
The ‘window problem’ for series of
complex exponentials1

T.I. Seidman,2 S.A. Avdonin,3 and S.A. Ivanov4

Abstract

Under a suitable sparsity condition on the exponents Λ = {λk = τk + iσk}, it
is shown that the individual terms cT = {ck eiλkT} can be obtained from ob-
servation of the L2 function f(t) =

∑
ck e

iλkt through the ‘window’ t ∈ [0, δ]
— with an `2 estimate (uniform for such Λ) asymptotically as T, δ → 0. Some
applications are given to control theory for partial differential equations.

Key Words: exponential series, uniform estimate, window problem, asymp-
totic, distributed parameter control.

AMS Subject Classification: 42C15, 47A57, 93B28, 42A55

1This has appeared in J. Fourier Anal. and Appl. 6, pp. 235–254 (2000).
2Department of Mathematics and Statistics, University of Maryland Baltimore County,

Baltimore, MD 21250, USA; e-mail: seidman@math.umbc.edu
3Department of Applied Mathematics and Control, St. Petersburg State University,

Bibliotechnaya sq. 2, 198904 St. Petersburg, Russia, and Department of Mathematics and
Statistics, The Flinders University of South Australia, GPO Box 2100, Adelaide SA 5001,
Australia; email: avdonin@ist.flinders.edu.au

4Russian Center of Laser Physics, St.Petersburg State University, Ul’yanovskaya 1,
198904 St.Petersburg, Russia; e-mail: sergei.ivanov@pobox.spbu.ru

1



1. Introduction
For any fixed exponent sequence Λ = {λk = τk + iσk} in C+ (i.e., with5

σk ≥ 0), consider the set M = M(Λ) of all complex functions f expressible
as finite sums of the form

f(t) =
∑
k

cke
iλkt(1.1)

for t ∈ IR. The ‘window problem’ of the title refers to the extraction of the
sequence of individual terms

cT =
(
cke

iλkT
)

(for some specified T ≥ 0) from observation of f ‘through a window’: re-
stricting t to a small interval (0, δ). Under appropriate hypotheses on Λ, i.e.,
assuming a ‘separation condition’ which we here express in the form:

# {λ ∈ Λ : 0 < |λ− λ∗| ≤ r} ≤ ν(r) for each λ∗ ∈ Λ,(1.2)

for a suitable function ν : IR+ → IR+, the operator

C = CT
δ : f 7→ cT : Mδ → `2(1.3)

will be continuous from Mδ :=[closure of M in L2(0, δ)] for any δ > 0 and
any T > 0.

For real {λk} we would be considering ‘nonharmonic Fourier series’ in
(1.1) while for purely imaginary {λk} we would have Dirichlet series

∑
k cke

−σkt

(cf. [13]) and consideration of the Müntz-Szász Theorem for polynomials∑
ckx

σk (cf., e.g., [2]) on setting x = e−t.
Our object is to verify continuity and to estimate the norm ‖CT

δ ‖ — with
especial concern for the asymptotics δ, T → 0, noting that ‖CT

δ ‖ must blow
up as δ → 0 and, since we are considering classes of sequences admitting
unbounded {σk}, must also blow up as T → 0.

5It is obviously sufficient to ask that σk be bounded below, since an invertible multipli-
cation of f in (1.1) by e−σt has the effect of shifting Λ by iσ. The choice of lower bound 0
for σk is purely for expository convenience, but note also (5:1.1).
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THEOREM 1: Given ν : IR+ → IR+ nondecreasing with ν(s)/s2

integrable, let Λ be any sequence in C+ satisfying the condition (1.2). Then,
for any δ > 0 and any T > 0 the map CT

δ defined by (1.3) is continuous:
Mδ → `2 and we have an estimate

log ‖CT
δ ‖ ≤ Q := Q1(δ) +Q2(T ) +Q∗(1.4)

uniformly for such {Λ}, with Q1(·), Q2(·), and the constant Q∗ defined in
terms of ν(·) and a suitably chosen auxiliary function γ(·).

The paper by W.A.J. Luxemburg and J. Korevaar [10], considered similar
questions for Λ ‘close to imaginary’ and with T = δ, showing the (uniform)
continuity of C although with no concern for the asymptotics. The papers
[17] and [18] adapted the methods of [10], with a somewhat differently ex-
pressed separation condition for the sequence Λ, to consider real λk and
estimate ‖C0

δ‖ as δ → 0. [For real λk the norm is independent of T . We
note from those papers that the computation gives Q1(δ) = O(1/δ) for a
quadratically growing sequence (λk ∼ ±ck2) and an example by Korevaar
included in [17] indicates that this is sharp; more generally, it was shown in
[18] that this becomes O(δ−1/[p−1]) when λk ∼ ±ckp with 1 < p < ∞.] The
object of this paper is to extend that analysis to the consideration of complex
exponent sequences λk = τk + iσk with σk ≥ 0, for which the normalization
implied here with T > 0 will be particularly appropriate.

We may note that much of our personal motivation for this investiga-
tion comes from the relation between exponential series such as (1.1) and
considerations of control theory for distributed parameter systems; see [1]
for a treatment of the theory and application of exponential families in this
context. The context suggests an interpretation of CT

δ as related to an ob-
servation problem: observing some functional on the solution of a partial
differential equation over a time interval (0, δ) in order to predict the solu-
tion state at a time T ; see Section 6.

Nonharmonic Fourier series (of the form (1.1) with real λk) suffice for con-
sideration of controllability/observability issues for the wave equation and
for undamped rod [6] or plate [14], [7] equations. However, we note that
treatment of the heat equation [11] involves such expansions with pure imag-
inary λk, i.e., Dirichlet series. Because of the smoothing associated with the
heat equation, so the solution semigroup is compact, it is then important that
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one is ‘predicting’ the solution state at a time T > 0: typically one takes T
to be δ, the end of the observation interval — as in [10], which was motivated
by this problem through [11]. For the one-dimensional heat equation with
T = δ (where we have λk ∼ ik2 for k = 1, 2, . . .), we will obtain as in [15]
an estimate O(1/δ) for log ‖Cδ

δ‖: an example by Güichal [4] shows that this
is sharp. More general complex exponent sequences arise for consideration
of damping for a plate model and we will also show how a control-theoretic
result (cf., Hansen [5]) can be easily obtained for such problems (with an
asymptotic estimate) by using the Theorem above.

2. Preliminaries
For the next sections we first fix ν : IR+ → IR+ as in Theorem 1, i.e., such

that

(i) ν : IR+ → IR+ is nondecreasing with ν ≡ 0 on some [0, r0],

(ii)
∫ ∞

0
[ν(s)/s2] ds <∞.

(2.1)

This is equivalent to the hypotheses on ν(·) we already imposed in Theorem 1
since the requirement in (i) that ν vanish on some [0, r0) is actually redun-
dant: in any case, by (ii) there must be r0 > 0 with ν(r0) < 1 so |λ−λ∗| ≥ r0
for all pairs λ, λ∗ ∈ Λ, i.e., the sequence must be uniformly separated and we
can take ν vanishing on [0, r0] for this r0. The integrability condition (ii) is
also closely related to the standard condition that

∑
k 1/|λk| be convergent

— indeed, writing ν̂(r) for the left hand side of (1.2), one has

∑{
1

|λ− λ∗|
: λ∗ 6= λ ∈ Λ

}
=
∫ ∞

r0

dν̂(r)

|r|
=
∫ ∞

r0

ν̂(r)

r2
dr

by an integration by parts, noting that ν̂(r)/r ≤ ν(r)/r → 0 at ∞ as in
Lemma 1-(iv) below. In this section we introduce the class Ω of functions ω(·)
satisfying

(i) ω : IR+ → IR+ is continuous, increasing, and unbounded,

(ii) ω(s)/s2 is decreasing, with
∫ ∞

0
[ω(s)/s2] ds =: Bω <∞

(2.2)

and provide some technical lemmas which we will need later. The last of
these, designated a ‘Theorem’ (and almost the same as the construction
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which forms the heart of [10], [17], [18]), provides the construction of a ‘mol-
lifier function’ P (·) with relevant properties.

