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1 Introduction

Extensive literature on the splitting of matrices satisfying various conditions
goes back about 50 years; see the books by Varga [V, pp. 94-103] and Axels-
son [A, pp. 213–219]. Generally, splittings require a nonnegativity condition,
classically with respect to the nonnegative orthant (i.e. elementwise for the
matrices involved), but, more recently, with respect to a proper cone in finite
dimensional real space; see Marek [M], Marek-Szyld [MS] or Climent-Perea
[CP], where some infinite dimensional generalizations may also be found.

One topic of considerable interest concerns monotonicity properties for
the spectral radius of the iteration matrix of the splitting. Such results are
usually called comparison theorems. These appear in numerous places; see
for example the books cited above or the review paper by Woznicki [W].
However for (right) weak regular splittings, we have found only one result
that proves a comparison theorem for a norm of splittings, viz. Neumann-
Plemmons [NP, Lemma 2.2] or Frommer-Szyld [FS, Theorem 4.1], see also
[BFNS, Theorem 2.5], where applications are given. The norm used in this
theorem is a weighted max norm and the cone is the nonnegative orthant.
Here, we put this theorem into a cone setting, and one of our principal
purposes is to investigate to what extent its hypotheses are needed for its
conclusion.

We now describe our paper in some detail. Among other preliminaries,
in Section 2 we introduce the classes of cone absolute norms, cone linear
absolute norms and cone max norms in order to put our results in a setting
of a proper, but otherwise general cone, in finite dimensional real space.
Our principal results are contained in Section 3. Since we here consider
left weak regular splittings, the norms we employ are cone linear absolute.
We prove a dual form of the theorem of [NP] and [FS] mentioned above in
this setting (Theorem 3.3) and we show (Theorem 3.4) that a cone absolute
norm must satisfy stringent conditions to yield a norm comparison theorem.
A sequence of results is summed up in Theorem 3.7. In Section 4 we obtain
some analogous results for right weak regular splittings which are the duals
of the theorems in Section 3. In Section 5 we derive a comparison theorem
for spectral radii, and, turning to a different approach, we give a proof of
the well-known [V, Theorem 3.32] in a cone setting which relies on order and
convergence properties of operators without any appeal to Perron-Frobenius
theory.

As one motivating application for some of our present concerns, we can
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consider a processor serving a set of buffered input sources. If there is a setup
time for switching tasks, a ‘clearing round-robin’ policy is reasonable and (cf.,
e.g., [HH] or [HS1]) the analysis of system dynamics involves the convergence
of powers of an iteration matrix for what is in effect a regular splitting.
However, for related settings, e.g., consideration of a bank of processors (cf.,
e.g., [HS2]), one has a (somewhat random) product of matrices rather than
powers of a fixed matrix. To show system stability for these more general
settings (involving products of iteration matrices of different splittings) one
now needs to have a uniform norm inequality for the iteration matrices to
ensure suitable stability of these products; see the papers we have cited.

2 Preliminaries on cones and norms

In the following, P will always be a ‘general’ proper cone, not necessarily
simplicial, in the real finite dimensional space X , that is P is a closed and
convex subset of X with P + (−P) = X , P ∩ (−P) = {0}. [We note that
this implies that both P and the dual cone P∗ = {ϕ : u ∈ P ⇒ ϕ · u ≥ 0}
in X ∗ have nonempty interiors.] Specification of P then induces a partial
order ≥ = ≥P for the space X so x ≥ y means x − y ∈ P . This also
induces a partial order for K ×K matrices (viewed as operators: X → X )
so A ≥ 0 means Au ∈ P for all u ∈ P and we have an induced proper
cone M+ = {A ≥ 0} for such matrices. [Note that the cones M+ and
M∗

+ = {B : ϕ ∈ P∗ ⇒ ϕB ∈ P∗} = {AT : A ∈ M+} are each again convex
with nonempty interiors.]

