NORM DEPENDENCE OF THE COEFFICIENT MAP ON THE WINDOW SIZE ${ }^{1}$

Thomas I. Seidman ${ }^{2}$ and M. Seetharama Gowda
Department of Mathematics and Statistics
University of Maryland Baltimore County
Baltimore, MD 21228, U.S.A

ABSTRACT: For sparse exponent sequences $\left(\lambda_{k}\right)_{-\infty}^{\infty}$, satisfying a suitable 'separation condition' defined by an auxiliary sequence $\boldsymbol{\psi}$, one has a 'coefficient map' \mathbf{C}_{δ} giving $\left(c_{k}\right)_{-\infty}^{\infty}=$: \mathbf{c} from observation of $f=\sum_{k=-\infty}^{\infty} c_{k} e^{i \lambda_{k} t}$ on any arbitrarily small interval $[-\delta, \delta]$. In terms of $\boldsymbol{\psi}$, we estimate the norm of $\mathbf{C}_{\delta}: L^{2}[-\delta, \delta] \rightarrow \ell^{2}$, asymptotically as $\delta \rightarrow 0$. In particular, for $\left(\lambda_{k}\right)_{-\infty}^{\infty} \sim k^{p}(p>1)$ we get a bound which is exponential in $(1 / \delta)^{1 /(p-1)}$, generalizing an earlier result for the case $p=2$.

Key Words: nonharmonic Fourier series, coefficient map, norm, window, asymptotic.

[^0]
1. Introduction

Let $\boldsymbol{\lambda}=\left\{\lambda_{k}\right\}$ be a real 'double sequence' $(k=0, \pm 1, \pm 2, \ldots)$ and let ${ }_{\mathcal{M}}^{\mathcal{M}}=\dot{\mathcal{M}}(\boldsymbol{\lambda})$ denote the collection of all finite sums

$$
\begin{equation*}
f=\sum_{k} c_{k} e^{i \lambda_{k} t} \tag{1.1}
\end{equation*}
$$

with complex coefficients c_{k}. We will here think of viewing such f through a window $(-\delta, \delta)$ and determining the coefficients $\left\{c_{k}\right\}$ from this, defining a coefficient map

$$
\begin{equation*}
\stackrel{\circ}{\mathbf{C}}=\stackrel{\circ}{\mathbf{C}}(\boldsymbol{\lambda}): f=\sum_{k} c_{k} e^{i \lambda_{k} t} \mapsto\left(c_{k}\right) \tag{1.2}
\end{equation*}
$$

for $f \in \mathcal{M}$. If we now let $\mathcal{M}_{\delta}=\mathcal{M}_{\delta}(\boldsymbol{\lambda})$ be the closure of $\mathcal{\mathcal { M }}$ in $L^{2}(-\delta, \delta)$, then it is classical that $\stackrel{\circ}{\mathrm{C}}$ extends from $\stackrel{\circ}{\mathcal{M}}$ to \mathcal{M}_{δ} as a continuous linear operator

$$
\begin{equation*}
\mathbf{C}_{\delta}=\mathbf{C}_{\delta}(\boldsymbol{\lambda}): \mathcal{M}_{\delta} \mapsto \ell^{2}: f=\sum_{k=-\infty}^{\infty} c_{k} e^{i \lambda_{k} t} \mapsto\left(c_{k}\right)_{-\infty}^{\infty}=: \mathbf{c} \tag{1.3}
\end{equation*}
$$

provided the asymptotic density of $\boldsymbol{\lambda}$ is bounded by δ / π.
In this paper, we consider sequences $\boldsymbol{\lambda}$ satisfying sparsity conditions of the form

$$
\begin{equation*}
\left|\lambda_{k+m}-\lambda_{k}\right| \geq \psi_{m} \quad(m=1,2, \ldots) \tag{1.4}
\end{equation*}
$$

for suitable $\boldsymbol{\psi}=\left\{\psi_{m}: m=1,2, \ldots\right\}$. Noting that $m / \psi_{m} \rightarrow 0$ ensures that $\mathbf{C}_{\delta}(\boldsymbol{\lambda})$ is well defined for all $\delta>0$, we then investigate the rapidity with which $\left\|\mathbf{C}_{\delta}(\boldsymbol{\lambda})\right\| \rightarrow \infty$ as $\delta \rightarrow 0$. As a by-product of this analysis, we note that our estimates are uniform over the classes of exponent sequences $\Lambda=\Lambda(\boldsymbol{\psi})$ satisfying (1.4) for particular admissible sequences $\boldsymbol{\psi}$. Our results are new in this aspect as well as in the consideration of the asymptotics as $\delta \rightarrow 0$.

It is clear that $\mathbf{C}_{\delta}(\boldsymbol{\lambda})$ is made up of the coefficient functionals

$$
\gamma_{k}: \mathcal{M}_{\delta}=\mathcal{M}_{\delta}(\boldsymbol{\lambda}) \rightarrow \mathbb{C}: f \mapsto c_{k}
$$

and that each of these functionals can be represented as

$$
\begin{equation*}
\gamma_{k}: f \mapsto c_{k}=\left\langle f, g_{k}\right\rangle \tag{1.5}
\end{equation*}
$$

for some $g_{k} \in L^{2}(-\delta, \delta)$. There is some arbitrariness in the determination of g_{k} since (1.5) constitutes an extension of γ_{k} from \mathcal{M}_{δ} to all of $L^{2}(-\delta, \delta)$; this also gives an extension $\tilde{\mathbf{C}}_{\delta}$ of $\mathbf{C}_{\delta}(\boldsymbol{\lambda})$ to $L^{2}(-\delta, \delta)$.