LEMMA 1:
(i) If ω ∈ Ω, then ω(s)/s→ 0 as s→ 0,∞, but is not integrable at ∞.
(ii) If ω ∈ Ω, then sups>0{ω(s)/s} ≤ Bω <∞ and 0 ≤ ω′(s) ≤ 2Bω.
(iii) If γ ∈ Ω also increases rapidly enough that

A1 :=
∫ ∞

0
se−γ(s) ds <∞,(2.3)

then we have, for any µ > 0,∫ ∞

0
e−γ(µs) dν̃(s) ≤ 2Bν̃BγA1µ(2.4)

for any nondecreasing ν̃ with ν̃(r)/r ≤ Bν̃ <∞,
(iv) For ν(·) satisfying (2.1), we have sup{ν(s)/s} ≤ Bν with ν(s)/s→ 0
as s→∞. Further, setting

ϑ(s) := 2
∫ ∞

r0

ν(r)

r

s2

s2 + r2
dr = −

∫ ∞

0
ν(r) d

[
log

(
1 +

s2

r2

)]
.(2.5)

we have ϑ ∈ Ω and

ϑ(s) ≤ 2
(
R

r0

)2 ∫ ∞

R

ν(r)

r

s2

s2 + r2
dr(2.6)

for any R > r0.

Proof: For ω ∈ Ω, we have ω(s)/s ≥ ω(a)/s on [a,∞) so ω(s)/s cannot
be integrable at ∞. Since ω is increasing, we have ω(s)/s =

∫∞
s ω(s)/r2 dr <∫∞

s ω(r)/r2 dr so ω(s)/s → 0 as s → ∞. Similarly, we have ω(s)/s =
2
∫ 2s
s ω(s)/r2 dr ≤ 2

∫ 2s
s ω(r)/r2 dr ≤ 2

∫ 2s
0 ω(r)/r2 dr → 0 as s → 0. From

the above, we have ω(s)/s ≤ Bω :=
∫∞
0 ω(r)/r2 dr. [We remark that this

argument also applies to ν as in Theorem 1: even if ν is not in Ω we do have
ν(s)/s → 0 and ν(s)/s ≤ Bν < ∞.] Since ω(s)/s2 is decreasing, we have
0 ≥ [ω(s)/s2]′ = [ω′ − 2ω(s)/s]/s2 so ω′ ≤ 2ω(s)/s ≤ 2Bω. This completes
the proof of (i), (ii) as well as part of (iv).
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For (iii), an integration by parts shows that

∫ R

0
e−γ(µs) dν̃(s) =

(
ν̃(s)

s
se−γ(µs)

)∣∣∣∣∣
R

0

+
∫ R

0

ν̃(s)

s
[µγ′(µs)]se−γ(µs) ds

≤ Bν̃Re
−γ(µR) +

∫ R

0
Bν̃ [µ2Bγ] se

−γ(µs) ds

since the boundary term at 0 vanishes and γ′ ≤ 2Bγ. Now (2.4) follows by
going to the limit as R → ∞ through a sequence such that Re−γ(µR) → 0,
possible by (2.3). In particular, setting µ = 1 and ν̃(s) ≡ s in (2.4) gives

A0 :=
∫ ∞

0
e−γ(s) ds <∞.(2.7)

For (iv), note that continuity and unboundedness of ϑ follow, e.g., from
the Monotone Convergence Theorem, while the correct monotonicity in s of
ϑ(s) and of ϑ(s)/s2 follow immediately from the form of (2.5). The integra-
bility follows on interchange of integration to get∫ ∞

0

ϑ(s)

s2
ds = π

∫ ∞

0

ν(r)

r2
dr.(2.8)

Finally, (2.6) follows from comparison of the integrals over [r0, R] and [R,∞)
after replacing ν(r) by ν(R) and noting that t log(1 + 1/t) is increasing, say,
from t = r2

0/s
2 to t = R2/s2.

Given any ω ∈ Ω, we introduce functions β, q : IR+ → IR+ defined by

β(s) :=
1

s
+ 2

[
ω(s)

s
+
∫ ∞

s

ω(r)

r2
dr

]
,

q(s) :=


0 for 0 ≤ s ≤ 1,

−
∫ s

1
r2 d

ω(r)

r2
for s ≥ 1,

= 2
∫ s

1

ω(r)

r
dr − ω(s) + ω(1)

(2.9)

using integration by parts to obtain the second expression for q when s ≥ 1.

LEMMA 2: For ω ∈ Ω the functions β, q of (2.9) are continuous and
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(i) β : (0,∞) → (0,∞) is decreasing with β(s) →∞, 0 as s→ 0,∞; hence
there is a continuous decreasing inverse function β(−1) : (0,∞) → (0,∞),
(ii) q : [1,∞) → IR+ is increasing with q(s) → ∞ as s → ∞; hence there
is a continuous increasing inverse q(−1) : IR+ → [1,∞); further, q(s)/s → 0
as s→∞ and, finally, ∫ ∞

s

dq(r)

r2
=
ω(s)

s2
for s ≥ 1.(2.10)

Proof: The continuity of β is clear and we need only note Lemma 1-
(i) to see that β(s) → 0 as s → ∞. Since ω(s)/s2 is decreasing, the first
expression for q in (2.9) shows that q(·) is increasing from q(1) = 0 and,
indeed, that

q(s) ≥ q(s̃)−
[
ω(r)/r2

]s
s̃
≥ ω(s̃)− s̃2[ω(s)/s2]

for s > s̃, whence q(s) → ∞ as s → ∞ (as we may first choose s̃ so ω(s̃) is
arbitrarily large and then the last term goes to 0). The second expression
gives

q(s)

s
≤ 2

s

∫ s

1

ω(r)

r
dr

so, as the integrand goes to 0, we have q(s)/s → 0 as s → ∞. An integra-
tion by parts, using the information that β(∞) = 0, then gives for β the
alternative formula:

β(s) = 1/s+ 2
∫ ∞

s
(1/r) dq(r)

with dq > 0 so β(·) is decreasing and, since the second term here is positive,
we must have β(s) → ∞ as s → 0. The integrability at ∞ of dq(r)/r cer-
tainly implies integrability of dq(r)/r2 = −d[ω(r)/r2], giving (2.10).

At this point we can define the functions appearing in (1.4) in Theorem 1:
given choices of ω, γ as above, we set

Q1(δ) := max{1
2
, ω(β(−1)(δ/2))}

Q2(T ) := min
µ

{
ψ(T − 2Bγµ)− 1

2
log µ : 0 < 2µ ≤ min{1, T/Bγ}

}(2.11)
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where

ψ(T̂ ) := sup
σ>0

{h(σ)− T̂ σ} with

h(σ) := ϑ(σ) + (2 log 2) q(σ) + (ĉ/x̂)σβ(σ) using

x̂ = 1
2
(1− e−2), ĉ := | log(1− x̂)| = − log 1

2
(1 + e−2).

(2.12)

Note that Lemma 2-(i) ensures that Q1(δ) is defined. The behavior of Q1 for
small δ > 0 depends only on the tail of ω (large s) with Q1 →∞ as δ → 0.
As ϑ ∈ Ω we have ϑ(σ)/σ → 0 and Lemma 2 then ensures that h(σ)/σ → 0
so h(σ) < T̂σ for T̂ > 0 and large σ > 0, whence ψ is finite. [One might
further remark on the relation of (2.12) to the Legendre-Fenchel dual.] Thus
Q2 is well-defined. Since h(σ) →∞ as σ →∞ so ψ(T̂ ) →∞ as T̂ → 0, we
have Q2(T ) →∞ as T → 0; compare Remark 2, below.

THEOREM 2: For any ω ∈ Ω and any δ > 0 (for simplicity we only
consider δ ≤ 2) there exists an entire function P = Pδ(·;ω) such that

(i) P (0) = 1 and e−i(δ/2)zP (z) is of exponential type δ/2 with |P (z)| ≤ 1
on the upper half-plane C+ (in particular, for real z),

(ii) P (is) is real and positive for real s ≥ 0 with

P (is) ≥ e−[(2 log 2) q+(s)+(ĉ/x̂) sβ(s)](2.13)

where q+ := max{q, 0} with q, β as in (2.9) and ĉ, x̂ as in (2.12),

(iii) |P (s)| ≤ eQ1(δ) e−ω(|s|) for real s with Q1 as in (2.11).

As already noted, a version of this theorem was proved by W.A.J. Luxemburg
and J. Korevaar [10] for the case of Λ in a complex sector and this was later
modified by T.I. Seidman [17] and by T.I. Seidman and M.S. Gowda [18] to
obtain more explicit estimates in the case of real Λ, giving the asymptotics
as δ → 0. Here we follow the scheme of the proof in [18], making such
modifications as are necessary for the present more general setting.