It is natural that the best known case takes P to be the nonnegative
orthant RK

+ ⊂ X = RK . (When we speak simply of RK we shall always
assume that P = RK

+ .) For this case A ≥ 0 just means that all the entries
(aj,k) are nonnegative. In this context, the relevant matrix norm for our
questions will be that induced by the `1 norm on RK — or a weighted `1

norm given by

ν(x) :=
K∑

k=1

wk |xk| for x = (x1, . . . , xK) ∈ RK (2.1)

with positive weights wk > 0. These norms belong to a well-studied class of
norms on RK (including all `p norms) called absolute norms: by definition
these are norms satisfying

ν(x) = ν(|x|) (2.2)
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where |x| = (|x1|, . . . , |xK |). It is well-known (see, [BSW] or [HJ, Theo-
rem 5.5.10]) that an absolute norm has the monotonicity property

|x| ≤ |y| ⇒ ν(x) ≤ ν(y), (2.3)

One would define |x| ∈ P as max{x,−x} = min{u : −u ≤ x ≤ u} and use
(2.2) if this min were always attained, but the max or min of two elements
need not be available for the order defined by a general proper cone and in
order to generalize to our setting we shall call a norm ν on X cone absolute
(with respect to the proper cone P) if, for all x ∈ X ,

ν(x) = inf{ν(u) : −u ≤ x ≤ u : u ∈ P}. (2.4)

We note that a norm ν is cone absolute if and only if

ν(x) = inf{ν(v + w) : v,w ∈ P ; v −w = x} (2.5)

as we may see by putting 2v = u + x, 2w = u− x giving u = v + w.

While we are here taking (2.5) as a property of an already specified norm,
we remark at this point that (2.4) may be taken to define a norm ν on X
once it is already given as a monotone, positively homogeneous, subadditive
function on the cone P.

It is easy to see that a cone absolute norm has the property

ν(u) ≤ ν(u + v) for u,v ∈ P , (2.6)

which we shall call cone monotonicity. When X = RK (and P = RK
+ ) we

shall simply refer to absolute and monotonic norms1. Cone monotonicity of
a norm does not imply its cone absoluteness as can be seen by considering
on R2 the norm: max(|x1|, |x2|, |x1 + x2|).

The most striking property of a weighted `1 norm on RK is that on
P = RK

+ it is linear. Thus we shall call a norm ν cone linear (with respect
to a proper cone P) if it satisfies

For some fixed ϕ ∈ P∗ one has: ν(u) = ϕ · u for all u ∈ P . (2.7)

Clearly this ϕ must be in the interior of P∗ to ensure, as is required for a
norm, that ν(u) > 0 for 0 6= u ∈ P . A norm ν will be called cone linear
absolute if it is both cone absolute and cone linear.

1This departs from the usual terminology in papers on matrix theory where the norms
we simply call ‘monotonic’ are generally called ‘orthant monotonic’.
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The property (2.5) is sufficient to permit appropriate treatment of the
induced matrix norms as well: for positive matrices the matrix norm may be
computed with attention restricted to P .

Theorem 2.1. Let ν be a cone absolute norm on X (with respect to a proper
cone P) and let A : X → X be positive (A ≥ 0 so Au ∈ P when u ∈ P).
Then

‖A‖ := sup{ν(Ax) : x ∈ X ; ν(x) ≤ 1}

= NP(A) := sup{ν(Au) : u ∈ P ; ν(u) ≤ 1}.
(2.8)

Proof: Let x ∈ X be such that ν(Ax) = ‖A‖ with ν(x) = 1. Since
ν is an absolute norm, there exists u ∈ P such that −u ≤ x ≤ u and
ν(u) = ν(x) = 1 so ν(Au) ≤ ‖A‖. Since A ≥ 0, we have Au ≥ 0 and
−Au ≤ Ax ≤ Au. Hence, by (2.4), ‖A‖ = ν(Ax) ≤ ν(Au) and it follows
that ν(Au) = ‖A‖.

Given (2.6), it follows from Theorem 2.1 that the matrix norm correspond-
ing to any cone absolute norm will itself be cone monotone with respect to
the matrix cone M+:

‖A‖ ≤ ‖A + B‖ for A,B ∈M+, (2.9)

However, a matrix norm satisfying (2.9) need not be cone absolute.

