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ABSTRACT: The blockage/starvation patterns of known instability examples suggest using local
demand information — which is precisely what is provided by the widely advocated kanban approach
to flow control in manufacturing systems. Therefore, we have re-analyzed for stability the examples
described in the 1990 Kumar–Seidman paper when modified by introducing kanban control. It is
found that this does not ensure stability and, in fact, some interesting new instability phenomena
arise. Counterintuitively, it is possible that increasing some reserve supply level in a stable system
may induce instability.
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1. Introduction
The stability1 of decentralized scheduling policies for manufacturing systems has been explored

in numerous papers [10], [6], [8], [3], [9], [5], [12], [7], [11], [1]. All of these analyses (except [12])
have concerned themselves with flow-driven systems in which the scheduling of each machine is
dependent only on the contents of the product buffers and such locally available information as might
be carried by this product flow. In observing that the flow blockages occurring in known instability
examples [6], [11], [1] might be alleviated by informing a supplier of impending ‘starvation’, one
is led to conjecture a likelihood of greater stability for demand-driven systems, with dual flows of
product and of controlling orders. This conjecture is somewhat strengthened by the popularity of
one such approach, the kanban, as a scheduling control mechanism. Kanban systems have been
widely advocated and widely implemented although, to the best of our knowledge, there has been
no mathematically rigorous analysis of their stability properties.

Thus we are led to test the efficacy of the kanban structure as a possible stabilizing control
mechanism specifically against the challenge posed by the context of clearing policies, within which

1I.e., one wishes to ensure — subject to the ‘capacity condition’ (2.9) — that total WIP remains bounded in time,
equivalently, that there is a bound on the throughput lag for each item of product. Conversely, ‘instability’ means the
existence of counterexamples: systems satisfying the capacity condition for which, with some initial condition, one
has WIP becoming unbounded in time.
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were found (for flow-driven systems) the first two known instability examples [6]. Each example is a
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system with two machines, each with two tasks. In each machine there is a comparatively slower task
(indicated by an open dot in the figure) with the processing times satisfying the general ‘capacity
condition’ (δ + σ < 1, τ + ε < 1) corresponding to assumed unit input rates. In [6], it was shown
that instability was obtained if the processing times satisfied an ‘instability condition’

τ + σ > 1.(1.1)

Those examples were themselves a response to the earlier general conjecture of stability of flow-
driven clearing systems, presented in [10], where stability was proved for acyclic networks; as we
shall see, even this result need not be valid in the presence of kanbans.

The results of our investigation seem interesting and somewhat unanticipated; see section 4.

2. Kanban systems: formulation and notation
We are considering a model for flow in a manufacturing system following the formulation of [10],

etc. Thus, we have a finite set of tasks, indexed by i, with each task assigned to a machine Mm;
we write m(i) for the machine index m associated with task i and correspondingly write i ∈ Mm,
identifying a machine with its set of tasks. Further, each task i is associated with a product stream
Pp corresponding to a material flow of (items of) some product indexed by p = p(i). We assume a
fixed (pre-specified) sequencing of tasks within each product stream so the set Pp has a linear order
(i1, . . . , iJ). We write i− and i+ for the predecessor and the successor (within Pp) of a task i, where
this is meaningful, and denote by i∗(p) and i∗(p) the initial and terminal tasks.

It may be possible to index the machines in such a way that one always has m(i+) ≥ m(i) and
we then call the system geometry acyclic; otherwise (as is the case for our Examples A and B), we
call the geometry non-acyclic or re-entrant.

The standard paradigm of queueing theory, followed in [10], etc., presumes a sequence of arrivals
at the initial task of each product stream with the system ‘pushed’ by the incoming flow to maintain
production. Our present paradigm is to reverse this so processing will only be done ‘as ordered’ —
i.e., we presume a sequence of orders arriving to the terminal task of each product stream and view
ourselves as processing orders which are transmitted in the product stream geometry in the direction
opposite to our task sequencing and which ‘pull’ the concommittant flow and processing of product.
To specify the operation of the manufacturing system it is now necessary to specify both the protocol
for transmitting orders within the system and also the scheduling protocol for processing products
at each machine when there may be competing tasks.