Proof: For any α ≥ 1 (to be chosen for (2.17) later; we will also assume
that q(α) ≥ 1/2), we set

zj := q(α) + j/2, aj := 1/q(−1)(zj)(2.14)

so j = 2[q(1/aj)−q(α)]; this index j = 0, 1, . . . is unrelated to the index of Λ.
Each aj is a continuous decreasing function of the choice of α. For s ≥ 0 we
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then define

n = n(s) :=
{

0 if 0 ≤ s ≤ α
min{j : aj ≤ 1/s} for s ≥ α.

(2.15)

Note that aj ≤ 1/s just when zj = q(1/aj) ≥ q(s), i.e., just when j/2 ≥
q(s) − q(α). Thus, (2.15) gives n(s) = d2[q(s) − q(α)]e for s ≥ α which
ensures, with q(α) ≥ 1/2, that n(s) ≤ 2q+(s) for all s ≥ 0. With n = n(s),
noting that 1/q(−1)(z) is decreasing, we have the integral comparison

∞∑
n

aj = an +
∞∑
n+1

2[zj+1 − zj]

q(−1)(zj)
< an +

∫ ∞

zn

2 dz

q(−1)(z)

<
1

s
+
∫ ∞

q(s)

2 dz

q(−1)(z)
=

1

s
+ 2

∫ ∞

s

dq(r)

r
=: β(s).

(2.16)

Note that (2.16) is independent of the choices of s ≥ α > 1 and, in particular,
for s = α (so n(s) = 0) we consider δ̂(α) := 2

∑∞
0 aj < 2β(α). This can be

made arbitrarily small by taking α large while, on the other hand, δ̂ > 2a0 =
2/α so δ̂(1) > 2 ≥ δ. By the continuity of α 7→ δ̂ (which follows, e.g., from
the Dominated Convergence Theorem), we can thus choose α = α∗(δ) to get
exactly δ̂(α) = δ, i.e.,

∞∑
0

aj = δ/2 for α = α∗(δ) < β(−1)(δ/2).(2.17)

We now define P (·) in terms of the sequence (aj) by an infinite product:

P (z) := ei(δ/2)z
∞∏
j=0

cos(ajz) =
∞∏
j=0

1
2

(
1 + e2iajz

)
.(2.18)

Since convergence of
∑
aj as in (2.16), (2.17) implies that of

∑ | cos(ajz)−1|
uniformly on bounded sets in C, this infinite product converges to an entire
function. Clearly P (0) = 1 and for z ∈ C+ one has |e2iajz| ≤ 1 so |P (z)| ≤ 1.
Since | cos(az)| ≤ ea|z| for a > 0 and all z ∈ C, the product e−i(δ/2)zP (z) is
then of exponential type

∑
aj = δ/2, as desired, completing the proof of (i).

For pure imaginary z = is, it is clear from (2.18) that P (is) is real and
positive. For s ≥ 0 we take n = n(s) and split the product into those factors
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for which j < n and those with j ≥ n. Each factor in the second subproduct
has the form (1− xj) with

0 < xj := 1
2

(
1− e−2ajs

)  = 1
2

∫ 2ajs

0
e−r dr ≤ ajs

≤ 1
2
(1− e−2) =: x̂

Using the concavity of ‘log’, we have

1
2

(
1 + e−2ajs

)
= elog(1−xj) ≥ e−ĉ(xj/x̂)

with ĉ as in (2.12) and it follows that

∞∏
j=n

1
2

(
1 + e−2ajs

)
≥ exp

−(ĉ/x̂)
∞∑
n(s)

xj

 ≥ exp

−(ĉ/x̂)
∞∑
n(s)

ajs


≥ e−(ĉ/x̂)sβ(s).

For each factor in the first subproduct we have 1
2
(1 + e−2ajs) ≥ 1

2
and, as

there are n = n(s) such terms, that product is bounded below by 2−n and so
by e−(2 log 2) q+(s) since n(s) ≤ 2q+(s) always. Multiplying the lower bounds
for these two subproducts gives (2.13).

Finally, to see (iii) we first observe that

0 < cos r ≤ e−
1
2
r2 for real r with |r| ≤ 1

and then (for real s) that |P (s)| is the even function
∏∞

0 | cos(ajs)| so

|P (s)| ≤
∞∏
n(s)

| cos(ajs)| ≤ exp

−1
2

∞∑
n(s)

(ajs)
2

 .(2.19)

For s ≥ β(−1)(δ/2) ≥ α∗, we again make an integral comparison to get

∞∑
n(s)

|aj|2 ≥
∫ ∞

q(s)

2 dz

[q(−1)(z)]2
−
∫ zn

q(s)

2 dz

[q(−1)(z)]2

≥ 2
∫ ∞

s

dq(r)

r2
− 1

2
· 2

s2
=

2ω(s)− 1

s2
,

(2.20)

using (2.10). Then (2.19) gives |P (s)| ≤ e(1/2)−ω(s) for such s. We have

log |P (s)| ≤ 0 ≤ ω(β(−1)(δ/2))− ω(s) for 0 ≤ s ≤ β(−1)(δ/2)
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so, combining the cases, we have (iii), and the proof is complete.

3. The sequence Λ
For this section we fix the consideration of a sequence Λ ⊂ C+ and

construct, with estimates, a sequence {gj} biorthogonal in L2(0, δ) to
{
eiλjt

}
.

LEMMA 3: Let Λ = {λk} ⊂ C+ satisfy (1.2) subject to (2.1). Then
each Fj = Fj(·; Λ), given by

Fj(z) :=
∏
k 6=j

1− (
z − λj
λk − λj

)2
 .(3.1)

for z ∈ C, is an entire function of exponential type 0 and satisfies

Fj(λk) = δj,k and |Fj(λj + z)| ≤ eϑ(|z|) for z ∈ C(3.2)

with ϑ given by (2.5).

Proof: Fix j. We know that
∑

1/(λk − λj)2 is absolutely convergent so
the infinite product (3.1) converges uniformly on bounded sets in C whence
Fj is an entire function. The interpolation condition: Fj(λk) = δj,k is immedi-
ate from the form of (3.1) and we need only verify the exponential inequality.
Writing ν̂j(r) for the left hand side of (1.2) with λ∗ = λj, we have

log |Fj(λj + z)| ≤
∑
k 6=j

log

[
1 +

|z|2

|λk − λj|2

]

=
∫ ∞

0
log

[
1 +

|z|2

r2

]
dν̂j(r) = 2

∫ ∞

0

ν̂j(r)

r

|z|2

|z|2 + r2
dr

≤ 2
∫ ∞

0

ν(r)

r

|z|2

|z|2 + r2
dr =: ϑ(|z|)

which gives (3.2). Finally, Fj is of exponential type 0 since ϑ(s)/s→ 0.

The next lemma is the heart of our argument.
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LEMMA 4: Let γ ∈ Ω with A0 :=
∫∞
0 e−γ < ∞. For δ > 0 consider

the mollifier P (·) constructed in Theorem 2 in terms of ω := ϑ + γ using
(2.5). Now, with (3.1), define functions Gj on C by

Gj(z) := Fj(z)
P (z − τj)

P (iσj)
(3.3)

and then functions gj on IR by

gj(t) =
1

2π

∫ ∞

−∞
Gj(s) e

ist ds.(3.4)

We will then have:

(i) for real s, each Gj satisfies the estimate:

|Gj(s+ τj)| ≤
[
eQ1(δ)eh(σj)

]
e−γ(|s|)(3.5)

with Q1 as in (2.11) and h as in (2.12),

(ii) for each j, k we set ∆ = ∆jk := |τk − τj|/2 and have

|〈Gj, Gk〉| ≤ 4A0 e
2Q1(δ)eh(σj)eh(σk)e−γ(∆)(3.6)

so, in particular, each Gj is in L2(IR) and, as a function on C,

(iii) each Gj is entire with e−i(δ/2)zGj(z) of exponential type δ/2,

(iv) each gj is an L2 function with support in [0, δ] and the sequence {gj}
is biorthogonal to the exponentials:

〈gj, eiλkt〉 = δj,k.(3.7)

Proof: From (3.3) we have Gj(s+ τj) = Fj(λj + [s− iσj])P (s)/P (iσj).
From Theorem 2-(ii,iii) and the definition of h(·) in (2.11) we have∣∣∣∣∣ P (s)

P (iσj)

∣∣∣∣∣ ≤ eQ1(δ)e−ω(|s|)

eϑ(σj)−h(σj)
.

12



From (3.2) of Lemma 3 we have |Fj(λj + [s− iσj])| ≤ eϑ(|s−iσj |) and from the
form of (2.5) and the fact that |s− iσj|2 = s2 + (σj)

2, we have ϑ(|s− iσj|) ≤
ϑ(|s|) + ϑ(σj). Since ϑ− ω = −γ, combining these just gives (3.5).