Since we are working with exponentials, it is then convenient to construct the Fourier transforms to obtain g_{k} and we actually will work with the adjoint of $\tilde{\mathbf{C}}_{\delta}$,

$$
\begin{equation*}
\tilde{\mathbf{C}}_{\delta}^{*}:\left(a_{k}\right) \mapsto \sum_{k} a_{k} g_{k}: \ell^{2} \rightarrow L^{2}(-\delta, \delta), \tag{1.6}
\end{equation*}
$$

to estimate ${ }^{3}\left\|\mathbf{C}_{\delta}\right\| \leq\left\|\tilde{\mathbf{C}}_{\delta}\right\|=\left\|\tilde{\mathbf{C}}_{\delta}^{*}\right\|$.
We will be able to treat conditions (1.4) for real sequences $\boldsymbol{\psi}=\left\{\psi_{m}: m=1,2, \ldots\right\}$ for which

$$
\begin{equation*}
0<\psi_{1} \leq \psi_{2} \leq \ldots \text { and } \sum_{1}^{\infty} 1 / \psi_{k}<\infty \tag{1.7}
\end{equation*}
$$

Note that this already implies that $m / \psi_{m} \rightarrow 0$ which precisely corresponds to the condition that Λ have asymptotic density zero.

Our paper falls into three parts:
First, considering a sequence $\boldsymbol{\lambda}$ satisfying (1.4) subject to (1.7), we will apply an important theorem due to Luxembourg and Korevaar ([2]; Theorem 3.1) which we restate here in a relevant form:
THEOREM K-L: Let $\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be nondecreasing with $\omega(t) / t^{2}$ integrable at ∞. Then, for any $\delta>0$, there exists a number $Q>0$ and an entire function $P(\cdot)$ such that:
(i) P is of exponential type δ,
(ii) $\quad P$ is normalized so $P(0)=1$,
(iii) $|P(s)| \leq e^{Q} e^{-\omega(|s|)}$ for $s \in \mathbb{R}$.

Clearly, the constant Q in (iii) will depend on δ so $Q=Q(\delta)=Q(\delta ; \omega)$. From this we then obtain an estimate:

$$
\begin{equation*}
\left\|\mathbf{C}_{\delta}\right\| \leq A e^{Q(\delta)} \text { for all } \delta>0 \tag{1.8}
\end{equation*}
$$

where A is independent of δ and we use a function ω depending only on $\boldsymbol{\psi}$. So far, this is only slightly different from the treatment in [2].

Second, and this is the principal technical innovation of the paper, we extend the analysis of Theorem K-L from that of [2], specifically considering the estimation of $Q(\delta)$ in (1.8) so as to exhibit explicitly its asymptotics as $\delta \rightarrow 0$ as well as the dependence on $\boldsymbol{\psi}$ through $\omega(\cdot)$. From (1.8), this is precisely what is needed to investigate the asymptotic behavior of $\left\|\mathbf{C}_{\delta}\right\|$. For this estimation, we find it necessary to assume $\omega \in \Omega$ where

$$
\Omega:=\left\{\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}: \begin{array}{l}
\omega(t) \text { is nondecreasing while } \tag{1.9}\\
\omega(t) / t^{2} \text { is decreasing and integrable at } \infty
\end{array}\right\} ;
$$

this strengthens very slightly the hypotheses above for Theorem K-L in requiring that $\omega(t) / t^{2}$ be decreasing.

Third, the combination of the above is applied to obtain specific growth estimates for a number of interesting special cases. In particular, we apply the general analysis to the case $\psi_{m}=a m^{p} \quad(a>0, p>1)$ which corresponds to $\lambda_{k} \sim \pm a k^{p}$ and obtain for that case the estimate

$$
\begin{equation*}
\log \left\|\mathbf{C}_{\delta}\right\|=\mathcal{O}\left([1 / \delta]^{1 /(p-1)}\right) \quad \text { as } \delta \rightarrow 0 \tag{1.10}
\end{equation*}
$$

[^1](i.e., $Q(\delta) \leq \mu[1 / \delta]^{1 /(p-1)}$ in (1.8) for small $\delta>0$; we also have an estimate for μ). We recall that earlier investigation in [4] of the special case
\[

$$
\begin{equation*}
\lambda_{k}=k^{2} \quad(k \geq 0), \quad \lambda_{-k}=-\lambda_{k} \tag{1.11}
\end{equation*}
$$

\]

resulted in an estimate $\log \left\|\mathbf{C}_{\delta}\right\|=\mathcal{O}(1 / \delta)$ which was there shown to be sharp (by an example due to Korevaar).

2. The Interpolation Family

Assume that $\boldsymbol{\psi}$ satisfies (1.7) and that $\boldsymbol{\lambda}=\left(\lambda_{k}\right)_{-\infty}^{\infty}$ is in $\boldsymbol{\Lambda}(\boldsymbol{\psi})$, i.e., satisfies the separation condition (1.4). With $\boldsymbol{\psi}$ we associate the function Ψ given by

$$
\begin{equation*}
\Psi(s):=2 \sum_{m=1}^{\infty} \log \left(1+\frac{s^{2}}{\psi_{m}^{2}}\right) . \tag{2.1}
\end{equation*}
$$