While this ‘pull’ framework provides attractive alternatives to the ‘push systems’ analyzed in
[10], etc., it is clear that the analysis is now complicated by the necessity to provide two sets of
protocols and to track two flows through the system: of orders and of products; this also blurs the
distinction between acyclic geometries (no longer possessing the inductive causality as for ‘push’
systems) and non-acyclic.

In general, for pull systems, one will have for each task both a ‘demand buffer’ of as-yet-unfulfilled
orders and a buffer of product available for processing. For present purposes we make no further
differentiation (e.g., as to ‘urgency’) and it will be sufficient for our analysis to note only the levels
of these buffers; thus, ki(t) will denote the number of orders awaiting (at time t) processing for task
i, while xi(t) will denote the ‘supply level’ of available product there.
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The kanban mechanism is a standard protocol for transmitting orders: it assumes specification2

of a reserve supply level Ki so that orders (kanbans) are transmitted from i to i− as xi(t) drops
below Ki. Apart from some possible initial stock above the reserve supply level,one has the identity
(for tasks which have internal suppliers)

xi(t) + ki−(t) ≡ Ki(2.1)

(where we ignore any transit times for product or kanbans). For an initial task, we suppose product
is always available as needed — effectively, that xi∗(p)(t) ≡ ∞, without counting this as WIP. For
a terminal task, the demand buffer does not consist of internally issued kanbans but of external
demand and, without any equivalent of (2.1), we take

ki∗(p)(t) =: zp(t)(2.2)

as a definition of zp, which is just the unfullfilled external demand for the product stream Pp.
We denote by Xi(t) the cumulative number of items of product processed at task i by time t and

by Zp(t) the number of orders received at i∗(p) by time t, including any unfulfilled demand present
in the system at the initial time. For an intermediate task i — equivalently for i+ in view of (2.1)
— simple bookkeeping then gives

Xi−(t)−Xi−(s) = [Xi(t)−Xi(s)] + [xi(t)− xi(s)]
[ki(t)− ki(s)] + [Xi(t)−Xi(s)] = Xi+(t)−Xi+(s)

(2.3)

For terminal tasks we have, instead,

[zp(t)− zp(s)] + [Xi∗(p)(t)−Xi∗(p)(s)] = [Zp(t)− Zp(s)].(2.4)

In general, a distributed processing protocol (scheduling policy) will schedule the activity of
each machine Mm in terms of the values of {ki, xi : i ∈Mm}. For our present purposes, we will be
considering scheduling policies in which a single task can be enabled at any time. We then distinguish
three types of possible states ωm(t) :Ai (task i is enabled and active)

Ii (task i is enabled but inactive: the machine is ‘waiting’)
Si′i (task i is ‘becoming enabled’ in transition from the prior enabled task i′)

A task i ∈ Mm can be active (ωm = Ai) only if it is available (meaning that both ki(t) > 0 and
xi(t) > 0). The state Si′i represents a setup period for the transition, which we assume has fixed
length (setup time) δi′,i ≥ 0.

We assume that the policy is non-idling, i.e., that no machine Mm will be idling (inactive:
ωm = Ii for some i) unless it is blocked (meaning that none of the tasks at Mm is currently
available). We also assume that we will not make a transition from i′ to i unless the new task
i is available. A clearing policy is one in which we further assume that we never make such a
transition unless the previously enabled task i′ has become unavailable, i.e., once some task i ∈Mm

is ‘enabled’, the machine Mm is committed to continue working exclusively at the task i (one has
ωm = Ai) until one of the relevant buffers (of orders or of available product) becomes exhausted.3

2Physically, one thinks of a fixed number Ki of ‘tokens’ (or ‘order cards’, to take a somewhat more literal translation
of the Japanese word ‘kanban’) which would be attached to the stock of product at i when this is at its desired reserve
level. When an item of this stock is utilized, the attached token is removed from the product item and transmitted
as an order to the ‘supplier’ (predecessor) i−, to be returned attached to the replacement item when that order is
fulfilled to resupply the reserve. See, e.g., Chapter 13 of [2] for a more detailed description; our model is there called
a ‘one card’ kanban system.