With given j, k, we use (3.5) to get

|〈Gj, Gk〉| ≤
∫ ∞

−∞
|Gj(t)||Gk(t)| dt

≤ e2Q1(δ)eh(σj)eh(σk)
∫ ∞

−∞
e−γ(|t−τj |)e−γ(|t−τk|) dt.

Extending γ ∈ Ω as an even function on IR for convenience and setting
s = t− 1

2
(τj + τk), the integral here becomes∫ ∞

−∞
e−γ(s+∆)e−γ(s−∆) ds = 2

∫ ∞

0
e−γ(s+∆)e−γ(s−∆) ds (by symmetry)

≤ 2e−γ(∆)
∫ ∞

0
e−γ(s−∆) ds (since γ ↗)

≤ 2e−γ(∆)
∫ ∞

−∞
e−γ(r) dr = 4e−γ(∆)A0,

which gives (3.6). Taking k = j in this, we have Gj ∈ L2(IR).
By Lemma 3 and Theorem 2-(i) we have Fj entire of exponential type 0

and e−i(δ/2)zP (z−τj) entire of exponential type δ/2 so the product is entire of
exponential type δ/2: we have (iii). Then Gj(z̄) has corresponding properties
so, by the Paley-Wiener Theorem, its inverse Fourier transform gj, given by
(3.4), is in L2 with support in [0, δ] and satisfying

Gj(z) := 〈gj, eizt〉 :=
∫ ∞

−∞
gj(t)e

izt dt,(3.8)

〈gj, gk〉 =
1

2π

∫ ∞

−∞
ĝj(t)ĝk(t) dt =

1

2π

∫ ∞

−∞
Gj(t)Gk(t) dt.(3.9)

By (3.2) and our definition (3.3), we have

Gj(λk) = δj,k(3.10)

which is precisely the biorthogonality property (3.7). This completes the
proof of the lemma.
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4. Estimating ‖CT
δ ‖

At this point we fix the function ν of (1.2) satisfying (2.1) and a function
γ ∈ Ω satisfying (2.3). [For example, one could take γ = εϑ (if (2.3) would
then hold) or take γ(s) := (2 + ε) log+ s.] Then, with ϑ obtained from ν by
(2.5), we set ω := ϑ+γ to obtain the function ω we will use, as in the previous
section, for construction of the mollifier. We are now ready to restate and
prove our principal result: the estimation of ‖CT

δ ‖ for small δ, T .

THEOREM 1: Given ν : IR+ → IR+ satisfying (2.1), let Λ be any
sequence in C+ satisfying the corresponding condition (1.2):

# {λ ∈ Λ : 0 < |λ− λ∗| ≤ r} ≤ ν(r) for each λ∗ ∈ Λ,

Then, for any δ > 0 and any T > 0 the map

C = CT
δ : f =

∑
k

cke
iλkt 7→ cT =

(
cke

iλkT
)

: Mδ → `2

will be well-defined and continuous: for any γ ∈ Ω satisfying (2.3) we have,
uniformly for such {Λ}, the estimate:

‖CT
δ ‖ = ‖CT

δ (Λ)‖ ≤ C∗e
Q1(δ)+Q2(T )(4.1)

with Q1(·), Q2(·) defined in terms of γ(·) and ω := ϑ+ γ by (2.11) and with

C∗
2 :=

4

π
BγBνA0A1 so Q∗ := log

2

√
BγBνA0A1

π

 in (1.4).

Proof: For f ∈ M = M(Λ), cT = CT
δ f , we have ‖cT‖2 =

∑
k

∣∣∣ckeiλkT
∣∣∣2

so, using (3.7),

‖cT‖2 =
∑
k

〈gk, f〉 ck
∣∣∣eiλkT

∣∣∣2 = 〈w, f〉
(
w :=

∑
k

ck
∣∣∣eiλkT

∣∣∣2 gk
)
.

Note that w has support in [0, δ] if each gk does, so these inner products
are equally valid over [0, δ] or over IR. [We do this for finite sums, taking
f ∈M, to avoid convergence issues; the result will then extend by continuity
to f ∈Mδ by the nature of the estimates obtained.]
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We now consider the operator ΓΓΓ acting on `2 by the infinite matrix (Γj,k)
given by

Γj,k = ΓTj,k := eiλjT eiλkT 〈gj, gk〉(4.2)

(which reduces to (3.9) when T = 0). With a bit of manipulation we obtain

‖w‖2 =
∑
j

[∑
k

Γj,k
(
cke

iλkT
)]

(cjeiλjT ) = 〈ΓΓΓcT , cT 〉

so ‖w‖2 ≤ ‖ΓΓΓ‖ ‖cT‖2. We then have

‖cT‖2 = 〈w, f〉 ≤ ‖w‖‖f‖ ≤ ‖ΓΓΓ‖1/2‖cT‖‖f‖

which shows that ‖CT
δ ‖ ≤ ‖ΓΓΓ‖1/2.

The Hermitian symmetry of (Γj,k) means that ΓΓΓ is self-adjoint on `2,
whence the norm ‖ΓΓΓ‖ is just the spectral radius. By the Gershgorin Theorem
(or, equivalently, observing that (Γj,k) also acts as an operator on `∞) the

spectrum is bounded by supj {
∑
k |Γj,k|} whence, as

∣∣∣eiλjT
∣∣∣ = e−σjT , etc.,

‖CT
δ ‖2 ≤ sup

j

{
e−σjT

∑
k

e−σkT |〈gj, gk〉|
}
,(4.3)

which we will estimate using (3.9) and (3.6). For 0 ≤ µ ≤ 1/2 we have

γ(µ|λk − λj|) ≤ γ(µ|τk − τj|+ µ|σk − σj|)
≤ γ(∆) + 2Bγµ|σk − σj|

whence −γ(∆) ≤ 2Bγµ(σj + σk)− γ(µ|λk − λj|) in (3.6), (3.9) so

e−σjT e−σkT |〈gj, gk〉| ≤
4

2π
A0 e

2Q1(δ)e2ψ(T−2Bγµ)e−γ(µ|λk−λj |).(4.4)

Summing over k, we get∑
k

e−γ(µ|λk−λj |) =
∫ ∞

0
e−γ(µr) dν̂j(r)

=
∫ ∞

0
[ν̂j(r) γ

′(µr)µ] e−γ(µr) dr

≤
∫ ∞

0

[
ν(r)

r
2Bγµ

]
re−γ(µr) dr

≤ 2BγBν

∫ ∞

0
(µr)e−γ(µr) dr = 2BγBνA1/µ

(4.5)

15



and, as this last is independent of j, (4.3) and (4.4) then give

‖CT
δ ‖ ≤

2√
π

√
BγBνA0A1 e

Q1(δ) e
ψ(T−2Bγµ)

√
µ

(4.6)

which we may optimize over µ to get (4.1), as desired. [It would, of course,

be possible to further optimize (4.6) over the choice of γ (for given ν(·), δ),
but we do not pursue this.]

5. Remarks and examples

5:1. Comparison with [18]

The results of [18] apply to classes of sequences {Λ} which do not involve
complex exponents and a fortiori do not permit, as in Theorem 1 here, the
possibility of unbounded {σk} — while, on the other hand, those results
provide an estimate which does not blow up as T → 0. For comparison, we
consider Λ = {λk = τk + iσk} with bounded imaginary part:

0 ≤ σk ≤ σ∗ (all k),(5:1.1)

obviously generalizing the restriction σk ≡ 0 in [18]; compare footnote4. In
[18] the separation condition was given in the form:

|λk − λj| ≥ ψm for |k − j| ≥ m,(5:1.2)

which there presumed a lineal ordering of Λ along IR. Geometrically, the
condition (5:1.2) just means that no interval of length ψm can contain more
than m of the exponents λk, which now implies (1.2) if we would take

ν(r) := 2m for ψm ≤ r < ψm+1 (m = 0, 1, . . .).(5:1.3)

The determining sequence {ψm}∞1 of (5:1.2) was required in [18] to satisfy

ψ0 := 0 < ψ1 ≤ ψ2 ≤ · · · with
∞∑
m=1

1

ψm
<∞(5:1.4)
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and the choice (5:1.3) of ν then gives

∫ ∞

0

ν(s)

s2
ds =

∞∑
m=1

∫ ψm+1

ψm

2m

s2
ds = 2

∞∑
m=1

1

ψm

so (5:1.4) just provides the hypotheses on ν for Theorem 1. What we observe
at this point is that the ‘sup’ in (2.12) was taken over all σ > 0 because it
was needed for σ = σj in getting (3.5) and σj was otherwise unrestricted. If
we are now imposing (5:1.1), then ψ(·) can be redefined in (2.12) by taking
the ‘sup’ only over the compact interval [0, σ∗] — which gives ψ(T̂ ) bounded
uniformly in T̂ ≥ 0 and so Q2(T ) bounded uniformly in T ≥ 0. Finally, we
observe that Q(δ) was defined in [18] in relation to

Ψ(s) := 2
∞∑
m=1

log

[
1 +

s2

ψ2
m

]

exactly (to within an additive constant, independent of δ) as we have here
defined Q1(δ) in relation to ϑ(s), given by (2.5), and an elementary computa-
tion shows that ϑ(s) ≡ Ψ(s) if we are using (5:1.3) in (2.5). Thus, our present
result is truly a generalization of that of [18] for this situation on making this
redefinition in (2.12) to take advantage of the imposition of (5:1.1).