This may be seen by considering the `2 norm on R2 and the matrices

A =
(

1 −1
1 1

)
and |A| =

(
1 1
1 1

)
.

Although the `2 norm is absolute, the matrices A, |A| have different norms
(largest singular values): respectively

√
2 and 2.

We also observe that the conclusion of Theorem 2.1 need not hold for all
cone monotonic norms.

To see this, consider the norm ν given by max{|x1|, |x2|, |x1 + x2|/2} on R2

and the transformation T(x1, x2) = (0, x2). For x = (−2, 1) one would then
have ν(Tx)/ν(x) = 2 while ν(Tu)/ν(u) ≤ 1 for all u ≥ 0.
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3 Inequalities for operator splittings

Throughout this section we assume that we have specified a proper cone P
and vector inequalities will be with respect to this cone while matrix inequal-
ities will be taken with respect to the induced cone M+ = M+(P). We say
that the pair [M,N] is a left weak regular splitting of the K ×K matrix T if
M is invertible and

M−N = T with M−1 ≥ 0, NM−1 ≥ 0. (3.1)

Similarly, the pair [M,N] is called a right weak regular splitting of T if M
is invertible and

M−N = T with M−1 ≥ 0,M−1N ≥ 0. (3.2)

These splittings in (3.1) and (3.2) are also known as weak nonnegative
splittings of the first and second kind respectively; see [W] or [EFNSS]. The
matrix NM−1 (alternatively, M−1N) is known as the iteration matrix of the
splitting.

We shall assume that the norm ν is cone linear absolute with defining
functional ϕ. Where needed, we impose on the functional ϕ of (2.7) the
hypothesis that it is not only in the interior of P∗, as is necessary for ν to
be a norm, but that in addition we also have

TTϕ ≥ 0 : ϕ ·Tv ≥ 0 for all v ∈ P , (3.3)

or the still stronger property

TTϕ > 0 : ϕ ·Tv > 0 for all v ∈ P , v 6= 0 (3.4)

Note that, without further assumptions, even (3.4) is much weaker than
asking that TT ≥ 0 which would mean that TTϕ ≥ 0 for all ϕ ∈ P∗, not only
the particular ϕ of (2.7). We do note, however, that when T is nonsingular
and has a left weak regular splitting [M,N] (whence TT has the right weak
regular splitting [MT,NT]), then the existence of a functional satisfying (3.3)
is equivalent to (T−1)T ≥ 0 and to ρ(NM−1) ≤ 1, as is shown by an easy
modification of the proof of [S, Lemma 1]. Further, the nonsingularity of TT

is guaranteed under condition (3.4), which also yields ρ(NM−1) < 1; see [S,
Lemma 1] and see [DH, Theorem 2.11] for a related result. These remarks
rest on Perron-Frobenius theory, but our next theorem shows that one can
parallel the above results without any overt appeal to that theory.
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Theorem 3.1. Suppose the pair [M,N] is a left weak regular splitting of a
K × K matrix T so we have (3.1) with respect to the ordering of P. Let
the norm ν be a cone linear absolute norm given by the functional ϕ (so that
(2.4) and (2.7) hold).

1. If the defining functional ϕ of ν satisfies (3.3) with respect to this T,
then, with the operator norm induced by ν, we have

‖NM−1‖ ≤ 1. (3.5)

2. When ϕ satisfies (3.4) one has the strict inequality

‖NM−1‖ < 1. (3.6)

3. If either (3.6) holds or (3.5) holds and T is assumed to be nonsingular,
then

T−1 ≥ 0. (3.7)

4. If T−1 ≥ 0, then there exists a functional ϕ′ > 0 such that the strict
inequality (3.4) is satisfied for the cone linear absolute norm given by
ϕ′ and hence (3.6) holds for the induced norm.