We will show in the Appendix (Lemma A.1) that this function $\Psi(\cdot)$ is, indeed, in Ω. Given $\boldsymbol{\lambda} \in \Lambda(\boldsymbol{\psi})$, we next define a family of functions $\left(\eta_{k}\right)_{-\infty}^{\infty}$ by first defining

$$
\begin{equation*}
\mu_{k}(z):=\prod_{j \neq k}\left(\frac{z-\lambda_{j}}{\lambda_{k}-\lambda_{j}}\right) \quad(z \in \mathbb{C}) \tag{2.2}
\end{equation*}
$$

and then setting

$$
\begin{equation*}
\eta_{k}(z):=\mu_{k}(z) \mu_{k}\left(2 \lambda_{k}-z\right)=\prod_{j \neq k}\left[1-\left(\frac{z-\lambda_{k}}{\lambda_{k}-\lambda_{j}}\right)^{2}\right] . \tag{2.3}
\end{equation*}
$$

LEMMA 2.1: \quad Let $\boldsymbol{\psi}, \Psi$ be as above and define η_{k} for $k \in \mathbb{Z}$ as in (2.3). Then one has

$$
\begin{equation*}
\eta_{k}\left(\lambda_{j}\right)=\delta_{j, k} \quad(j, k \in \mathbb{Z}) \tag{2.4}
\end{equation*}
$$

and each $\eta_{k}(\cdot)$ is an entire function of exponential type 0 with

$$
\begin{equation*}
\left|\eta_{k}\left(\lambda_{k}+s\right)\right| \leq e^{\Psi(|s|)} \quad \forall s \in \mathbb{R} . \tag{2.5}
\end{equation*}
$$

Proof: For each k and any $N>0$, there is some $M=M_{k, N}$ such that

$$
\begin{aligned}
\left|\mu_{k}(z)\right| & \leq\left(\prod_{0<|j-k| \leq N}\left|\frac{z-\lambda_{j}}{\lambda_{k}-\lambda_{j}}\right|\right) \exp \left[\left(|z|+\left|\lambda_{k}\right|\right) \sum_{|j-k|>N} \frac{1}{\left|\lambda_{j}-\lambda_{k}\right|}\right] \\
& \leq M(1+|z|)^{2 N+1} \exp \left[|z| \sum_{m>N} \frac{1}{\psi_{m}}\right]
\end{aligned}
$$

for all $z \in \mathbb{C}$. This estimate ensures suitable convergence of the product in (2.2) to have μ_{k} entire. Further, the sum in the exponential can be made arbitrarily small by taking N large since $\left\{1 / \psi_{m}\right\}$ is summable by assumption whence each μ_{k} (and so each η_{k}) is of exponential type 0 . The property (2.4) is obvious from $\mu_{k}\left(\lambda_{j}\right)=\delta_{j, k}$. Finally, for real s we have

$$
\begin{aligned}
\left|\eta_{k}\left(\lambda_{k}+s\right)\right| & \leq \prod_{j \neq k}\left[1+\left(\frac{s}{\lambda_{k}-\lambda_{j}}\right)^{2}\right] \\
& \leq \prod_{m}\left(1+\frac{s^{2}}{\psi_{m}^{2}}\right)^{2}=e^{\Psi(|s|)}
\end{aligned}
$$

so one has (2.5) as desired.
Selecting any $\gamma \in \Omega$ such that $e^{-\gamma}$ is integrable, we take $\omega=\Psi+\gamma$ which is in Ω by Lemma A.1; then, fixing $\delta>0$, we let $P(\cdot)$ and $Q=Q(\delta)$ be as in Theorem K-L. In terms of this P, we define the family of functions

$$
\begin{equation*}
G_{k}(z):=\eta_{k}(z) P\left(z-\lambda_{k}\right) \quad(z \in \mathbb{C}) \tag{2.6}
\end{equation*}
$$

Our first principal result of this section is the following.
THEOREM 2.2: We have:
(i) Each G_{k} is an entire analytic function of exponential type δ,
(ii) For $j, k \in \mathbb{Z}$ we have $G_{k}\left(\lambda_{j}\right)=\delta_{j, k}:=\{1$ for $j=k ; 0$ else $\}$,
(iii) Each G_{k}, considered on the reals, is in $L^{1}(\mathbb{R})$ with

$$
\begin{equation*}
\left|G_{k}\left(\lambda_{k}+s\right)\right| \leq e^{Q(\delta)} e^{-\gamma(|s|)} \tag{2.7}
\end{equation*}
$$

(iv) Each G_{k} is in $L^{2}(\mathbb{R})$ and one has

$$
\begin{equation*}
\left|\left\langle G_{j}, G_{k}\right\rangle\right| \leq\left[4 e^{2 Q(\delta)} \int_{0}^{\infty} e^{-\gamma(s)} d s\right] e^{-\gamma\left(\psi_{m} / 2\right)} \tag{2.8}
\end{equation*}
$$

for any $j=k \pm m$ (i.e., $m=|k-j|$).

Proof: The assertion (i) follows on combining Lemma 2.1 (for η_{k}) and Theorem K-L with $\omega=\Psi+\gamma$. As noted in Lemma 2.1, we have $\eta_{k}\left(\lambda_{j}\right)=\delta_{j, k}$; hence, since $P(0)=1$, we have (ii). The estimate (2.7) is immediate from (2.5) combined with Theorem K-L (iii) so we have (iii).