Alternatively, this occurs in the Queueing Theory literature as a discipline ‘with blocking’: assume the supply buffer
for task i has capacity Ki and that the prior server is ‘blocked’ (from task i−) if this buffer is already full. Noting
(2.1), one easily sees that this discipline is precisely equivalent to the kanban mechanism for this link: if desired, the
reader may eschew the explicit kanban description and view ki− as the ‘unused buffer capacity’ Ki − xi, rather than
as an independent entity. [This protocol is not equivalent to the somewhat more commonly considered discipline for
buffers of finite capacity in which ‘excess’ inputs are permitted to occur but are then discarded from the system.]

3The ‘minimum assured run length’ (no further input), is thus min {ki(t), xi(t)}. When one of the buffers empties,
some other task will be enabled, providing there is one available; otherwise the machineMm necessarily idles until it
does become possible to enable some other task. For our Examples A and B, there are only two tasks at each machine
so all clearing policies are the same and one need not specify any selection procedure for the task to be enabled.
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One principal motivation for clearing policies is that one may realistically have a substantial set-up
time incurred when switching from one task to another and one then needs runs long enough to
amortize the effect of this enforced nonproductive interval.

Associated with each task i is a processing time τi so, for any time interval (r, s), one has

µi(r, s) := meas {t ∈ (r, s) : ωm(t) = Ai} = τi · [Xi(s)−Xi(r)](2.5)

and for each machine M =Mm one has

s− r ≥
∑
i∈M

µi(r, s) =
∑
i∈M

τi · [Xi(s)−Xi(r)] .(2.6)

We assume a (constant) demand rate dp > 0 for each product stream (mean arrival rate of orders
to i∗(p)) so

Zp(t)− Zp(s) = dp · (t− s) (t > s)(2.7)

as closely as would be possible working with integers — or, more generally, that there is some
‘burstiness constant’ M ≥ 1 for which

|[Zp(t)− Zp(s)]− dp · (t− s)| ≤M.(2.8)

For the system to be stable (each zp(·) uniformly bounded), each Xi(·) must track Zp(i)(·) with
bounded lag so, for long time intervals, one must have Xi(s) − Xi(r) ≈ dp(i) · (s − r). In view of
(2.6), a corollary to this is the necessity for stability of the capacity condition

ρm :=
∑
i∈Mm

dp(i) τi < 1 (each m).(2.9)

What one would like, of course, is a stability result that — for any system using the protocols
under consideration, any initial conditions, and any demand inputs Zp(·) satisfying (2.8), subject to
(2.9) — one would have each zp(·) bounded (uniformly in time t > 0). The point of this paper is that
there are quite simple and ‘natural’ systems for which this is false when using a kanban mechanism
to transmit orders with a clearing policy to schedule production.

3. Three examples
To study the question of stability of systems operating with kanbans we shall start by analysing

systems that have already been shown [6], to be unstable under flow-driven clearing policies.
For our present analysis — of systems under a clearing policy for production, much as in [6], and

with order transmission now governed by a kanban mechanism — we consider the geometries, the
demand rates, and the processing times for tasks to be fixed, with the reserve supply levels (numbers
of kanbans) for each link then chosen in some fashion. This specifies a well-defined dynamical system.
We then assume that the initial conditions (from which we begin tracking the scenarios) may be
imposed arbitrarily. To simplify the exposition, we normalize to unit demand rates and assume
negligible burstiness, i.e., each dp = 1 and M = 1 in (2.8). For the first two examples we also neglect
set-up times, taking each δi′,i = 0. In this case we can use a simplified set of activity states: we
write um = i rather than ωm = Ai and write um = ∗ when Mm is blocked; the vector u = (u1, u2)
then gives the complete activity state for the system as a whole.