Proof:
(1) Since (3.1) gives NM−1 ≥ 0, we may apply Theorem 2.1. Thus it is

sufficient for (3.5) to show that ν(NM−1u) ≤ ν(u) for each u ∈ P . Noting
that TM−1 = I−NM−1 and using (2.7), we have

ν(u)− ν(NM−1u) = ϕ · [u− (I−TM−1)u] = ϕ ·T(M−1u), (3.8)

which is nonnegative by (3.3) since M−1 ≥ 0 gives v = M−1u ∈ P .
(2) For this assertion we observe that in the argument above we need

only consider the set P ′ consisting of u ∈ P for which ν(u) = 1. This set is
compact so, by continuity, ϕ · T(M−1u) attains its minimum over u ∈ P ′,
necessarily positive since it follows from (3.4) that ϕ ·T(M−1u) > 0 for each
such u. Thus, (3.6) follows from (3.8).

(3) We now observe that if P = NM−1 satisfies (3.6), then the Neumann
series expansion of (I−P)−1 converges and we obtain (I−P)−1 ≥ 0 since the
cone M+ is closed. If (3.5) holds then we can apply the same argument to
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αP with 0 < α < 1 and use continuity of the inverse to obtain (I−P)−1 ≥ 0.
In either case, T−1 = M−1(I−P)−1 ≥ 0.

(4) Suppose T−1 ≥ 0 so also (TT)−1 ≥ 0. Then for any choice of ψ > 0
one has ϕ′ := (TT)−1ψ > 0 and Tϕ′ > 0. The conclusions now follow by
Part (2) of the theorem.

While we have used (3.3) to obtain (3.5) for every left weak regular splitting,
we may remark that for any one such splitting it is sufficient that (M−1)T

takes TTϕ into P∗.
On the other hand, if T is singular, then (3.5) does not imply the existence

of a functional ϕ > 0 such that (3.3) holds, as is shown by the following
example.

Example 3.2. Consider the left weak regular splitting

T =
(

2 −1
0 0

)
= M−N =

(
2 −1

−1 2

)
−

(
0 0

−1 2

)
so NM−1 =

(
0 0
0 1

)
.

For the usual `1 norm, (3.5) is satisfied, yet there cannot be any positive
functional ϕ for which TTϕ is also positive, to yield (3.3).

Theorem 3.3. Suppose [M,N] and [M̂, N̂] are both left weak regular split-
tings of the same K ×K matrix T. Assume the defining functional ϕ of the
cone linear absolute norm ν satisfies (3.3). Then, with the operator norm
induced by ν, we have

M−1 ≤ M̂−1 implies ‖N̂M̂−1‖ ≤ ‖NM−1‖, (3.9)

i.e., the mapping: M−1 7→ ‖NM−1‖ is antitone for left weak regular splittings
of T. Further, if ϕ satisfies the stronger condition (3.4) and also

u ≥ 0, [M̂−1 −M−1]u = 0 implies u = 0, (3.10)

then the conclusion of (3.9) becomes the strict inequality

‖N̂M̂−1‖ < ‖NM−1‖. (3.11)

Proof: Applying Theorem 2.1 for each of the operator norms, it is suf-
ficient for the desired norm inequality (3.9) to show that ν(N̂M̂−1u) ≤
ν(NM−1u) for each u ∈ P when M−1 ≤ M̂−1. Since N̂M̂−1, NM−1 ≥ 0,
this is equivalent by (2.7) to showing that ϕ · N̂M̂−1u ≤ ϕ · NM−1u for
all u ≥ 0.
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We next observe that TM−1 = I −NM−1 and TM̂−1 = I − N̂M̂−1 so
we have the identity

NM−1 − N̂M̂−1 = T[M̂−1 −M−1].

With M̂−1 ≥ M−1 giving v = [M̂−1 − M−1]u ∈ P for u ∈ P , we have
from (3.3) that ϕ · Tv ≥ 0. Thus, as desired, for each such u we have
0 ≤ ϕ ·T[M̂−1 −M−1]u = ϕ · [NM−1 − N̂M̂−1]u.