REMARK 1: Quite generally, we note a partial converse for our re-
sults: when {σk} is unbounded, the norm must blow up as T → 0.

One way to see this is to note that ‖CT
δ ‖ ≥ supk{

∣∣∣e−σkT
∣∣∣ /‖eiλkt‖} and

then that supσ>0{
√

2σe−σT} ∼ 1/
√
T →∞. Alternatively, if Λ is unbounded

it contains an unbounded subsequence Λ′ with
∑
σk

−1 <∞ and we can then
show that ‖CT

δ (Λ′)‖ → ∞ which implies the same for CT
δ (Λ). Define

F : c0 7→ f =
∑
k

cke
iλkt : M′

δ = Mδ(Λ
′) ⊂ L2(0, δ)

for any sequence c0 = (c1, . . .) ∈ `2. Then, as ‖eiλkt‖2 =
[
1− e−2σkδ

]
/(2σk) in

L2(0, δ), we see that
∑ ‖eiλkt‖2 <∞ so F is continuous and, indeed, compact.

On the other hand, a bound on ‖CT
δ (Λ′)‖ as T → 0 would imply a bound on

cT → c0 and so invertibility of F, which is impossible for compact F.
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5:2. Some examples

We may consider as examples exponent sequences distributed along a ray
in C+ like powers:

λk = a+ ckp (k = 0, 1, . . .)(5:2.1)

for some constants a, c ∈ C+ with c 6= 0 and some p > 1. Obviously, the
exponents are densest near λ0 = a so the left hand side ν̂(r) in (1.2) will be
largest when λ∗ ≈ (λk + λ0)/2 with λk − λ0 ≈ 2r so k ≈ [2r/|c|]1/p, which
gives ν̂(r) ≈ [2r/|c|]1/p; similarly, the minimal separation r0 is between λ0

and λ1, giving r0 = |c|. Thus we may take

ν(r) =
{

0 for 0 ≤ r < r0 := |c|
Cνr

1/p for r ≥ r0, with Cν := (2/|c|)1/p(5:2.2)

which gives (1.2) for this Λ and satisfies (2.1). Using this in (2.5) gives
ϑ(s) ∼ Cϑs

1/p as s→∞ with

Cϑ := 2Cν

∫ ∞

0

r1/p dr

r(1 + r2)
= Cν π csc

π

2p
(5:2.3)

(and ϑ ≤ C ′
ϑs

2 with C ′
ϑ := 21+1/p/|c|2(2 − 1/p) giving the behavior for

small s). [We may note that essentially the same behavior occurs when
one has only asymptotic equivalence of λk to (5:2.1).] If Λ were the union
of m such sequences, then the determination of r0 must be verified separately,
but we could certainly use the bound ν(r) = m(2r/min{|c|})1/p in (1.2).

For expository simplicity we just take γ = εϑ here (as at the beginning
of Section 4) which gives ω(s) ∼ Cωs

1/p for large s. Using this in (2.9), we
get q(s) ∼ Cqs

1/p and β(s) ∼ Cβs
1/p−1 as s→∞ so β(−1)(δ) ∼ (Cβ/δ)

p/(p−1)

as δ → 0 whence (2.11) gives Q1(δ) = ω(β(−1)(δ/2)) ∼ C1/δ
1/(p−1), as in

[18]. Since the terms comprising h in (2.12) are of the same order, we have
h(s) ∼ Chs

1/p as s→∞ and this gives ψ(T̂ ) ∼ Cψ/T̂
1/(p−1) as T̂ → 0. Since

this dominates log µ, we take µ → 0 as T → 0 in the optimization defining
Q2 and get Q2(T ) ∼ C2/T

1/(p−1) as T → 0. In this case, at least, the two
terms in the exponent in (4.1) are of the same order with respect to their
arguments. For the setting T = δ of [10] this gives

log ‖CT
T‖ ∼ CT−1/(p−1)(5:2.4)
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for the problem of [11], in which Λ is the spectrum of a Sturm–Liouville
operator so we have this distribution with c = iπ/` and p = 2; this is
log ‖CT

T‖ ∼ C/T as in [15] and [4]. [Note that it would also have been
possible, much as was done for (5:2.3), to obtain the various coefficients
Cβ, . . . recursively as we proceeded above, had we wished to obtain not only
the order but some explicit estimate of the constant C in (5:2.4) as well.]

If one specifically considers Dirichlet series, i.e., taking λk = iσk with
0 ≤ σ1 < σ2 < . . ., then (1.1) becomes

f(t) =
∞∑
k=1

cke
−σkt (0 < t ≤ δ)(5:2.5)

(or, equivalently, setting e−δ ≤ x := e−t < 1 one has f̂(x) =
∑
k ckx

σk).
Results on the determinability of coefficients are available (cf., e.g., [13] and
[2]) when

∑
k 1/σk < ∞ — i.e., under weaker conditions than we have been

imposing through (1.2) or (5:1.2) so the force of Theorem 1 is in the unifor-
mity with respect to these classes of sequences and in the estimate (4.1) we
have obtained:

∞∑
k=1

e−2σkT |ck|2 ≤ C2
∗e

2[Q1(δ)+Q2(T )]
∫ δ

0

∣∣∣∣∣
∞∑
k=1

cke
−σkt

∣∣∣∣∣
2

dt,(5:2.6)

bounding the asymptotics as δ → 0 and/or T → 0.

REMARK 2: We conclude this subsection with the comment that it
is precisely the asymptotic behavior of ν(·) at infinity which determines the
asymptotics of our estimate (4.1) as δ → 0 or T → 0.

Suppose we were to have ν and ν̃, each satisfying (2.1), with ν = O(ν̃) as
r →∞. Tracking through the definitions (2.5), (2.9), (2.11), (2.12) — much
as was done to get (5:2.4) above from (5:2.2) — we see that (for a suitable
choice of γ in taking ω = ϑ+ γ and ω̃ = ϑ̃+ γ) one has:

at ∞ : ϑ = O(ϑ̃), ω = O(ω̃), β = O(β̃), q = O(q̃), h = O(h̃),

near 0 : β(−1)(δ) ≤ Kβ̃(−1)(δ/K), ψ(T̂ ) ≤ Kψ̃(T̂ /K) for some K.

It then follows from (2.11) that, for some K,

Q1(δ) ≤ KQ̃1(δ/K), Q2(T ) ≤ KQ̃2(T/K)(5:2.7)
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as δ, T → 0 in Theorem 1; of course, if ν̃ corresponds to a kp distribution as in
(5:2.1) above, then this becomes the more usual Q1 = O(Q̃1), Q2 = O(Q̃2).
Indeed, looking more closely shows that if ν ∼ ν̂ at ∞ we may take K → 1
near 0 here which confirms our assertion that the asymptotics of (1.4) are
just determined by the asymptotic behavior of ν(s) for large s — although
one also needs some r0 > 0 as in (2.1-i), i.e.,

|λ− λ′| > r0 for λ, λ′ ∈ Λ with λ 6= λ′.(5:2.8)

5:3. A related estimation

Suppose, rather in contrast to (5:1.2) which is uniform over C+, that
one were to have available an asymptotic lower bound ∆M(·) for possible
‘M -clustering’ of the sequence Λ:

#
[
Λ
⋂
{z ∈ C+ : |z − z̃| < ∆M(R)}

]
≤M if |z̃| ≥ R,(5:3.1)

for some nondecreasing function ∆M with ∆M(0) > 0, i.e., one cannot have
more than M elements of Λ in any disk D̃(z̃) of radius ∆M(|z̃|), depending
on its location,

D̃(z̃) := {z ∈ C : |z − z̃| < ∆M(|z̃|)} (z̃ ∈ C+).