Finally, to prove (iv) we assume, with no loss of generality, that $\lambda_{j} \leq \lambda_{k}$ and set $\lambda:=\left(\lambda_{j}+\lambda_{k}\right) / 2$. Note that we then have $\lambda_{j}=\lambda-\tau$ and $\lambda_{k}=\lambda+\tau$ with $\tau:=\left(\lambda_{k}-\lambda_{j}\right) / 2 \geq$ $\psi_{m} / 2$ by (1.4) so $\gamma(\tau) \geq \gamma\left(\psi_{m} / 2\right)$. Note also that for $t \leq \lambda$ one has $t-\lambda_{j}=: s \leq \tau$ so
$2 \tau-s \geq \tau$ and $\gamma(|2 \tau-s|) \geq \gamma(\tau)$; for $t \geq \lambda$ we set $s:=t-\lambda_{k} \geq-\tau$ and $\gamma(|2 \tau+s|) \geq \gamma(\tau)$. Thus, using (2.7),

$$
\begin{aligned}
\left|\left\langle G_{j}, G_{k}\right\rangle\right| \leq & \int_{-\infty}^{\infty}\left|G_{j}(t)\right|\left|G_{k}(t)\right| d t=\int_{-\infty}^{\lambda}+\int_{\lambda}^{\infty} \\
= & \int_{-\infty}^{\tau}\left|G_{j}\left(\lambda_{j}+s\right)\right|\left|G_{k}\left(\lambda_{k}-[2 \tau-s]\right)\right| d s \\
& +\int_{-\tau}^{\infty}\left|G_{j}\left(\lambda_{j}+[2 \tau+s]\right)\right|\left|G_{k}\left(\lambda_{k}+s\right)\right| d s \\
\leq & e^{2 Q(\delta)}\left[\int_{-\infty}^{\tau} e^{-\gamma(|s|)} e^{-\gamma(\tau)} d s+\int_{-\tau}^{\infty} e^{-\gamma(\tau)} e^{-\gamma(|s|)} d s\right] \\
\leq & e^{2 Q(\delta)} e^{-\gamma\left(\psi_{m} / 2\right)}\left[2 \int_{-\infty}^{\infty} e^{-\gamma(|s|)} d s\right]
\end{aligned}
$$

which is just (2.8). In particular, for $j=k$ this shows $G_{k} \in L^{2}(\mathbb{R})$.
Depending on the choice of $\gamma(\cdot)$, this construction will determine the 'constant' $Q(\delta)$ of (2.7) as a function of $\delta>0$. Also depending on the choice of $\gamma(\cdot)$, but now not on δ, we set

$$
\begin{equation*}
A^{2}:=\frac{2}{\pi} \int_{0}^{\infty} e^{-\gamma(s)} d s\left[e^{-\gamma(0)}+2 \sum_{m=1}^{\infty} e^{-\gamma\left(\psi_{m} / 2\right)}\right] \tag{2.9}
\end{equation*}
$$

Noting that (1.7) gives $\psi_{m} \geq c m$ for some $c>0$ so $\gamma\left(\psi_{m} / 2\right) \geq \gamma(c m)$, we may compare the sum to the integral $\int_{0}^{\infty} e^{-\gamma(c s)} d s$ and observe that the integrability of $e^{-\gamma}$ ensures finiteness of A. Our other principal result of this section is the following.

THEOREM 2.3: Let $\boldsymbol{\lambda} \in \Lambda(\boldsymbol{\psi})$ for some sequence $\boldsymbol{\psi}$ satisfying (1.7). Then for any $\delta>0$ the coefficient map $\mathbf{C}_{\delta}=\mathbf{C}_{\delta}(\boldsymbol{\lambda})$ defined by (1.3) satisfies

$$
\begin{equation*}
\left\|\mathbf{C}_{\delta}\right\| \leq A e^{Q(\delta)} \quad(\delta>0) \tag{2.10}
\end{equation*}
$$

with $Q(\delta)$ as in (2.7) and A as in (2.9), independent of δ.

Proof: The argument is here quite similar to that in [4]. We use the Fourier transform $\mathcal{F}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ given by

$$
\begin{equation*}
\mathcal{F}: g \mapsto G \text { with } G(z)=\int_{-\infty}^{\infty} e^{-i z t} g(t) d t \tag{2.11}
\end{equation*}
$$

and note that, with a factor of 2π, this is an isometric isomorphism:

$$
\begin{equation*}
\langle g, \tilde{g}\rangle:=\int_{-\infty}^{\infty} \overline{g(t)} \tilde{g}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{G(t)} \tilde{G}(t) d t=\frac{1}{2 \pi}\langle G, \tilde{G}\rangle . \tag{2.12}
\end{equation*}
$$

By Theorem $2.2(i v)$, each G_{k} is in $L^{2}(\mathbb{R})$ so there exist functions $g_{k} \in L^{2}(\mathbb{R})$ with $G_{k}=\mathcal{F} g_{k}$ $(k \in \mathbb{Z})$. By the Paley-Wiener Theorem [3], since Theorem 2.2 (i) gives each G_{k} entire and of exponential type δ, the support of each g_{k} is contained in the 'window' $[-\delta, \delta]$.

Initially, let us consider $f \in \mathcal{M}$ (so $f=\sum_{k} c_{k} e^{i \lambda_{k} t}$ is a finite sum) and view this through the window as $f \in L^{2}(-\delta, \delta)$. Then, for each $k \in \mathbb{Z}$, noting that $\operatorname{supp}\left(g_{k}\right) \subset[-\delta, \delta]$,

$$
\begin{aligned}
\left\langle f, g_{k}\right\rangle & :=\int_{-\delta}^{\delta} \overline{\left(\sum_{j} c_{j} e^{i \lambda_{j} t}\right)} g_{k}(t) d t \\
& =\sum_{j} \overline{c_{j}} \int_{-\infty}^{\infty} e^{-i \lambda_{j} t} g_{k}(t) d t=\sum_{j} G_{k}\left(\lambda_{j}\right) \overline{c_{j}}
\end{aligned}
$$

By Theorem 2.2 (ii) we thus have, as in (1.5),

$$
\begin{equation*}
c_{k}=\overline{\left\langle f, g_{k}\right\rangle} \quad(k \in \mathbb{Z}, f \in \mathcal{\mathcal { M }}) \tag{2.13}
\end{equation*}
$$