If (3.4) and (3.10) hold then v = [M̂−1 − M−1]u is nonnegative and
nonzero for u ≥ 0, u 6= 0 whence the above argument shows ϕ ·Tv > 0. As
in the last part of the proof of Theorem 3.1, this proves (3.11).

The condition (3.10) just asserts that the nullspace of [M̂−1−M−1] intersects
P only trivially. Thus (3.10) holds if M̂−1 − M−1 > 0 (in which case the
inequality (3.11) follows even without the hypothesis (3.4). The hypothesis
(3.10) occurs in the context of theorems of the alternative; see Lemma 4.1
below. For X = RK and P = RK

+, condition (3.10) is satisfied if and only if
[M̂−1 −M−1] is a nonnegative matrix with at least one positive element in
each column.

We can now show that for cone linear absolute norms the additional
hypothesis (3.3) is necessary for (3.9) — at least if T has some left weak
regular splitting [M,N] as in (3.1) for which NM−1 is not only nonnegative,
but is in the interior of the cone M+ of nonnegative matrices.

Theorem 3.4. Suppose T has a left weak regular splitting [M,N] with
NM−1 strictly positive and that ν is a cone linear absolute norm with defining
functional ϕ. Then (3.9) can hold only if (3.3) holds.

Proof: For (3.3) to be false there must exist some v ∈ P such that
ϕ ·Tv < 0. Fixing v, we define the dyad D = v ⊗ ϕ : x 7→ (ϕ · x)v, noting
that D ≥ 0 and ‖D‖ = ϕ · v. For small enough ε > 0, we can then define
M̂ := (I + εMD)−1M, for which we have

M̂−1 = M−1(I + εMD) = M−1 + εD so M̂−1 ≥ M−1 ≥ 0.

Further,

N̂M̂−1 = I−TM̂−1 = I−T(M−1 + εD) = NM−1 − εTD
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whence one has convergence N̂M̂−1 → NM−1 as ε → 0 so N̂M̂−1 ≥ 0 for
small enough ε > 0. Thus, [M̂, N̂] is again a left weak regular splitting of T
and we have M̂−1 ≥ M−1 as in (3.9).

Since NM−1 ≥ 0, we may apply Theorem 2.1 and note that, by continuity
and compactness, the sup in the definition (2.8) of NP(NM−1) must be
attained. Thus there exists some u ∈ P with ϕ · u = ν(u) = 1 and

ϕ ·NM−1u = ν(NM−1u) = NP(NM−1) = ‖NM−1‖.

For this u we have Du = v and

‖N̂M̂−1‖ ≥ ν(N̂M̂−1u) = ϕ · N̂M̂−1u = ϕ · [NM−1u− εTDu]
= ‖NM−1‖ − εϕ ·Tv > ‖NM−1‖ (as ϕ ·Tv < 0)

so (3.9) then fails.

In view of the nonnegativity of M−1, M̂−1 and the resolvent identity:
M̂−1 −M−1 = M̂−1(M− M̂)M−1, we note that having M̂ ≤ M is a some-
what stronger hypothesis than having M−1 ≤ M̂−1. We now show that this
strengthening is just sufficient to compensate for the absence of (3.3).

Theorem 3.5. Let both [M,N] and [M̂, N̂] be left weak regular splittings of
the same K ×K matrix T with [M,N]. With the operator norm induced by
the cone linear absolute norm ν, we assume that ‖NM−1‖ ≤ 1. Then

M̂ ≤ M implies ‖N̂M̂−1‖ ≤ ‖NM−1‖, (3.12)

i.e., subject to (3.5), the mapping: M 7→ ‖NM−1‖ is isotone for left weak
regular splittings of T even in the absence of (3.3).