3:A. Two product streams

The first example is a two product system with two machines, corresponding to Example A
above. As in [6], we shall consider that “fast” tasks feed “slower” tasks, i.e., given τττ = (δ, τ, ε, σ), we
have δ, ε� σ, τ . The idea of reserve supply level applies only to tasks 2 and 4 and the corresponding
numbers of available kanbans are respectively K2 and K4; to avoid some expositional complications,
we assume in our analysis that K2,K4 > 2.
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Example A (with kanbans)

We begin tracking this system at a moment t0 corresponding to the completion at M1 of a
clearing run for task 4 due to exhaustion of the demand buffer there, i.e., z2(t0) = 0. As initial
condition, we assume that we have at t = t0

x4 = K4, k3 = 0, for P2 and x2 = 0, k1 = K2 for P1(3:A.1)

with ‘large’ unfulfilled demand z1(t0) = A. At this moment, M2 is necessarily idle (task 2 starved
for supplies; task 3 starved for demand), so the control state has just become u(t0) = (1, ∗). The
now-enabled task 1, with its rapid processing time, means that supply is quickly provided to task 2,
enabling u2 = 2 at time t0 + δ.

We are looking for a scenario in which the clearing run initiated at M2 ends by exhaustion of
the unfulfilled demand z1, terminating at the time t0 + T and n new orders will have arrived for P1

by then: M2 will have processed A + n items, taking time T − δ = τ(A + n) to make z1 = 0. To
within an uncertainty of at most 1 order (corresponding to the uncertain relation of the times t0
and t0 + δ+T to the exact arrival times for the orders; compare (2.8) with d1 = 1, M = 1), we have
n ≈ T so, for δ � τ , one has

T ≈ Aτ/(1− τ).(3:A.2)

Of course, to have such a scenario requires that the product buffer at task 2 should never become
exhausted during this interval (x2 > 0) and we must determine conditions ensuring this; we make
no claim that these conditions are actually necessary for instability — only that we will have shown
an instability example when they do hold.

With task 1 enabled atM1 and δ � τ , it is clear that the clearing run at task 1 ends long before
t0 + T . Indeed, M1 will process (K2 + A + n) items in the interval [t0, t0 + T ], taking total time
δ(K2 + A + n) which will be much less than T − δ = τ(A + n) if, say, A > K2. Thus, since T will
be large for A large, there must be (approximately) n arrivals at task 4 of orders for the P2 demand
buffer so task 4 will certainly become enabled. To ensure that the scenario does proceed as we are
describing it, it is only necessary to ensure that task 4 never has a clearing run long enough for
processing at task 2 to empty its reserve supply buffer while task 1 is being temporarily blocked —
i.e., since we necessarily have x2 = K2 at the beginning of such an ‘intermediate’ run at task 4, we
must ensure that

τK2 ≥ [run length] + δ.(3:A.3)

Since we are considering a period during which task 3 is blocked by task 2, the length of any run
at task 4 is necessarily bounded by σK4; however, this bound is inadequate for our purpose without
imposing undesirable conditions on the choices of K2,K4 in relation to σ, τ . Alternatively, the run
length here can be bounded in terms of the length T1 of the preceding clearing run with u = (1, 2)
which ends when the demand buffer at task 1 is exhausted. This will be longest for the first run
at task 1, since that commences with k1 having its maximum value K2. M1 then processes the
K2 items already (initially) ordered at task 1 but, meanwhile, new orders will have been received
from M2 so this run corresponds to processing K2 + n′ items, taking time T1 := δ(K2 + n′). This
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requires, of course, that n′ kanbans are received to task 1 fromM2 so (n′−1) items must have been
completed at task 2, taking time τ(n′ − 1). Thus,

δ + τ(n′ − 1) < δ(K2 + n′) =: T1 ≤ δ + τn′

i.e., n′ =

⌊
(K2 − 1)

δ

τ − δ

⌋
, T1 = δ

⌊
K2τ − δ
τ − δ

⌋
≈ δK2

(3:A.4)