From this information — (5:3.1), for some fixed M , together with (5:2.8) —
we can obtain the uniform estimate (1.2). [The case of interest is ∆M(r) =
o(r) as r →∞ and we assume this.]

LEMMA 5: Suppose the set Λ satisfies (5:3.1) for large R and some
fixed M ; suppose also that there is some uniform lower bound r0 for the
separation of elements of Λ. Then Λ satisfies (1.2) with

ν(r) = O
(∫ 2r

0

s ds

[∆M(s)]2

)
as r →∞.(5:3.2)

Further, this gives uniformity of (1.2) for a family {Λ} of sequences if the
sparsity condition (5:3.1) is uniform over the family.

Proof: For given r > 0, we can always find (depending on r) a set of
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centers {ζj : j = 1, . . . , N(r)} such that the set of disks {D̃(ζj)} covers the
‘2r’-semidisk:

S(r) := {z ∈ C+ : |z| ≤ 2r} ⊂
N(r)⋃
j=1

D̃(ζj).

One way to do this covering is to proceed incrementally: assuming S(r) has
been covered by N(r) suitable disks, cover an additional semi-annulus by
evenly spacing disks of radius ∆M(r) about

√
2∆M(r) apart (taking about

2πr/
√

2∆M(r) disks) so the incremental semi-annulus has width
√

2∆M(r).
Roughly, this would give dN/dr ∼ πr/∆2, although one may not expect
attainability of precisely this constant.

We then claim that, for any disk of radius r (i.e., D̂ := {z ∈ C+ : |z− ẑ| ≤
r}), one has a covering D̂ ⊂ ⋃

j D̃(zj) using N(r) disks D̃(zj). To see this,

note first that [Λ
⋂ D̂] ⊂ S(r) if |ẑ| ≤ r so we may then take zj := ζj. When

|ẑ| > r, we set u := ẑ/|ẑ|, ζ := (|ẑ| − r)u ∈ C+ and then take zj := ζ − iuζj
(j = 1, . . . , N(r)). It is not hard to see that this choice gives D̂ ⊂ [ζ−iuS(r)]
and also |zj| > |ζj| so ∆M(|zj|) ≥ ∆M(|ζj|) whence this is again a suitable
covering. Noting that each of the disks D̃(zj) contains at most M elements
of Λ, we may take

ν(r) := MN(r)(5:3.3)

and have (1.2). [As (5:3.1) is only known to be valid for R > R0, we modify
this by adding a bound N∗ ≥ #{λ ∈ Λ : |λ| ≤ R0} (which can be obtained
from r0, assumed known) to the right hand side of (5:3.3) and then proceed
as before without changing the asymptotics.] We may then integrate the
earlier estimate for dN/dr and combine this with (5:3.3) to get (5:3.2) as
desired.

If we have no information about Λ beyond (5:3.1), then we are considering
a set of exponents distributed over C+ with a density roughly likeM/π[∆M ]2.
If we are to use such a Λ in (1.1), then we must verify (2.1-ii) from (5:3.2):
one easily sees that this is equivalent to integrability on IR+ of [∆M ]−2 so,
for example, our theory applies if (5:3.1) holds with ∆M(R) ∼ Rα (or with
∆M(R) ∼

√
R[logR]α) for some α > 1/2.

If, on the other hand, we were to know that Λ lies on a ray: s 7→ [a+ cs]
as in (5:2.1) (or on/near some curve with an asymptotic direction given
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by c ∈ C+), then this information could be combined with (5:3.1) by a
modification of the argument for Lemma 5: we observe that, as there and also
in the treatment of (5:2.1), it is sufficient to bound the number of exponents
in an initial segment of length 2r (i.e., for 0 ≤ s ≤ 2r/|c|) which we can do
by covering that segment with disks of radius ∆M(R). Since ‘covering’ now
means covering segment length (rather than area of S), the bound (5:3.2)
now becomes, by a similar analysis,

ν(r) ∼M
∫ 2r

0

dR

∆M(R)
(5:3.4)

for large r. [This, of course, appears independent of a, c (provided one bounds
a), since length along the ray or curve will always be asymptotically equiva-
lent to distance R from the origin.]

As an example, for the situation of (5:2.1) we get ∆ ≈ |λk − λk−1| ≈
|c|pkp−1 and R ≈ |c|kp so ∆1(R) ∼ |c|1/ppR1−1/p from which (5:3.4) gives,
asymptotically, the same result as (5:2.2). More generally, consider λk ≈ ϕ(k)
for a suitable function ϕ : IR+ → C+ so ∆1 ≈ inf{|ϕ′(s) : |ϕ(s)| ≥ r}. If
ψ(s) := |ϕ(s)| is increasing with ψ′ ≥ a|ϕ′| for large s and some a > 0,
then the increase in |λk| is comparable to the separation and, if |ϕ′| would
be increasing, we would have ∆1(r) ≈ |ϕ′(s)| with |ϕ(s)| ≈ r, whence ∆1 ≈
|ϕ′ ◦ |ϕ|(−1)| asymptotically. Using this in (5:3.4), one gets simply

ν(r) ∼ (const )|ϕ|(−1)(2r),(5:3.5)

which, of course, coincides with (5:2.2) for the case (5:2.1).

6. Applications to system theory

6:1. An abstract system

We now consider an abstract (autonomous, linear) ‘observation system’

z := b · y on (0, δ) with ẏ + Ay = 0,(6:1.1)

in which we observe an output z and seek an operator giving the state at
some time T for the ODE, i.e.,

OOO : z(·) 7→ y(T ).(6:1.2)
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Note that (6:1.1) is essentially ‘formal’: y(0) is unknown and, indeed, we are
not even requiring that y have a well-defined value at t = 0 while b need not
actually be in the dual of the state space Y but need only act continuously
on solutions of ẏ + Ay = 0, i.e., on the range of the semigroup generated by
−A. It is not difficult to verify that U = OOO∗ then provides a nullcontrol for
the adjoint system:

−ẋ+ A∗x = −u(t)b, x(T ) = ξ

gives x(0) = 0 by taking u(·) = Uξ on (0, δ).
(6:1.3)

We refer to (existence and) boundedness of OOO as continuous observability
for the system (6:1.1) — obviously dependent on T, δ,b,A — and to the
existence of a bounded U giving (6:1.3) as exact nullcontrollability for the
adjoint system; these properties are equivalent ‘by duality’ in that one can
take U = OOO∗. For T = δ it is equivalent to replace (6:1.3) by

ẋ+ A∗x = −u(t)b, x(0) = ξ

gives x(T ) = 0 for u(t) = [Uξ](T − t) on (0, T ).
(6:1.4)

If A has a basis of eigenvectors {ηk} with corresponding eigenvalues {αk},
then one has formal expansions

y(t) =
∑
k

ĉke
−αktηk, z(t) =

∑
k

cke
−αkt(6:1.5)

with ck = βkĉk where βk := b · ηk. We then have, formally,

OOOz := y(T ) =
∑
k

(
cke

−αkT
′) [e−αk(T−T ′)

βk
ηk

]
(6:1.6)

for any 0 < T ′ ≤ T , provided no βk = 0. We recognize the sequence of
coefficients (cke

−αkT
′
) as CT ′

δ z for Λ = {λk} with λk := iαk and then note
that (6:1.6) gives boundedness of OOO if {iαk} satisfies (1.2), subject to (2.1),
and provided

either
(
e−αk(T−T ′)‖ηk‖/βk

)
∈ `2

or
(
e−αk(T−T ′)/βk

)
∈ `∞ and {ηk} is a Riesz basis for Y

(6:1.7)

23



for some choice of T ′ ∈ (0, T ].
Given a family of operators {A} for (6:1.1), we say that they are uniformly

observable (for given T, δ,b) if {OOO = OOO(A, · · ·)} is uniformly bounded. This
will clearly be the case if (6:1.7) holds uniformly and Λ = Λ(A) satisfies (1.2)
for each A of the family, with the same ν(·) satisfying (2.1). Equivalently, we
say that (6:1.3) is uniformly nullcontrollable if the family of corresponding
nullcontrol operators {U = U(A, · · ·)} is uniformly bounded.