Proof: We begin by noting the identity

N̂M̂−1 −NM−1 = T[M−1 − M̂−1] = (I−NM−1)(M̂−M)M̂−1

for splittings [M,N], [M̂, N̂] of T. Assuming M̂ ≤ M and ‖NM−1‖ ≤ 1, we
wish to show that

ϕ · N̂M̂−1u ≤ ϕ ·NM−1u for each u ≥ 0,

since this is sufficient for the conclusion of (3.12).
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By the identity, we have ϕ · [NM−1 − N̂M̂−1]u = ϕ · v − ϕ · NM−1v
with v := (M− M̂)M̂−1u ∈ P . Since ‖NM−1‖ ≤ 1, we have ϕ ·NM−1v =
ν(NM−1v) ≤ ν(v) = ϕ · v. Thus, ϕ · [NM−1 − N̂M̂−1]u ≥ 0 for each u ≥ 0
and it follows that ‖N̂M̂−1‖ ≤ ‖NM−1‖ as desired.

The following reformulation of a special case of Theorem 3.5 is of interest.

Corollary 3.6. Suppose P = A + B with ‖P‖ < 1 and with both A,B ≥ 0.
Then, subject to this, the map: A 7→ ‖B(I−A)−1‖ is isotone.

Proof: Let T be the matrix I − P, let M = (I −A), and N = B ≥ 0.
One easily sees that [M,N] is a left weak regular splitting of T. We first
apply Theorem 3.5 to compare this with the splitting [I,P] and see that we
always have ‖B(I−A)−1‖ ≤ ‖P‖ < 1. Theorem 3.5 then applies to give the
isotonicity.

While the proof above of Theorem 3.5 does use (2.7), the possibility re-
mains open that this apparent necessity is merely an artifact of the particular
proof. We now show that this is not the case: for a cone absolute norm ν
(and indeed for any cone monotone norm which satisfies (2.8)) the linearity
on P is really needed for the isotonicity (3.12).

In particular, when P is the usual positive orthant RK
+ we cannot have (3.12)

when the matrix norm is induced by, e.g., a (weighted) `p norm with p > 1.

Theorem 3.7. Assume the norm ν(·) is cone absolute (2.4). Then (3.12)
holds only if ν(·) is cone linear, even if we restrict attention to left regular
splittings [M,N] with ‖NM−1‖ ≤ 1.

Proof: Choose any u in the interior of P , normalized so ν(u) = 1. By
the Hahn-Banach Theorem, e.g. [R, p. 58], there must be some ϕ ∈ X ∗ such
that

ϕ · x ≤ ν(x) for all x ∈ X but ϕ · u = ν(u) = 1. (3.13)

We note that (3.13) together with (2.6) give ϕ ∈ P∗:
Given any v ≥ 0, one has (u− sv) ∈ P for small enough s > 0 since u is in
the interior of P. Then (2.6) gives ν(u− sv) ≤ ν(u− sv + sv) = ν(u) = 1,
whence

1− sϕ · v = ϕ · (u− sv) ≤ ν(u− sv) ≤ 1

so one must have ϕ · v ≥ 0.
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If ν is not cone linear, then (2.7) fails for this ϕ so there must be some v
in P for which ϕ · v 6= ν(v), and by the continuity of the norm there must
be such a v in the interior of P . Normalizing v, this necessarily means
ϕ · v < ν(v) = 1. Again by the Hahn-Banach Theorem, there is then some
ψ ∈ P∗ with ν∗(ψ) = 1 and ψ · v = ν(v) = 1.

To obtain our counterexample for (3.12) we again work with appropriate
dyadic matrices. First, by our choice of v we can choose r so 0 ≤ ϕ·v < r < 1
and we then set

M := I N := ru⊗ ψ : x 7→ r(ψ · x)u.

Since r > 0, u ∈ P , and ψ ∈ P∗ as noted above, this makes NM−1 = N ≥ 0
so we have (3.1). As ν(NM−1x) = r(ψ · x) ≤ rν(x), we have ‖NM−1‖ = r
so our choice of r < 1 gives (3.5).

Next, we choose 0 < s < 1 small enough that (u − sv) ∈ P — possible
since u is in the interior of P — and then set

D := rsv ⊗ ψ : x 7→ rs(ψ · x)v

M̂ = M−D = I− rsv ⊗ ψ

N̂ = N−D = r(u− sv)⊗ ψ.