Now consider the Gramian matrix \mathbf{G} with entries $\left\langle g_{j}, g_{k}\right\rangle$. Since we continue to consider the (fixed) function $f \in \mathcal{M}$ as a finite sum, we may take \mathbf{G} to be a finite matrix, considering only the indices k for which $c_{k} \neq 0$; thus there are no convergence problems but we seek estimates independent of this restricted index set. As a Gramian matrix, \mathbf{G} is positive definite so the ℓ^{2}-induced matrix norm $\|\mathbf{G}\|_{2}$ is just the largest eigenvalue of \mathbf{G}. Hence,

$$
\begin{equation*}
\|\mathbf{G}\|_{2} \leq\|\mathbf{G}\|_{\infty}:=\max _{j}\left\{\sum_{k}\left|\left\langle g_{j}, g_{k}\right\rangle\right|\right\} \tag{2.14}
\end{equation*}
$$

since $\|\mathbf{G}\|_{\infty}$ is itself the ℓ^{∞}-induced matrix norm. Thus we have

$$
\left\|\sum_{k} a_{k} g_{k}\right\|_{L^{2}(-\delta, \delta)}^{2}=\sum_{j, k}\left\langle g_{j}, g_{k}\right\rangle \overline{a_{j}} a_{k} \leq\|\mathbf{G}\|_{\infty}\|\mathbf{a}\|^{2}
$$

for (finite) vectors $\mathbf{a}=\left(a_{k}\right) \in \ell^{2}$. Hence, using (2.13),

$$
\begin{aligned}
\|\mathbf{c}\|^{2} & =\sum_{k}\left|c_{k}\right|^{2}=\sum_{k}\left\langle f, g_{k}\right\rangle c_{k}=\left\langle f, \sum_{k} c_{k} g_{k}\right\rangle \\
& \leq\|f\|\left\|\sum_{k} c_{k} g_{k}\right\| \leq\|f\|\left(\|\mathbf{G}\|_{\infty}\|\mathbf{c}\|^{2}\right)^{1 / 2}
\end{aligned}
$$

so for $f \in \mathcal{\mathcal { M }}$ we have the estimate

$$
\begin{equation*}
\|\mathbf{c}\|_{\ell^{2}} \leq\left(\|\mathbf{G}\|_{\infty}\right)^{1 / 2}\|f\|_{L^{2}(-\delta, \delta)} \tag{2.15}
\end{equation*}
$$

We now use (2.12) and (2.8) to estimate $\|\mathbf{G}\|_{\infty}$ from (2.14). Fixing j, we consider $k \in \mathbb{Z}$ and set $m:=|k-j|$ so

$$
\left|\left\langle g_{j}, g_{k}\right\rangle\right|=\frac{1}{2 \pi}\left\langle G_{j}, G_{k}\right\rangle \leq 4 e^{2 Q(\delta)}\left[\frac{1}{2 \pi} \int_{0}^{\infty} e^{-\gamma(s)} d s e^{-\gamma\left(\psi_{m} / 2\right)}\right]
$$

Summing over $k \in \mathbb{Z}$ then gives

$$
\sum_{k}\left|\left\langle g_{j}, g_{k}\right\rangle\right| \leq A^{2} e^{2 Q(\delta)}
$$

for each j so $\|\mathbf{G}\|_{\infty} \leq\left(A e^{Q(\delta)}\right)^{2}$. Combining this with (2.15) gives

$$
\left\|\mathbf{C}_{\delta} f\right\|=\|\mathbf{c}\| \leq A e^{Q(\delta)}\|f\|
$$

for all $f \in \mathcal{\mathcal { M }}$. By the density of $\mathcal{\mathcal { M }}$ in \mathcal{M}_{δ}, this gives precisely the desired estimate (2.10).

3. The Mollifier

Our next object is to re-examine Theorem K-L so as to introduce the 'mollifier' $P(\cdot)$ with a reasonably explicit estimate for $Q=Q(\delta)$. To this end, given $\omega \in \Omega$ we set

$$
\begin{equation*}
v(s)=\frac{\omega(s)}{s^{2}}, \quad \quad d q=-s^{2} d v \tag{3.1}
\end{equation*}
$$

Note that the definition (1.9) of Ω ensures that q is an unbounded increasing function of s and that $\omega(\alpha) / \alpha \rightarrow 0$ as $\alpha \rightarrow \infty$. For each α in $(0, \infty)$ we can then set

$$
\begin{equation*}
\delta(\alpha):=\frac{1+2 \omega(\alpha)}{\alpha}+2 \int_{\alpha}^{\infty} \frac{\omega(s)}{s^{2}} d s=\frac{1}{\alpha}+2 \int_{\alpha}^{\infty} \frac{d q}{s} . \tag{3.2}
\end{equation*}
$$

LEMMA 3.1: \quad Fix $\omega \in \Omega$ and let $\delta(\cdot)$ be defined by (3.2). Then $\delta(\alpha)$ is nonincreasing on $(0, \infty)$ and $\delta(\alpha) \rightarrow 0$ as $\alpha \rightarrow \infty$ so for each $\delta>0$ there exists an $\alpha:=\alpha(\delta)$ such that $\delta(\alpha) \leq \delta$. Further, fixing $\delta>0$, there is a sequence $\left(a_{j}\right)$ such that

$$
\begin{align*}
\sum_{0}^{\infty} a_{j} & \leq \delta(\alpha) \leq \delta \tag{3.3}\\
\sum_{a_{j}|s| \leq 1}\left[a_{j}\right]^{2} & \geq \frac{2 \omega(|s|)-1}{s^{2}} \quad \text { for }|s|>\alpha \tag{3.4}
\end{align*}
$$