6:2. Boundary control of the heat equation

Consider a system governed by the homogeneous heat equation

ρut = (pux)x − qu (0 < x < `)

ux
∣∣∣
x=0

≡ 0, u
∣∣∣
x=`

≡ 0
(6:2.1)

with initial conditions: u
∣∣∣
t=0

= u0(·). Here, ρ, p, q are bounded functions with

ρ, p > 0 bounded away from 0: physically, ρ is heat capacity, p is a diffusion
coefficient and q gives the rate of heat transfer to the environment along
the rod. If the initial state u0(·) is unknown, we may wish to determine
the internal state — say, at some later time T — by observation of the
temperature u

∣∣∣
x=0

at, e.g., the insulated end.6 This amounts to seeking an
operator

OOO : u(·, 0) 7→ u(T, ·) : L2(0, δ) → L2(0, `),(6:2.2)

much as in (6:1.2). The relevant eigenpairs {ηk, αk} are here given by the
Sturm-Liouville problem

−(pη′)′ + qη = αρη on (0, `)

η′(0) = 0 = η(`)
(6:2.3)

for which it is standard that the eigenvalues {αk} are real and distinct and
that the eigenfunctions {ηk} are real and are orthogonal (with respect to the
ρ-weighted inner product for L2(0, `)) and so may be taken as orthonormal.

6Comparing with (6:1.1), we note that this boundary observation b : u 7→ u
∣∣∣
x=0

will

not act continuously on the nominal state space Y = L2(0, `), but does act on D(A).
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It is also standard that βk = ηk(0) ≥ m > 0 for use in (6:1.5) and (6:1.7) and
that {αk} is quadratically distributed:

0 < αk ∼ c(k + 1
2
)2(6:2.4)

with c easily computed from ρ, p by integration over (0, `). It follows that
Λ := {iαk} satisfies (1.2) with ν(r) ∼

√
r, as in (5:2.2) for p = 2. As in

the previous subsection, it then follows that OOO is a well-defined bounded
operator with log ‖OOO‖ = O(1/T ) as in [15], [4]. This means that the heat
equation (6:2.1) is continuously observable (with an asymptotic estimate as
δ = T → 0) and that the adjoint problem (controlling the input flux at x = 0
as a nonhomogeneous boundary condition) is exactly nullcontrollable, using
controls in L2(0, δ) for arbitrarily small δ > 0. Such observability has, of
course, long been known (e.g., since [11]) and, as in [11], this 1-dimensional
argument gives corresponding results by separation of variables when, e.g., q
has the form q1(x)+q2(y) in the 2-d heat equation on a rectangle (or similarly
for 3-d):

ut = ∆u− qu(6:2.5)

with separable boundary conditions and observation along one of the sides;
compare (6:1.4).

REMARK 3: Taking ρ ≡ 1 ≡ p for expository simplicity, we show,
subject to a uniform bound |q| ≤M , that the family of observation problems

ut = uxx − qu (0 < x < `)

ux
∣∣∣
x=0

≡ 0, u
∣∣∣
x=`

≡ 0 u
∣∣∣
t=0

= ??

OOO = OOOq : u(·, 0) =: z 7→ u(T, ·)
(6:2.6)

is uniformly observable (whence, also, we have uniform nullcontrollability for
the corresponding family of adjoint boundary control problems).

From our theory above, it is sufficient for this to show that (5:2.8) and
(asymptotically, say, for r, |λ| ≥ R∗ > 0)) (1.2) hold, uniformly for such
q(·). We note that Λ = Λq is obtained with λ = iα where α = α(Aq) is an
eigenvalue for the Sturm-Liouville operator Aq : y 7→ −y′′+qy (with the BC:
y′(0) = 0 = y(`) specifying the domain). By the Courant Minmax Theorem,
these eigenvalues depend monotonically on the corresponding quadratic form
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and so on q(·), whence αk(A(−M)) ≤ αk(Aq) ≤ αk(AM), comparing to the
extremes q ≡ ±M . We can explicitly compute αk(A±M) = [(k+1/2)π/`]2±
M for k = 0, . . . so we get∣∣∣∣∣αk(Aq)−

[(
k +

1

2

)
π

`

]2∣∣∣∣∣ ≤M.

It follows from this that (uniformly in q) we have (1.2) with ν(r) ∼ (`/π)
√

2r
as r →∞. To verify (5:2.8), we first note that we may restrict consideration
to a finite range of k and then recall Theorem 1 of [16], asserting that each
αk(Aq) is continuously dependent on q if q is topologized by weak convergence
in H−1(0, `). Since the set {q ∈ L∞(0, `) : |q| ≤M} is compact in H−1(0, `),
the minimum separation |αk(Aq)− αk−1(Aq)| for this range of k is attained
for some admissible q — and cannot vanish, since these are necessarily all
simple eigenvalues. Thus, this minimum separation is bounded below by
some r0 > 0, uniformly with respect to admissible q as desired.

It can be shown that a similar result holds for the more general setting
of (6:2.1) with constraints 0 < M− ≤ ρ, p ≤M+ (and possibly with different
homogeneous boundary conditions). [We must note, for this, the validity
of extending Theorem 1 of [16], now using weak-* convergence in L∞(0, `)
for p; a proof of that will appear elsewhere.] Such an extension of our present
remark would, for example, generalize a recent result by Lopez and Zuazua [9]
involving homogenization of a rapidly oscillating coefficient: ρ(x/ε)ut = uxx
as ε→ 0.

6:3. Vibrational control with structural damping

Linear vibrational dynamics, in mechanics, correspond to a Hamiltonian
system with quadratic total energy

H = H(p, q) := 1
2
〈M−1p, p〉+ 1

2
〈Qq, q〉(6:3.1)

(M =“mass” and Q positive definite), typically obtained by linearizing
around a stable equilibrium so 1

2
〈Qq, q〉 approximates the behavior of a po-

tential well: Q = δ2ψ/δq2 at q = 0, where the potential ψ has a strict (local)
minimum. From (6:3.1) together with the standard Hamiltonian formalism:
q̇ = Hp, ṗ = −Hq one then obtains the dynamics: Mq̈ + Qq = 0 on writing
Mq̈ for ṗ. These dynamics preserve the energy H but dissipation is intro-
duced by the modification: ṗ = −[Hq + DM−1] for some positive selfadjoint
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operator D (noting that that gives Ḣ = −〈Hp,DM−1p〉 = −〈q̇,Dq̇〉 ≤ 0)
which leads to: Mq̈+Dq̇+Qq = 0. This can be put in the form: ẏ+Ay = 0
of (6:1.1) on taking, e.g.,

y =

 M−1/2p

Q1/2q

 ,A =

 D̂ E

−E∗ 000

 , with
E := Q1/2M−1/2

D̂ := M−1/2DM−1/2
(6:3.2)

The operator A0 (corresponding to the undamped setting with D = 0) is
skew adjoint, which would then make Λ real in (6:1.5); more generally, since
D̂ is again positive the eigenvalues of A for the damped setting have positive
real parts so one still has Λ ⊂ C+, as is appropriate for our analysis.

For continuum mechanics we will have
q = u(·) = [pointwise deviation from the equilibrium configuration on Ω]

and Q a differential operator for functions on Ω. For simplicity, assume
uniform density ρ ≡ 1 so M is the identity: p = ut and E = Q1/2, D̂ = D
in (6:3.2). The damped dynamics (without forcing) are then given by the
partial differential equation

utt + Dut + Qu = 0 on Ω(6:3.3)

with suitable homogeneous boundary conditions at Γ := ∂Ω, corresponding
to the domain of Q so Q is selfadjoint (and positive definite) with respect to
pivoting on the inner product of L2(Ω). We will also be taking observation
and control as acting at (part of) the boundary of Ω.

The operator Q is given by the stress-strain response of the material and,
following Euler, we take the stress (material distortion) to be proportional
to the linearized curvature ∆u so

1
2
〈Qu, u〉 = 1

2

∫
Ω
a (∆u)2 dΩ

approximating the potential ψ. Thus, taking a ≡ 1 for simplicity, we have
Q = ∆2 — although this will give Q1/2 = −∆ only for special choices of
boundary conditions as in (6:3.8) below. [This choice of Q implicitly assumes
the stress is dominated by flexion – neglecting material distortions associated
with tension, shear, or torsion which might otherwise be included.]

In general the dissipation operator need not be closely related to the op-
erator Q, but for our example we consider a form of structural damping. This
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represents ‘internal friction’ within the material itself, so it is not unreason-
able to expect the vibrational modes to dissipate energy independently, i.e.,
for D and Q to have a common (orthonormal) basis of eigenfunctions as
we henceforth assume. [This is consistent with the experimental observa-
tion, for certain composite materials, that the modes are damped at rates
(asymptotically) proportional to their vibrational frequencies — indeed, the
model D = 2κQ1/2 was studied in [12]; see also [3], [5].]