Note that our choice of s ensures that D ≥ 0 so M̂ ≤ M and that rs < 1 so
M̂−1 ≥ 0. Further, since (u − sv) ∈ P we have N̂ ≥ 0 so N̂M̂−1 ≥ 0 and
[M̂, N̂] is another left weak regular splitting of T = M−N = I− ru⊗ ψ.

Finally, we must show that ‖N̂M̂−1‖ > r = ‖NM−1‖ to see that this is,
indeed, a counterexample for (3.12). For any x we have

N̂M̂−1x = N̂y = r(ψ · y)(u− sv)

where y := M̂−1x. This gives x = M̂y = y − rs(ψ · y)v so

ψ · x = (ψ · y)− rs(ψ · y)ψ · v = (1− rs)ψ · y

and N̂M̂−1x =
r

1− rs
(ψ · x)(u − sv). Recalling that ϕ · u = 1 = ψ · v, we

then have

‖N̂M̂−1‖ ≥ ν(N̂M̂−1v) ≥ ϕ · N̂M̂−1v

=
r

1− rs
(ψ · v)[ϕ · (u− sv)] =

1− s(ϕ · v)

1− rs
r.
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Because we chose r > ϕ · v we now have 1 − s(ϕ · v) > 1 − rs for s > 0, so
this does give a counterexample for (3.12).

Finally, we summarize some of the results in this section.

Theorem 3.8. Let ν be a cone absolute norm and suppose that T has a
left weak regular splitting [M̃, Ñ] with ÑM̃−1 > 0. Then the following are
equivalent.

1. The norm ν is cone linear absolute defined by a functional ϕ such that
(3.3) holds.

2. For left weak regular splittings [M,N] and [M̂, N̂] with ‖NM−1‖ ≤ 1,
the implication (3.12) holds.

Proof:
(1) =⇒ (2). Since M̂ ≤ M implies M−1 ≤ M̂−1, the result follows from

Theorems 3.3 and 3.5.
(2) =⇒ (1). By Theorems 3.7 and 3.4.

We leave open the question as to whether (3.12) in (2) of Theorem 3.8
can be replaced by (3.9).

4 Dual Results

We now wish to consider right weak regular splittings of T:

M−N = T with M−1 ≥ 0, M−1N ≥ 0. (4.1)

By considering dual spaces, dual norms and dual cones, we obtain results
analogous to those of the previous section since the induced norm of the
transpose of an operator with respect to the dual of a norm equals the induced
norm of the original operator with respect to the original norm.

Note that the dual norm for a cone linear absolute norm as in (2.4), (2.7)
is a cone max norm on X having the form

ν(x) = inf{t : −tw ≤ x ≤ tw} (4.2)

where w is a fixed vector in the interior of the proper cone P ⊂ X .
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For ν given as in (2.4), (2.7) the dual norm ν∗(ξ) := sup{ξ · x : ν(x) ≤ 1}
is equivalently given by (4.2) with w = ϕ. To see this, we need only note
that to have −tϕ ≤ ξ ≤ tϕ in the sense of the dual order just means that
±ξ·u ≤ tϕ·u = tν(u). Writing x = v−w with v,w ∈ P and ν(x) = ν(v+w)
as in (2.5), we then have

ξ · x = ξ · v − ξ ·w ≤ tϕ · v + tϕ ·w = tν(v + w) = tν(x)

whence ν∗(ξ) ≤ t. We observe that a cone max norm is cone absolute.
The terminology ‘cone max norm’ comes from the fact that for the case of
P = RK

+ the weighted `1 norm (2.1) has, as dual, the weighted `∞ norm,
ν∗(ξ) = maxk{|ξk|/wk}.

This dual norm ν∗ is not cone linear in the sense of (2.7) when ν is, but it
is cone absolute with respect to P∗ and hence does give (2.8). We note that
AT is nonnegative with respect to the cone P∗ if and only if A ≥ 0 with
respect to P .