Proof: Deferred to the Appendix.
We can now state our revised form of Theorem K-L, including the estimate of $Q(\delta)$.
THEOREM 3.2: For any $\delta>0$, define $P(z)$ by

$$
\begin{equation*}
P(z):=\prod_{j=1}^{\infty} \cos \left(a_{j} z\right) \quad(z \in \mathbb{C}) \tag{3.5}
\end{equation*}
$$

using the sequence $\left(a_{j}\right)$ of Lemma 3.1. Then $P(\cdot)$ is an even entire function of exponential type δ with $P(0)=1$. Further, one has

$$
\begin{equation*}
|P(s)| \leq e^{Q(\delta)} e^{-\omega(|s|)} \tag{3.6}
\end{equation*}
$$

for all $s \in \mathbb{R}$, where Lemma 3.1 is used to define

$$
\begin{equation*}
Q(\delta):=1 / 2+\omega(\alpha(\delta)) . \tag{3.7}
\end{equation*}
$$

Proof: We know that $\cos (\cdot)$ is even and entire of exponential type 1. By (3.3), it follows that P is a well-defined even, entire function of exponential type δ. Observing that

$$
|\cos s| \leq \exp \left[-\frac{s^{2}}{2}\right] \quad \text { for }|s| \leq 1
$$

it follows from (3.4) that for $|s|>\alpha$ we have

$$
\begin{aligned}
|P(s)| & \leq \prod\left\{\left|\cos \left(a_{j} s\right)\right|: a_{j}|s| \leq 1\right\} \\
& \leq \exp \left[-\frac{s^{2}}{2} \sum_{a_{j}|s| \leq 1} a_{j}^{2}\right] \leq e^{1 / 2} e^{-\omega(|s|)}
\end{aligned}
$$

Since $|P(s)| \leq 1 \leq e^{\omega(\alpha)} e^{-\omega(|s|)}$ for any s, we have (3.6) for all $s \in \mathbb{R}$.

4. Examples

We now specialize our work to treat some particular cases more explicitly. In each case, we take $\omega=(1+\varepsilon) \Psi$, i.e., $\gamma:=\varepsilon \Psi$. A principal point, here, is that the asymptotics of $Q(\delta)$ as $\delta \rightarrow 0$ are (almost) determined by the asymptotics of ψ_{m} as $m \rightarrow \infty$. In the first two examples, we also note the convenience of taking $\psi_{m}=\psi(m)$ for a suitable function $\psi(\cdot)$, giving an integral version of (2.1) for the asymptotically correct determination of $\Psi(\cdot)$.
EXAMPLE 1: We first suppose $\psi(x)=a x^{p}(a>0, p>1)$; when $p=2$ this is the case considered in [4]. It is easily seen that $\boldsymbol{\psi}:=\left\{\psi_{m}\right\}$ satisfies (1.7). To simplify the explicit computation of various quantities, we deal with the integral version of (2.1), namely,

$$
\begin{aligned}
\Psi(s) & :=2 \int_{0}^{\infty} \log \left(1+\frac{s^{2}}{\psi(x)^{2}}\right) d x \\
& =2 \int_{0}^{\infty} \log \left(1+\frac{s^{2}}{a^{2} x^{2 p}}\right) d x \\
& =2 s^{1 / p}\left[\frac{1}{a^{1 / p}} \int_{0}^{\infty} \log \left(1+\frac{1}{u^{2 p}}\right) d u\right]=: \beta(p) s^{1 / p}
\end{aligned}
$$

where (cf., e.g., [1] p.114) $\beta(p)=\frac{2 \pi}{a^{1 / p} \sin \frac{\pi}{2 p}}$. Now, let $\varepsilon>0$ and let $\omega(s):=(1+\varepsilon) \Psi(s)$. From (3.2),

$$
\begin{aligned}
\delta(\alpha) & =\frac{1+2 \omega(\alpha)}{\alpha}+2 \int_{\alpha}^{\infty} \frac{\omega(s)}{s^{2}} d s \\
& =\frac{1+2(1+\varepsilon) \beta(p) \alpha^{1 / p}}{\alpha}+\int_{\alpha}^{\infty} \frac{2(1+\varepsilon) \beta(p) s^{1 / p}}{s^{2}} d s \\
& =\frac{1}{\alpha}+\frac{\vartheta}{\alpha^{1 / q}}
\end{aligned}
$$

where $\vartheta:=\vartheta(\varepsilon, p)=2(1+q)(1+\varepsilon) \beta(p)$ with $p q=p+q$. Since $\delta(\alpha) \leq(1+\varepsilon) \vartheta / \alpha^{1 / q}$ for large α, we see that $\alpha(\delta) \leq[(1+\varepsilon) \vartheta / \delta]^{q}$ for large α, i.e., for small δ. By (3.7),

$$
Q(\delta):=\frac{1}{2}+\omega(\alpha) \leq \frac{1}{2}+(1+\varepsilon) \beta(p)\left(\frac{(1+\epsilon) \vartheta}{\delta}\right)^{q / p}
$$

Thus, (2.10) becomes

$$
\begin{equation*}
\left\|\mathbf{C}_{\delta}\right\| \leq A e^{1 / 2} \exp \left[B(1 / \delta)^{q / p}\right] \tag{4.1}
\end{equation*}
$$

where, with a corresponding constant $A, B>B_{0}$ is arbitrary with

$$
B_{0}:=\beta(p) \vartheta^{q / p}=2^{2 q-1}\left(\frac{1+q}{a}\right)^{q / p}\left(\frac{\pi}{\sin \pi / 2 p}\right)^{q}
$$

Since $\frac{q}{p}=\frac{1}{p-1}$, we have the promised estimate (1.10).

