically we are more concerned
with preventing a backlog from occuring. Assume that our burstiness bound
¢ is 5 units. From above, we have Z?:1 bila=1.15 > 5336. Then from equation
3.7, we have the buffer size for product; must be

p1B1]a=1.15 > 5179.3

Thus, if the buffer for product; is at least 5180 parts deep (approximately
5.75 hours of maximum demand), then it is sufficiently deep such that no

19

part shortage will occur, even under the “worst case” situation of all kanbans
being released simultaneously. We should emphasize that this this value is
primarily due to the term %, a\b;/o*, which corresponds to replenishing
when all products are at their reorder points simultaneously — possible,
although unlikely.

4 Pattern production

We continue to consider a set of M machines working collaterally (in parallel)
to serve a common set of buffers with a common input stream to the queue Q.
In this section we wish to show stability and strong clearing for Pattern
Production protocols, such as simple ‘Round Robin’, in which there is a
predetermined cyclical specification of the sequencing of production runs. In
general the system will be continuously active, since the queue IC will always
contain the full (cyclical) set of kanbans. However, there will be no positive
minimum for the batch sizes and the problem is to verify that the setup
times are amortized by an automatic adjustment of the batch sizes so the
setup times just fill the capacity gap (¢* — A). While there are no ‘reserve
levels’ to specify for these protocols, it will be necessary to require lower
bounds on the buffer sizes.

Two comments are in order here as to the precise specification of the
protocol. First, much as in our description of the Signal Kanban protocols,
we wish to allow (as one alternative possibility) that we omit the setup when
it is clearly unnecessary: here, if the buffer,,;) is already completely full when
one comes to the j-th kanban of the cycle. Conceivably there might be some
interval, necessarily with no external demand input, during which all buffers
remain full and, in the no-setups variant, we do not take this as meaning there
are infinitely many (totally degenerate) ‘cycles’ in no time, but simply move
the ‘head’ of the kanban queue to the kanban for the next arriving order,
with some selection rule or arbitrary choice if that might be ambiguous due
to multiple occurrence of this n in the cyclical pattern. Second, we note
— by the same logic as preceding Theorem 2 — that ‘assistance’ may be
necessary. However, this is now implicit in what we have described of the
protocol without introducing a special ‘assistance rule’”: if machine™ becomes
available and the next kanban is one for which a production run is already
under way with!'? that buffer not yet full, then machine™ initiates an ‘assisting

10Tt is almost necessary that the buffer be not yet full if a production run is under way,

20

run’ for the same product.

Theorem 3 Consider a ‘Pattern Production’ (cyclical) protocol for collateral
operation of a set of M machines satisfying (2.7). We assume that all the
buffer sizes have been set so

(Aom)Ar

1—Xo* (4.1)

by = puBp > (=

Then

1. The protocol is uniform clearing and stable. Moreover, for M = 1 the
same conclusion holds even if we admit one exception to (4.1).

2. If the buffer sizes satisfy the stronger condition

b > = TV)A (4.2)

then the protocol is uniform strongly clearing.

PROOF: The key to the proof will be the property:

If j is the first time n = n(j) occurs, then the production of (4.3)
product,, in the j-th run of the cycle must be at least x,(s). '

This property is clear when M = 1, but our first concern here is to determine
a suitable replacement for it, since (4.3) is no longer valid, as stated, in the
more general context. The difficulty is that, unless z,(s) = 0, a production
run for product, ;) will be initiated, but need not now terminate within the
cycle: this is, after all, the reason we have found it necessary to introduce the
notion of ‘assistance’. Hence the desired lower bound on production in (4.3)
may fail in considering a single cycle.

but not quite: a first machine might initiate a run of product,, and then a second machine
initiate assistance, after which it is possible that a third machine will become available
with this again the ‘next kanban’ after the first machine has already filled the buffer, but
while the second machine is still in its setup time, so the run remains ‘under way’.