Letting T2 be the time for which one then has u = (4, 2), we see that T2 = σn′′ where n′′ is the
number of orders arriving for P2 during the interval since task 4 was previously cleared. To within
an uncertainty of 1 order, we have n′′ ≈ T1 + T2 ≈ (δK2 + T2) so T2 ≈ [σ/(1− σ)]δK2. Comparing
this to the requirement (3:A.3), we see that — essentially independently of the size of K2 — we
need δ small enough to have

σ

1− σ
δ < τ(3:A.5)

to ensure that the scenario proceeds here as described.
We now consider the situation at the time t1 = t0 +T when the demand buffer at task 2 is finally

emptied. If A was initially large, making T proportionately large by (3:A.2), there will have been
plenty of slack time at M1 to have not only kept x2 ≡ K2 but also to have, altogether, cleared the
reserve supply at task 4 of its original K4 items — necessarily unreplenished because task 3 has been
blocked throughout. As already noted, the number of orders arriving for P2 during this period will
also have been approximately the same n ≈ T as for P1 so that the unfulfilled demand is then

z2(t1) =: A′ = n−K4 ≈
τ

1− τ
A−K4(3:A.6)

by (3:A.2). At t1 the state will thus be

x2 = K2, k1 = 0, for P1 and x4 = 0, k3 = K4 for P2(3:A.7)

with z = (0, A′) and u = (∗, 3).
This state is, of course, essentially a ‘mirror image’ of the initial state and, assuming A′ is large

enough, essentially the same argument mutatis mutandis shows that at a time t2 we will again
complete a clearing run at task 4 with the state given again by (3:A.1) and now with z = (A′′, 0)
where, as in obtaining (3:A.6), we now have

z1(t2) =: A′′ ≈ σ

1− σ
A′ −K2 ≈ λA−

[
σ

1− σ
K4 +K2

]
with λ :=

στ

(1− σ)(1− τ)
.

(3:A.8)

To have z1(t2) > z1(t0), we must then require that λ > 1 and that A is large enough that

(λ− 1)A >

[
σ

1− σ
K4 +K2

]
.(3:A.9)

Note that λ− 1 = (σ + τ − 1)/(1− σ)(1− τ) so

λ > 1 (giving instability) ⇐⇒ σ + τ > 1.(3:A.10)

Asymptotically, we may eventually ignore the constant term [σ/(1− σ)]K4 +K2 in (3:A.8) and see
that (approximately) each cycle repeats the same pattern with the unfulfilled demand multiplied
repeatedly by the factor λ. Of course, the cycle time is also scaled proportionately, so the increase
of unfulfilled demand will be approximately linear in time: the long-time average rate of increase
of total WIP (t−1[z1 + z2](t) as t → ∞) fluctuates boundedly — although without a limit unless
σ = τ > 1/2, in which case this is (2 − 1/τ) — with a positive lim sup, so WIP is certainly
unbounded.
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3:B. A single re-entrant line

We next analyze stability under kanban control for the second example [6] under the assumption

τ + ε < σ,(3:B.1)

which will be needed later to ensure that the scenario proceeds as described.
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Example B (with kanbans)
We begin tracking this system also at a moment t0 corresponding to the completion at M1 of a

clearing run for task 4 — now due to exhaustion of the product buffer, i.e., x4(t0) = 0. As initial
condition, we assume that we have, then,

k3 = K4, x4 = 0; k2 = K3, x3 = 0; k1 = K2, x2 = 0(3:B.2)

with ‘large’ unfulfilled demand z(t0) = A.
Note that at this initial moment M2 is necessarily idle (with both tasks starved for supplies),

so the control state is u(t0) = (1, ∗), but the now-enabled operation of task 1, with its rapid
processing time, means that supply is quickly provided to task 2, enabling u2 = 2, which we take as
characterizing the first phase of this scenario.