EXAMPLE 2: We next consider sequences which are even more sparse: $\psi(x)=c e^{\beta x}$ with $c, \beta>0$, indicating how various quantities can be computed. We now have

$$
\begin{aligned}
\Psi(s) & =2 \int_{0}^{\infty} \log \left(1+\frac{s^{2}}{\psi(x)^{2}}\right) d x=\frac{2}{\beta} \int_{0}^{\infty} \log \left(1+\frac{s^{2}}{c^{2} e^{2 \beta x}}\right) \beta d x \\
& \left.=\frac{1}{\beta} \int_{-\sigma}^{\infty} \log \left(1+e^{-r}\right) d r \quad \quad \quad \text { where } \frac{s^{2}}{c^{2}}=e^{\sigma}, r=2 \beta x-\sigma\right) \\
& =\frac{1}{\beta} \int_{0}^{\infty} \log \left(1+e^{-r}\right) d r+\frac{2}{\beta} \int_{0}^{\sigma} \log \left(1+e^{r}\right) d r \\
& \sim \frac{2}{\beta}[\log s]^{2} \quad \text { as } \quad s \rightarrow \infty .
\end{aligned}
$$

Asymptotically, $\omega(s) \sim(1+\varepsilon) \frac{2}{\beta}[\log s]^{2}$, so one has $\delta(\alpha) \sim \frac{8(1+\varepsilon)}{\beta \alpha}[\log \alpha]^{2}$ by a simple computation and $\delta(\alpha) \leq(1 / \alpha)^{1 / p}$ for arbitrary $p>1$ and large α. Hence $\alpha(\delta) \leq 1 / \delta^{p}$ for small δ. Thus,

$$
Q(\delta):=\frac{1}{2}+\omega(\alpha) \leq \frac{1}{2}+\frac{2}{\beta}(1+\varepsilon) p^{2}[\log 1 / \delta]^{2}
$$

and one has, therefore,

$$
\begin{equation*}
\left\|C_{\delta}\right\| \leq A \exp \left[B(\log 1 / \delta)^{2}\right] \tag{4.2}
\end{equation*}
$$

for any $B>B_{0}:=2 / \beta$ and a suitable constant A.

EXAMPLE 3: In this example, we consider the ultimate asymptotic sparsity: a finite sequence $\left\{\lambda_{j}\right\}$ of $L+1$ distinct real numbers. Taking these in increasing order and setting $c:=\min \left\{\left|\lambda_{k}-\lambda_{j}\right|: j \neq k\right\}>0$, we then automatically have the condition (1.4) with $\psi_{m}:=m c$ for $m=0, \ldots, L$ and (formally) $\psi_{m}:=\infty$ for $m>L$, giving

$$
\Psi(s):=2 \sum_{m=1}^{L} \log \left(1+\frac{s^{2}}{c^{2} m^{2}}\right)=4 L \log s+\mathcal{O}(1) .
$$

We now have $\omega(s) \sim 4 L(1+\varepsilon) \log s$ so $\delta(\alpha) \sim 16 L(1+\varepsilon) \frac{1}{\alpha} \log \alpha$ for large α. Hence, as in the previous example, $\alpha(\delta) \leq 1 / \delta^{p}$ for arbitrary $p>1$ and small δ so

$$
Q(\delta):=\frac{1}{2}+\omega(\alpha) \leq \frac{1}{2}+4 p(1+\varepsilon) L \log 1 / \delta
$$

One therefore has algebraic growth in $1 / \delta$ for the norm in this case:

$$
\begin{equation*}
\left\|C_{\delta}\right\| \leq A \delta^{-\nu} \tag{4.3}
\end{equation*}
$$

for any $\nu>\nu_{0}:=4 L$ with a corresponding constant A.

5. Appendix

LEMMA A.1: Let $\boldsymbol{\psi}$ be any increasing positive sequence satisfying (1.7). Then (2.1) defines a function Ψ on \mathbb{R}^{+}such that
(i) Ψ is continuous and unbounded on $[0, \infty)$ with $\Psi(0)=0$,
(ii) Ψ is C^{1} and (strictly) increasing on \mathbb{R}^{+},
(iii) $\Psi(s) / s^{2}$ is decreasing on $(0, \infty)$,
(iv) $\Psi(s) / s^{2}$ is integrable at ∞,
(v) $\quad e^{-\Psi}$ is integrable on \mathbb{R}^{+}.

Proof: \quad Since $\psi=\psi_{k} \rightarrow \infty$ as $k \rightarrow \infty$ so $\log (1+1 / \psi) \sim 1 / \psi$, we see from (1.7) that the sum in (2.1) is well defined and finite for each $s \geq 0$. Further, each term in that sum is (strictly) increasing in s and continuous. By the Weierstrass M-test, the series converges uniformly on any closed and bounded interval in \mathbb{R}^{+}so $\Psi(s)$ is continuous. Similarly, $\Psi^{\prime}=4 \sum_{1}^{\infty} \frac{s}{\left(s^{2}+\psi_{m}^{2}\right)}$ which is finite by (1.7) and positive on \mathbb{R}^{+}. Thus we have (5.1-i,ii). To see (iii), we observe that

$$
\Psi(s) / s^{2}=2 \sum_{1}^{\infty} \frac{\rho\left(\left[s / \psi_{m}\right]^{2}\right)}{\psi_{m}^{2}}
$$