21

Instead, we will analyze production over an interval (s,t| consisting of
several consecutive cycles, defining such intervals by requiring that each pro-
duction run associated with a ‘first occurrence’ j of product,; in the first
cycle of the interval must have terminated by the end of the interval with
buffer,;) filled. Then (4.3) holds in the present setting with ‘cycle’ replaced
by ‘interval’. Summing this over j — i.e., over n, since each n occurs for its
first time exactly once in (s,t] — we see that we always have

Mo 2 St = I (1.4

Excluding the possibility that the input stream of orders is finite, we have
a well-defined sequence of intervals, for v =1,2,... with v — 00 as t — .
We let ¢, denote the completion time of the v-th interval (with ¢y = 0) and
consider (s,t] = (t,_1,t,]. Here (2.6) becomes
t

+A (A = A, := [total of setup times])

J*-(t—s):Hv

since no time is occupied by idling.

To obtain an estimate for the [total setup time], =: A, associated with
such an interval, we first observe that one of our ‘intervals’ can consist of at
most!? M cycles. It is then clear that the setup times associated with all
runs (including ‘assisting runs’) initiated within the cycles comprising the
interval, cannot exceed MA. We do note, however, the possibility that at
the time ¢,_; at which the interval, began, perhaps as many as (M — 1) of
the machines were involved in doing setups and to estimate A, we must also
allow for these. Altogether, A = A, < A* with A* as in (4.1) and using this
in (2.5) gives the recursive identity

G =6 = =N |[v[[| + [(W)d, +&). (45)

HTo see this, consider any j which is a first occurrence of n = n(j) in the cycle pattern
and the production run associated with this, starting in the first cycle of the interval.
If this run has not terminated (with buffer,, filled) by the occurrence of j in the second
cycle of the interval, then a second machine will initiate an assisting run of the same
product,. By the occurrence of j in the M-th cycle of the interval — if the interval has
extended this long because this run remains incomplete — all M machines will be working
on processing this same product,, so the M-th cycle could only end after the completion
of this compound run. (As before, we note that the capacity condition (2.7) ensures that
this must eventually happen.)

22

We now assume that (4.1) holds for all n and distinguish two cases for
the system state at the time s = ¢,,_;: either there is no backlog at that time
(i.e., Q is empty and y(s) = 0) or there is a backlog (i.e., Q is nonempty).
Case 1: If the queue Q(s) is empty so y(s) = 0, then (s = ||x(s)|| and we
may use (4.4) in (4.5) to get

G < (Vo) + [(Mo)A+E). (4.6)

[So far, this has used no assumption about the buffer sizes.|
Case 2: If, however, Q(s) is nonempty, we denote by 7 the index of the
item at the head of that queue. This is possible only if the buffer; is empty

s0 7 (s) = by and we note from (4.4) that this gives: t > by. Using this

v

in (4.5) gives

G <CG— (1= Mo+ (M)A, +6)]

. 4.7
§C5+€V_C ()

where

¢ :=min{(1 — A/o%)b, — (A/o")A}. (4.8)
The assumption (4.1) just ensures that ¢ > 0.

Now, for M = 1 (so our intervals are simple cycles), consider the modi-
fications needed if we admit a single exception to (4.1). Without loss of
generality we may assume the exception is for n = 1 and that we have have
taken the ‘beginning’ of the cycle there, so j(1) = 1. We modify the case
distinction to consider also the state at the time s’ at which the first pro-
duction run of cycle, (for product;) terminates: Case 1 now corresponds to
“Q(s) is empty” (rather than to “Q(s’) is empty” as earlier) and Case 2
corresponds to “Q(s’) nonempty.” More specifically, Case 1 now includes
both Case 1’ with Q also empty at s (as above, with the identical analy-
sis) and also Case 1” where Q(s) is nonempty and 7 = 1 but Q(s’) is empty
(thus, Q(s) contained only product;, and no new backorders entered Q while
processing product; over the interval (s, s']). For Case 2, we now either have
7 # 1 so (4.1) applies and the analysis is as before, or we have i = 1 with
Q(s’) nonempty (thus, backorders entered Q during the production run of
product; over the interval (s,s’]). In the latter subcase the index of the
item at the head of the queue at s’ will be 7/, necessarily with 7/ # 1 so
(4.1) will apply and, since this i’ must occur later in the cycle than 7 = 1
with j(f) = 1, we note that cycle, contains a production run for products