Once task 1 is begun atM1, it will clear the demand indicated by the initial condition k1(t0) =
K2. Thus, noting that task 1 is assumed much faster than task 2,M2 will be adequately supplied to
ensure that it will continue task 2 without interruption at least until completing min{K2, k2(t0) =
K3} items — and, indeed, since task 3 is blocked during this and so cannot replenish the supply for
task 4,M1 will continue to resupply the product buffer for task 2. Thus we continue to have u2 = 2
until the demand buffer for task 2 is cleared, ending this phase, precisely after M2 has processed
K3 items. We note that at this point (time t = t1 = t0 + ε+K3τ) we have

k1 = 0, x2 = K2, k2 = 0, x3 = K3, k3 = K4, x4 = 0(3:B.3)

and that the combined number of items x2 + x3 at t1 is just K2 +K3.
The clearing of the demand buffer for task 2 enables task 3 atM2 (i.e., u2 = 3) so, much as above,

product is rapidly supplied for task 4, which then permits u1 = 4 (at time t = t1 + δ), which we take
as characterizing the second phase of the scenario. One has, first, that K̂ = min{K3,K4} items are
processed at task 3 while the same number of kanbans are sent to the demand buffer for the blocked
task 2, after which one has u2 = 2 while M2 clears at task 2 at the time t = t∗ = t1 + K̂δ + K̃τ
by processing K̃ = min{K̂, x2(t1) = K2} = min{K2,K3,K4} items without interruption. The
condition (3:B.1) was imposed just to ensure that there is now still sufficient time for task 3 to
recommence and begin resupplying the product buffer for task 4 before M1 clears the stock of K̂
supplied earlier; thus (3:B.1) ensures the uninterrupted continuation of task 4 at M1. Continued
tracking along the same lines easily shows that one has u1 = 4 precisely until M1 has processed at
task 4 a total of K2 + K3 items (i.e., one has processed all of the items which were in the product
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buffers x2, x3 at time t1) since task 1 is necessarily blocked during this phase so no new product can
be brought into the system.

The second phase then ends at the time t = t2 given by

t2 = t1 + δ + (K2 +K3)σ = t0 + δ + ε+K3τ + (K2 +K3)σ,

having processed, altogether, K2 + K3 items at task 4 to meet the initial unfulfilled demand. The
‘internal’ state of the system is now again exactly as in (3:B.2), so — apart from the level z of the
external demand buffer — the same cycle will repeat exactly so long as z remains positive. During
each cycle one has (with unit demand rate) the arrival of new demand in the form of (approximately)

[t2 − t0] = δ + ε+K3τ + (K2 +K3)σ

new orders. Thus, one has approximately

z(t2)− z(t0) ≈ (t2 − t0)− (K2 +K3) ≈ (K2 +K3)

[(
σ +

K3

K2 +K3
τ

)
− 1

]
.(3:B.4)

This is positive precisely when one has

σ + ατ > 1 α :=
1

1 +K2/K3
(3:B.5)

and z then increases per unit time by 1− [K2 +K3] / [K3τ + (K2 +K3)σ].

3:C. An ‘acyclic’ instability example

We know (cf., e.g., [5]) that if each machine is governed by a ‘usable policy’ (i.e., stable for inputs
of bounded burstiness in the context of any single server in isolation, for which we note the kanban
mechanism is irrelevant), then one always has stability for acyclic flow-driven systems. In particular,
we know that clearing policies are ‘usable’ in this sense for flow-driven servers and so always stable
for acyclic geometries. As may be seen by the following example, this may fail for demand-driven
systems with kanbans — while noting that we have here written ‘acyclic’, as this refers only to the
flow geometry.
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Example C
Here, rather than indexing as above, we refer to the tasks by their processing times (e.g., we

say that ‘M2 services only task σ’). We will let K be the number of kanbans associated with the
only link involving kanbans at all. We consider unit arrival rates for orders (d1, d2 = 1) and will
neglect burstiness (effectively, M = 1) in (2.8)); we will also assume that ε is small enough and τ
close enough to 1 to have

K + 1 < min

{
σ

ε
,

τ

1− τ

}
.(3:C.1)

The significant setup time will be δ, on switching from task τ to task ε and we assume δ > 1; for
the other setup time (switching from ε to τ) we set δ′ = 0 for simplicity .