We begin by considering a one-dimensional setting: a damped uniform rod
of length `, clamped at both ends (so u, ux = 0 at x = 0, `) with observation

of uxx
∣∣∣
x=0

. The eigenpair equation for Q = d4/dx4 is then

η′′′′ = µ2η η = 0 = η′ at x = 0, `.(6:3.4)

and some computation shows that this has a nontrivial solution when (µ is
real, positive, and) [cos(

√
µ`)][cosh(

√
µ`)] = 1. We note that cosh(

√
µ`) is

very large for large µ so one has cos(
√
µ`) ≈ 0 whence (asymptotically) one

has µ = µk ≈ [(k− 1
2
)π/`]2 — quite similar, as it happens, to what one would

have gotten exactly with the different boundary condition: [η′ = 0 = η′′′

at x = 0; η = 0 = η′′ at x = `]. Since Q is selfadjoint, the corresponding
eigenfunctions ηk provide an orthonormal basis for L2(0, `). In this case we
have βk = η′′(0) for use in (6:1.5) and (6:1.7) and expect βk ∼ (const )µk (as
again would be exact for the ‘different boundary conditions’ above). We are
assuming that ηk is also an eigenfunction for D and will write: Dηk = 2δkηk
— with δk > 0 so this is dissipative. The exponent sequence Λ is obtained
by setting u = eiλtη(x) in (6:3.3), which gives a quadratic equation for λ:

−λ2 + 2iδλ+ µ2 = 0 (δ = δk, µ = µk > 0).(6:3.5)

For the undamped case δ ≡ 0 this would give: λ = ±µ and it is convenient
to index as

λk =
{
µk > 0 for k > 0
−µ−k < 0 for k < 0,

(6:3.6)

(omitting k = 0). With Λ real here and in view of the asymptotics µk ∼
ck2, the theory of [17], [18] then suffices to give observability for this one-
dimensional undamped version of (6:3.3) as was already well-known (cf., [6]
and earlier work of Krabs).

For the damped case, it is convenient to introduce r := δ/µ > 0; we will
assume that we always have δ < µ so r < 1 and, indeed, that r ≤ r̄ < 1 for
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simplicity. Then (6:3.5) gives

λ = µ
[
ir ±

√
1− r2

]
= τ + iσ(6:3.7)

with τ = ±µ
√

1− r2 and σ = µr > 0; we index consistently with (6:3.6) to
get Λ = {λk}. [Since the vibrational frequency is τ and the damping rate
is σ, asymptotic proportionality would just mean that r/

√
1− r2 should have

a limit for large µ, i.e., that r should have a limit (6= 1). If we had taken
D = 2κQ1/2 as suggested earlier, then we would have always 2δ = 2κµ so
r = const = κ (with κ < 1) and, conversely, if r = const , then we must
have D = 2rQ1/2. We note that this certainly permits us also to consider
D = κQα/2 for any α < 1 and then any κ > 0, although this seems non-
physical.7] It is easily seen from (6:3.7) that |λ| = |µ| in this setting so it is
geometrically clear that |λj−λk| ≥ |µ|j|−µ|k||. If ν [µ](·) would correspond to
the sequence {µk} in respect to the sparsity condition (1.2) then we clearly
could take ν(r) = 2ν [µ](r) in (1.2) for Λ; one might have anticipated difficulty
with the existence of r0 > 0 in (2.1) if r ≈ 1 were possible, but this has been
obviated by our imposition of the requirement r ≤ r̄ < 1. The asymptotics
above for {µk} ensure (2.1) so Theorem 1 applies and observability follows
for arbitrarily small T > 0 — with a norm blowup as T → 0 exponential
in O(1/T ), corresponding to (5:2.4).

We finally turn to consideration of an Euler plate with structural damping
of this form, governed by the partial differential equation

utt − 2κ∆ut + ∆2u = 0 on Ω = (0, 1)2

uν = 0 = (∆u)ν on Γ := ∂Ω.
(6:3.8)

We will treat the observation problem

OOO : z 7→ u(T, ·) where z := u
∣∣∣
x=0

∈ L2([0, T ]× [0, 1]).(6:3.9)

The particular boundary conditions chosen here have the considerable ad-
vantage of making the problem separable and so permitting explicit compu-
tation. This is the problem considered, e.g., in [5]; compare [7], [17] for the

7On the other hand, if one were to take α ≥ 1 as, e.g., in the often-used Kelvin-Voigt
model D = κQ, then the set of exponents would have a finite limit point and our argument
would fail.
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undamped version of this. To avoid some expositional complications, we will
assume it given that u has mean 0 in (6:3.8), i.e., that this is true for the

initial data u, ut
∣∣∣
t=0

.

The eigenvalues for the Laplace operator (−∆) on Ω = (0, 1)2 with Neu-
man boundary conditions are µjk := (j2 + k2)π2 for j, k = 0, 1, . . . (omitting
µ00 = 0 by our simplifying assumption, so we always have µ > 0). With
the damping operator D = −2κ∆ we have δ = κµ and, as for the one-
dimensional case above, (6:3.7) applies with r = κ. It will be necessary for
us to partition the eigenvalues to get a family of scalar problems involving
exponent sequences Λj := {λ[j]

k } where

λk = λ
[j]
k :=

{
a+
j + c+k2 for k = 0, 1, . . .
a−j + c−k2 for k = −0,−1, . . .

with c± :=
[
κ±

√
1− κ2

]
π2, a±j := c±j2.

(6:3.10)

[This requires us to distinguish, as indices, between k = +0 and k = −0,
which would be potentially awkward for j = 0 where a+

0 = 0 = a−0 our
omission of the ‘00’ terms eliminates that.] We have the orthonormal basis
for L2(0, 1)

ηk(x) =

{
1 if k = 0;

cos(kπx)√
2

if k = 1, 2, . . .

}

and separation of variables in (6:3.8) gives the expansion

u(t, x, y) =
∞∑
j=0

±∞∑
k=±0

cjk e
iλ

[j]
k
t η|k|(x)ηj(y).(6:3.11)

The key to our treatment of (6:3.8) is reduction of the problem to a
sequence of independent simpler problems, involving one Λj at a time, by
introducing

zj(t) := 〈z(t, ·), ηj〉 =
±∞∑
k=±0

cjk e
iλ

[j]
k
t(6:3.12)

for j = 0, 1, . . .With j fixed, (6:3.12) is of the form (1.1) for the exponents Λj.
Since each Λj consists of the union of two copies of (5:2.1), we may (as noted
following (5:2.2)) take ν(r) = 4r in (1.2) for r > r0 and note that (since we
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have omitted k = 0 for j = 0) we may take r0 = 2
√

1− κ2 π2 uniformly
in j. Thus, Theorem 1 (together with our discussion in subsection 5.2)
immediately gives a uniform bound:

‖CT
T (Λj)‖ ≤ B = B(T ) = eO(1/T ) (j = 0, 1 . . .).(6:3.13)

By setting t = T in (6:3.11) we then obtain

‖u(T, ··)‖2 =
∞∑
j=0

 ±∞∑
k=±0

∣∣∣∣cjk eiλ[j]
k
T

∣∣∣∣2
 =

∞∑
j=0

‖CT
T (Λj)zj(·)‖2

≤
∞∑
j=0

B2‖zj(·)‖2 = B2‖z‖2.

For (6:3.9), this just means that

‖OOO‖ ≤ B(T ).(6:3.14)

This continuity of OOO is the principal result of [5]; the asymptotic estimate:
log ‖OOO‖ = O(1/T ) which we have obtained by use of Theorem 1 is ‘extra’.
The twin keys to success here were the uniformity in (6:3.13) with respect to
the independent exponent sequences Λj and the orthogonality of the decom-
position:

X = L2(Ω) = X1 ⊕X2 ⊕ · · · with Xj := spank{ηj(x)ηk(y)}.

[It would have been sufficient for this to have been a ‘Riesz decomposition’
(generalizing the notion of a Riesz basis): each u ∈ X uniquely expressible
as
∑
j uj with uj ∈ Xj and constants c, C > 0 such that c‖u‖2 ≤ ∑

j ‖uj‖2 ≤
C‖u‖2.] Much as for (6:1.4), we then note that OOO∗ enables us to find null-
controls (w = 0 = wt at t = T , given w,wt at t = 0) for the problem:

wtt − 2κ∆wt + ∆2w = 0 on Ω = (0, 1)2

wν = 0 on ∂Ω (∆w)ν =
{
ϕ(= control) when x = 0
0 else on ∂Ω.

(6:3.15)
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