with $\rho(u):=\frac{\log (1+u)}{u}$ and note that ρ is strictly decreasing for $u>0$.
To get $(i v)$, we observe that $\Psi(s) / s^{2}$ will be integrable at ∞ if and only if the series $\left\{\int_{1}^{\infty}\left(1 / s^{2}\right) \log \left(1+s^{2} / \psi_{k}^{2}\right) d s\right\}$ is summable. From the identity

$$
\int \frac{\log \left(1+u^{2}\right)}{u^{2}}=2 \tan ^{-1} u-\frac{\log \left(1+u^{2}\right)}{u}
$$

we get

$$
\int_{1}^{\infty}\left(1 / s^{2}\right) \log \left(1+\frac{s^{2}}{\psi^{2}}\right) d s=\frac{\pi}{\psi}-2 \frac{1}{\psi} \tan ^{-1} \frac{1}{\psi}+\log \left(1+\frac{1}{\psi^{2}}\right) .
$$

Using (1.7) and (i), we get $(i v)$. Statement (v) is obvious.
Finally, we provide the promised proof of Lemma 3.1.
Proof [of Lemma 3.1]: As already noted, the definition (1.9) of Ω ensures that q is increasing, so the right hand side of (3.2) is (strictly) decreasing to 0 as $\alpha \rightarrow \infty$ by the integrability of ω / s^{2}. Thus, $\delta(\cdot)$ is invertible with $\alpha(\delta)$ defined for (small) $\delta>0$.

Now, fixing $\delta>0$ and so $\alpha=\alpha(\delta)$, we use ${ }^{4}$ (3.1) to define

$$
\begin{equation*}
a_{j}:=1 / q^{-1}\left(z_{j}\right) \text { with } z_{j}:=q(\alpha)+j / 2 \tag{5.2}
\end{equation*}
$$

for $j=0,1, \ldots$ An integral comparison, noting that the function $1 / q^{-1}(\cdot)$ is decreasing and that $z_{j+1}-z_{j} \equiv 1 / 2$, gives

$$
\sum_{0}^{\infty} a_{j}=\frac{1}{\alpha}+\sum_{1}^{\infty} \frac{1}{q^{-1}\left(z_{j}\right)} \leq \frac{1}{\alpha}+2 \int_{q(\alpha)}^{\infty} \frac{d z}{q^{-1}(z)}
$$

which precisely gives (3.3) on using (3.2) for $z=q(s)$.
For $|s|>\alpha$, we now note that $j_{*} \geq 1$ where $j_{*}=j_{*}(s, \alpha)$ is the smallest j for which $a_{j}|s| \leq 1$; hence, $0 \leq z_{j_{*}}-q(|s|)<\frac{1}{2}$. An argument similar to the above then gives

$$
\begin{aligned}
\sum_{a_{j}|s| \leq 1}\left[a_{j}\right]^{2} & =\sum_{j_{*}}^{\infty} \frac{1}{\left[q^{-1}\left(z_{j}\right)\right]^{2}} \geq 2 \int_{z_{j_{*}}}^{\infty} \frac{d z}{\left[q^{-1}(z)\right]^{2}} \\
\geq & 2 \int_{q(|s|)}^{\infty} \frac{d z}{\left[q^{-1}(z)\right]^{2}}-\frac{1}{s^{2}} \\
& \left(\text { since } q^{-1}(z) \geq|s| \text { for } s \leq z \leq z_{j_{*}}\right) \\
= & 2 v(|s|)-1 / s^{2}
\end{aligned}
$$

which is just (3.4).

References

[1] J.B. Conway, Functions of One Complex Variable, Springer, NY, 1973.
[2] W.A.J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc. 157 (1971), pp. 23-37.
[3] W. Rudin, Real and Complex Analysis (3 ${ }^{r d}$ ed.), McGraw-Hill, NY, 1987.

[^2][4] T.I. Seidman, The coefficient map for certain exponential sums, Nederl. Akad. Wetensch. Proc. Ser. A, 89 (= Indag. Math. 48), pp. 463-478 (1986).
[5] T.I. Seidman, How violent are fast controls? Math. of Control, Signals, Syst. 1 (1988), pp. 89-95.

[^0]: ${ }^{1}$ This has appeared in Math. Scand. 73, pp. 177-189 (1994).
 ${ }^{2}$ e-mail: seidman@math.umbc.edu. This research has been partially supported for this author by the National Science Foundation under grant ECS-8814788 and by the U.S. Air Force Office of Scientific Research under grant AFOSR-91-0008.

[^1]: ${ }^{3}$ Note that one has the geometric characterization $\left\|\gamma_{k}\right\|=1 /\left[\right.$ distance from $e^{i \lambda_{k} t}$ to $\left.\mathcal{M}_{\delta}\left(\boldsymbol{\lambda}^{k}\right)\right]$ where $\boldsymbol{\lambda}^{k}=\boldsymbol{\lambda} \backslash\left\{\lambda_{k}\right\}$. This gives $\left\|\gamma_{k}\right\| \geq 1 /\left\|e^{i \lambda_{k} t}\right\|=1 / \sqrt{2 \delta}$, showing the uselessness of the crude estimate $\left\|\mathbf{C}_{\delta} f\right\|^{2}=\sum_{k}\left|\left\langle\gamma_{k}, f\right\rangle\right|^{2} \leq\left(\sum_{k}\left\|\gamma_{k}\right\|^{2}\right)\|f\|^{2}$.

[^2]: ${ }^{4}$ Although (3.1) only defines $q(\cdot)$ to within an additive constant, the formula (5.2) suffices to specify $\left(a_{j}\right)$.