8



As we just have two tasks at M1, operated by a clearing policy, this machine will alternate
between production runs at task τ and task ε. Let us consider a ‘cycle’ of the scenario characterized
by this. Such a cycle comprises three phases: (• a setup period of duration δ, • a production run at
task ε, processing m items, • a production run at task τ , processing n items) so the cycle duration
is T = δ + mε + 0 + nτ . Neglecting burstiness, our first assumption (δ > 1) ensures that at least
one order for P1 arrives at z1 during the setup period and so ensures that task τ is always available
at the conclusion of a production run at M1 of task ε and n ≥ 1. Also, n will necessarily be large
enough to ensure that k1 = K at the end of the second phase so task ε is available. The scenario
will thus be as described.

We next note that the first part of our second assumption (3:C.1) implies that m ≤ K+ 1 items.
To clear the order buffer kε, one need consider only the maximum K which could be at k1 when
the run begins, together with the additional order immediately returned by task σ when it begins
work on the first item sent: since the time necessary to process K + 1 orders at task ε does not
permit task σ actually to complete the processing of that first item, it will be unable to return an
additional kanban. If, as we now assume, the initial state of the cycle has k1 = K, then we have
precisely m = K + 1 and we will then have to show that this state recurs at the next cycle.

Since z2 = 0 both at the beginning and end of the cycle, n must be the number of orders for P2

arriving at z2 during the cycle, i.e., n = T (to within the uncertainty associated with working with
discrete items). With m = K + 1, this gives

T = δ + (K + 1)ε+ Tτ so T =
(K + 1)ε+ δ

1− τ

The second part of (3:C.1) then ensures (as δ > 1) that the duration nτ ≈ Tτ of the third phase is
at least K + 1. Since σ < 1, by (2.9), there is then certainly time during this for task σ to empty its
supply buffer (at most K items) so we will have kε = K at the end of the cycle, i.e., as the initial
state for the next cycle as asserted.

Since d1 = 1, the result we have obtained (that nτ > K + 1) implies that we will have at least
K + 1 orders for P1 arriving at z1 during this phase and, with at least one additional order arriving
during the setup period δ > 1, that there must be at least K + 2 orders arriving during each cycle.
On the other hand, only m = K + 1 items of P1 are processed during the cycle so z1 must increase
by at least one order per cycle: this unfulfilled demand increases unboundedly and the system is
unstable.

We might also consider the system with the arrows in the diagram here reversed (so task τ
supplies product P1 to task ε). This merely interchanges the roles of orders and products in this
product stream so the system would follow essentially the identical scenario as above: again, z1 must
increase by at least one order per cycle and this ‘reversed system’ is also unstable.

We conclude this section by consideration of a single-machine, single-product system with two

tasks (task σ supplying task τ with σ + τ < 1 by (2.9)) and setup delays δσ, δτ . The system will

alternate clearing K orders at task σ (taking time δσ + Kσ) and processing the K items then in

the supply buffer at task τ (taking time δτ +Kτ). Thus, K items pass through the system for each

such cycle which takes total time T = (δσ + δτ ) +K(σ+ τ) with an average of T orders entering the

system each cycle. If the setup delays are large enough and the reserve supply level K small enough

that [δσ + δτ ] /K > 1− (σ+ τ), then this system will also be unstable — with, of course, the simple

remedy of increasing K enough to reverse this inequality.

4. Summary and discussion
Let us first review the conclusions to be drawn from each of the examples of the preceding section:

• For the first example from [6] one finds that the kanban structure has little effect on the insta-
bility mechanism: as for the flow-driven case analyzed in [6] and for the identical parameter
range (3:A.10), one develops a pattern of mutual blockage which repeats on an ever-increasing
scale.
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What is new, here, is a threshhold effect4 for the initiation of this pattern, with the
threshhold increasing when the number of kanbans for the links would be increased. If, rather
than taking A large initially, we were to consider the system in operation subject to the bursti-
ness condition (2.8), it is easy to see that a burst of demand permitted by (2.8) could also
initiate the pattern described (if M is large enough) with the possibility that this might grow
over some repetitions to the point where corresponding periods of reduced demand, also per-
mitted by (2.8), could no longer interrupt the pattern. To the extent that the burstiness of
(2.8) is random, one might expect this to occur (eventually) with probability 1 if possible at
all. This possibility is essentially equivalent to having M larger than the minimal A described
above, which increases with the Kj so, looking at the converse, the instability cannot occur
if K2,K4 are large enough compared to the given M . This is consistent with the viewpoint
of seeing kanbans as a stabilizing device to insulate the system from the effect of sudden
fluctuations in demand.