23

t
\4

starting with buffer;, empty so > by

S

Either way, Case 2 gives ¢, < (s + &, — ¢, ie., (4.7), with ¢ > 0 now
defined by taking the minimum over n # 1 in (4.8). For Case 1”7 all of y(s)
will have been subtracted from the respective buffers by the time s’ to give
y(s’) = 0 and we note that the production of product; during the first run
of the cycle must be at least z1(s) + y1(s) and the production of each other
product (n # 1) occurs subsequent to s’ and so must be at least x,(s") >

¢
Zn(8) + yn(s): altogether we must have Hv‘ H >3 [n(s) Fyn(s)] = (s as

earlier so, for either subcase, we still have (4.6) for Case 1.

A first consequence of (4.7) is then that any backlog occurring must even-
tually clear: one can only have finitely many'? consecutive cycles in Case 2.
Setting

k(v) := [number of cycles in Case 1 through cycle,],

we note that (4.1) ensures that: k(v) — oo as v — oo. We now observe that
(4.6) and (4.7) give

Ct < ()\/O_*)k(u)
. Ao*)A
+ [1—(A/a) H /A/L* (4.9)
+Z o) k(V) ku)gu

for v = 0,1,.... This is trivially true for v = 0 with k£(0) = 0, and then
proceeds easily by induction — using for this, as appropriate, either (4.6)
with k(v + 1) = k(v) + 1 or else (4.7) with k(v + 1) = k(v).

For an arbitrary time 7 (falling in the (v + 1)-th cycle, so t, < 7 <t,41)
the same analysis which gave (4.5) can also be applied to the time interval
(t,, 7], giving®®

G <Gt [(Vo)A +E] (4.10)

12From (4.7) we have: Ctopr < Gty + 5 — kc if interval, through interval,) were

Case 2 intervals (with é corresponding to the entire concatenated time interval so 5 <
¢). With ¢ > 0 this would contradict the positivity of ¢, ., for large enough k, greater

than ({5 + &)/c.
In (4.10) we could replace the bound on setup time within (s,7] by summing 4,
only over those setups actually occurring by 7, but we use A* as in (4.1) for simplicity.

24

and combining this with (4.9) gives
(2—=MNo*)(A/o*)A

< *\k(v) =
GRS TR
Wlth ET — gT+ Z()\/U*>k(ll)_k(ﬂ)gu

p=1

To estimate =,, begin by defining
Ee=6 2 & = ulr) —ulten)ll = A (7 = te)
U=K

Bei= (o) (B = 1)

for k = 1,...,v+1. Note that each =, < £ by (2.2) and that ép =2, S
for p = 1,...,v with ET = éy-{—l' Further, since k(-) is nondecreasing, we
have (3, > B.y1 for each k. Simplifying the summations by setting =, := 0
and (g = 0, we may use Abel’s formula for summation by parts to get

v+1 5 B v+1 B
Er =-— Z ﬁu [Elﬁ‘l - Eu} = [@t - 5#—1] Eu
[Lzl ‘u,:l
v+1
< D 1By = Bual € = [Bupr — Bol € =¢.
pn=1

This shows that =, < ¢ for all 7, which gives uniform stability in view of
(4.11) — i.e., subject to (2.7), (4.1). Asymptotically,

G < (Ao WG+ ¢ — ¢ (as T —)

since then k(v) — oo.