• For the second example from [6], involving a single re-entrant line, one obtains with kanban
operation a threshhold effect again and also a new instability criterion (3:B.5). Our earlier
requirement of ‘large’ initial unfulfilled demand indicates that, as for Example A, the kanban
mechanism provides a threshhold effect, insulating to some extent against occurrence of this
instability.

Since one always has α < 1 in (3:B.5), this instability condition is favorably comparable
to the instability condition (1.1) given for the ‘same’ system in [6] under flow-driven operation:
the kanban mechanism helps, although it does not always ensure stability. Since this depends
on 1 > α = K3 /[K2 +K3] , we see that for fixed processing times satisfying (2.9) one can
always obtain stability by making K2 large enough (for fixed K3). However, if σ+ τ > 1, then
increasing K3 sufficiently (for fixed K2) will make α close to 1 and σ + ατ > 1 so we have
the surprising and counterintuitive fact that increasing the reserve supply level for a link may
actually destabilize the system as a whole.

We also see here a previously unobserved instability mechanism — different from that
of [6] and from any previously known example of instability — in that instability occurs with
repetition on a fixed scale rather than an exponentially increasing scale.

• Finally, noting that it had been shown [10] that clearing policies are stable for acyclic flow-
driven systems, we attempted to obtain the corresponding result using the kanban structure
— and, instead, obtained our Example C, demonstrating the possibility of instability in this
setting as well. Clearly, the introduction of a setup time reduces system capacity, but since we
have a strict inequality in (2.9), there is always margin to amortize this by taking long enough
production runs, providing this were permitted by the scheduling protocol — indeed, this is
the rationale for a clearing protocol and this logic serves quite well in the flow-driven acyclic
case.

We have demonstrated instability for these ‘acyclic’ settings — which could not have
happened for a flow-driven policy. On the other hand, it should be noted that simply taking K
large enough (for any fixed values of ε, σ, τ) to avoid (3:C.1) invalidates the scenario description
here, presumably giving stability. Of course, the former distinction between acyclic and non-
acyclic systems has here been blurred, as already noted.

We were, perhaps, initially somewhat naive in expecting some miracles of stabilization from the
use of the kanban mechanism — especially in the context of non-acyclic systems, once one notes that
the typical applications in practice have been to acyclic production lines. With a very little thought,
the results for Examples A and C seem unsurprising and serve only to corroborate a (corrected)
intuition. We continue to find it somewhat counterintuitive that, in Example B, gaining instability
may require decreasing one of the reserve supply levels. The nature of the repetitive pattern for

4This corresponds, roughly, to a protective indifference to operational fluctuations and limited burstiness of the
input flow — here, demand rather than product arrivals. We have indicated this briefly — and suggest that this may
explain why, with on-line tuning, instability is not observed in practice — but in this paper we have not attempted
any formal analysis or proof of this effect.
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this example (essential periodicity, rather than ‘repetition on an increasing scale’) represents a new
phenomenon, although it is not clear whether this novelty is significant.

From the quite restricted analysis we have done here, we conclude that the introduction of a
kanban mechanism with adequate reserve supply levels can be expected (for general flow geometries,
as well as for acyclic production lines) to insulate the system from fluctuations without greatly
affecting the anticipated stability analysis. On the other hand, such counterintuitive effects as
exhibited in Example B suggest, as indicated by the phrase ‘a first stability analysis’ in the title,
the desirability of making further careful stability analyses for particular cases of interest.
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