Finally, if (4.2) holds — so a fortiori (4.1) holds — then, from some time
on (such that k(v) is large enough to make the first term on the right of
(4.11) negligible) one has (; < b, for every n. Thus, as each x7(7) < (;, no
buffer; can be empty so no n can index the item at the head of the queue.
This means that Q must then be empty — which is just the strong clearing
property. [|

Example: To illustrate our results for a pattern production system, we
consider the same example as at the end of section 3. From equation 4.1,

25

b, == pnB, > (. = 4400 production units. This equates to 4.8 hours of
maximum demand for the product.

To ensure strongly clearing, from equation 4.2, b, > (* = 5138.3. Thus,
if the buffer is at least 5139 production units (products) deep, then we are
assured that there will be sufficient inventory to prevent backlogs even under
changes in demand mix and under demand burstiness.

Now, suppose that the sequence pattern of production can be chosen
to take advantage of similarities of adjacent products in the sequence, thus
reducing the setup times.'* In particular, suppose the resulting savings in
setups due to sequencing leads to A’ = 200 and ¢,,,, = 60, which then
gives (, = 2300 as a bound to ensure stability, and (* = 2688.3 as a bound
to ensure strongly clearing and thus no backlogs. This illustrates that our
analysis can be applied to cases where the production sequence is carefully
selected to reduce setup times.

5 Discussion

In this paper, we have examined several variants of production protocols for
manufacturing systems where setups can have a significant impact on ca-
pacity. Each protocol examined is a pull protocol, so production is directly
in response to prior and current consumption (demand). We considered sys-
tems where the demand is unknown. A maximum average long-term demand
rate is assumed known, but the demand can exceed this bound subject to
a ’burstiness’ constraint. There are no assumptions on the distribution of
this demand or the burstiness among the different products being produced.
We examined variants of the Signal Kanban systems and Pattern Production
systems, for the situation of single machine and parallel machines.

Our focus in this paper was on determining whether these protocols were
stable and strongly clearing. A protocol is stable if the backorder queue
remains bounded, and is strongly clearing if the backorder queue eventually
empties and remains empty thereafter. For each of the policies we considered
(subject to a capacity constraint), conditions on the buffer sizes were found in
order to ensure that the policies would be both stable and strongly clearing.

14This is very reasonable when M = 1 when the sequence of products in the pattern
directly determines the sequence of products on the machine. Using the sequence to
reduce setups when M > 1 seems less reasonable, but we nonetheless continue with our
multi-machine example.

26

We should emphasize that we assumed no structure to the distribution
of demand among products, or of the distribution of the burstiness among
products. As such, the bounds that were determined for setting buffer sizes
and reorder points would be conservative in practice. In lean manufactur-
ing, where pull production methods are commonly used, there is a strong
emphasis on heijunka, leveling demand over time and among products. This
has an impact on our results in two ways. First, there would be a conscious
effort to minimize the burstiness £. Secondly, for each product,,, we would
have a maximum demand rate of \,, < X such that A < Zﬁf:l A < N The
developments in this paper have considered the worst case where A\, = \ for
all n, but reducing each A, to more accurately reflect knowledge of demand
would reduce the buffer level bounds accordingly.

There are several directions for continued work on these protocols. First,
it would be useful to determine better buffer sizes and reorder points when
knowledge of the distribution of demand among products is known. A second
direction for investigation is the performance of the protocols. Average inven-
tory is one performance measure of importance in many industries. Yang [17]
used simulation to compare the average inventory of a fixed-fill signal Kan-
ban system (a reorder point policy) with a model intended to approximate
traditional Kanban methods, but which in fact resembles the behavior of a
pattern production system (specifically, in his model, inventories are always
replenished to their maximum level, and an authorization is then immedi-
ately reissued when the inventory falls below the maximum level). From the
results of the simulations, it is concluded that the pattern-production control
system requires less inventory than the fixed-fill Kanban system to achieve a
similar level of service. It would be worthwhile for future research to examine
these conclusions within the analytical framework that we have considered.

Finally, we should note that the dynamic behavior of these protocols
should be examined. Under the unstructured demands that we considered,
the buffer sizes and reorder points determined for the single machine Signal
Kanban protocol are both given by Theorem 1. However, simulation results
show that for simple two-product systems, given demand information for
the different products, the fixed-fill variation of the Signal Kanban policy
performs better (lower average inventory) than the fixed-batch variation of
the policy [5]. This appears to be due to long-term cyclic behaviors that can
occur in the fixed-batch policy. Further investigation of these behaviors and
the dynamic behavior of the pattern production system should be done.

In this paper, we did not consider the behavior of signal kanbans oper-

27

ating over a set of machines in series. One series arrangement commonly
found in industry has two machines and consequently two signal kanbans for
each product, with each kanban having a separate reorder point. The signal
kanban with the earliest reorder point is called a material requisition kanban
[9]. This kanban requests the first machine in the series to produce material
for the second machine in the series, which then uses it when the its signal
kanban is released. The behavior of serial kanban systems is a subject of
current research, and some initial results are presented in [13].

References

1]

M. S. Akturk and F. Erhun, An overview of design and operational issues
of kanban systems, International Journal of Production Research, vol.
37(17), pp. 3859-3881, (1999).

A.M. Bonvik, C.E. Couch, and S.B. Gershwin, A comparison of
production-line control mechanisms, International Journal of Produc-
tion Research, vol. 35(3), pp. 789-804, (1997).

C. Chase, J. Serrano, and P.J. Ramadge, Periodicity and chaos from
switched flow systems: contrasting examples of discretely controlled con-
tinuous systems, IEEE Transactions on Automatic Control, Vol 38(1)
(1993).

S. E. Elmaghraby, The economic lot scheduling problem (ELSP), review
and extensions, in Management Science, Vol 24(6), (1978).

L. E. Holloway, Modeling and Simulation of Manufacturing Systems un-
der Signal Kanban Policies, 2nd International Symposium on Scale Mod-
eling, Lexington, Kentucky, May 1997.

A.F.P.C. Humes and C. Humes Jr., A clearing round-robin-based stabi-
lization mechanism, in Proc. Allerton-94, Allerton (IL), 1994.

P.R. Kumar and T.I. Seidman, Dynamic instabilities and stabilization

methods in distributed real time scheduling of manufacturing systems,
IEEE Trans. Autom. Control AC-35, pp. 289-298 (1990)

C. D. Lewis, ‘Scientific inventory control’, American Elsevier, New York,

1970.

28

2nd

[9] Yasuhiro Monden, ‘Toyota Production System’ (2"¢ edition), Inst. In-

dustrial Engineers Press, Norcross (GA), 1993.

[10] J.R. Perkins and P.R. Kumar, Stable distributed real-time scheduling of
flexible manufacturing/ assembly/ disassembly systems,
IEEE Trans Autom. Control AC-34, pp. 139-148 (1989).

[11] T.I. Seidman, ‘First Come, First Served’ can be unstable!, IEEE Trans.
Autom. Control AC-39, pp. 2166-2171 (1994).

[12] T.I. Seidman and L.E. Holloway, Stability of a ‘signal kanban’ manufac-
turing system, in Proc. 1997 Amer. Control Conf. (vol. 1), pp. 590-594,
Amer. Automatic Control Council, Evanston (1997).

[13] T.I. Seidman and L.E. Holloway, Stability of signal kanbans for machines
1M Series, paper in progress.

[14] T.I. Seidman and C. Humes, Jr., Some kanban—controlled manufacturing
systems: a first stability analysis, IEEE Trans. Autom. Control, AC-41,
pp. 1013-1018 (1996).

[15] Shigeo Shingo, A Study of the Toyota Production System from an Indus-
trial Engineering Viewpoint, Revised Edition. Productivity Press, Port-
land Oregon, (1989).

[16] James P. Womack, Daniel T. Jones, and Daniel Roos, The machine that
changed the world: the story of lean production. Harper Collins, New
York, (1990).

[17) Kum Khiong Yang, A comparison of reorder point and kanban policies
for a single machine production system, Production Planning and Con-
trol, Vol. 9(4), pp 385-390 (1998).

29