In order to dualize the condition for strict inequality in Theorem 3.3, we
need a theorem of the alternative:

Lemma 4.1. Let W be a subspace of X and let P be a proper cone in X .
Then the interior of W∩P is nonempty if and only if W⊥∩P∗ = {0}, where
W⊥ is the orthogonal complement of W and P∗ is the cone dual to P.

Proof: See, e.g., [CHS, Theorem 2.8] and the references given there.
For the case P = RK

+ ; see [SaS, Lemma 1.2].

We now state the dual of Theorem 3.3 as follows.

Theorem 4.2. Let ‖ · ‖ be the matrix norm induced by a cone max norm
determined by a positive vector w as in (4.2) and consider a right weak regular
splitting [M,N] of T as in (4.1).

1. If Tw ≥ 0, then ‖M−1N‖ ≤ 1 and the map: M−1 7→ ‖M−1N‖ is
antitone, i.e.,

M−1 ≤ M̂−1 implies ‖M̂−1N̂‖ ≤ ‖M−1N‖. (4.3)

If T is nonsingular, then T−1 ≥ 0.

2. Further, suppose that Tw > 0. Then T is nonsingular with T−1 ≥ 0.
Also, we have the strict inequality ‖M−1N‖ < 1 and, provided that

for some u > 0, [M̂−1 −M−1]u > 0, (4.4)
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we have

M−1 ≤ M̂−1 implies ‖M̂−1N̂‖ < ‖M−1N‖. (4.5)

3. Finally, if T−1 ≥ 0 then there is a w′ > 0 such that Tw′ > 0 and hence
the inequality ‖M−1N‖ < 1 holds for the induced norm corresponding
to the cone max norm defined by w′.

Proof: Applying Lemma 4.1 with W = Range [M̂−1 − M−1], shows
that this theorem is precisely the dual of Theorems 3.1 and 3.3.

Remark 4.3. In view of our proof of Part (2) of Theorem 3.1 we note that
it is possibly to prove Part (2) of Theorem 4.2 without any reference to the
compactness of the norm ball. We note as an immediate consequence of
Theorem 2.1 that, for the cone max norm given by w > 0, we have for a
nonnegative matrix P that

P ≥ 0 implies ‖P‖ = ν(Pw), (4.6)

see [RV]. Hence, if Tw > 0, it follows that (I −M−1N)w = M−1Tw > 0.
Thus for some α > 1, we have αM−1Nw < w, which proves ‖M−1N‖ < 1.

We note that the first part of Theorem 4.2 has been shown directly by
Neumann-Plemmons [NP, Lemma 2.2] and by Frommer and Szyld in [FS,
Theorem 4.1] for the particular setting P = RK

+ ; see also [BFNS, Theorem
2.5]. For the strict inequality (4.5) these references require the assumption
M−1 < M̂−1, obviously a stronger requirement than our condition (4.4).

We now state the duals of Theorems 3.4, 3.5, 3.7 and 3.8 without further
proof.

Theorem 4.4. Suppose T has a right weak regular splitting [M,N] with
M−1N strictly positive and that ν is a cone max norm with defining vector w
as in (4.2). Then (4.3) can hold only if Tw ≥ 0.

Theorem 4.5. Let ‖ · ‖ be the matrix norm induced by a cone max norm
ν(·) as in (4.2) and consider splittings of T as in (4.1). If ‖M−1N‖ ≤ 1,
then the map: M 7→ ‖M−1N‖ is isotone, viz.

M̂ ≤ M implies ‖M̂−1N̂‖ ≤ ‖M−1N‖. (4.7)
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Theorem 4.6. Assume the norm ν(·) is cone absolute (2.4). Then (4.7)
holds only if ν(·) is a cone max norm, even if we restrict attention to right
regular splittings [M,N] with ‖M−1N| ≤ 1.

Theorem 4.7. Let ν be a cone absolute norm and suppose that T has a
right weak regular splitting [M̃, Ñ] with M̃−1Ñ > 0. Then the following are
equivalent.

1. The norm ν is cone max defined by a vector w such that Tw ≥ 0.

2. For right weak regular splittings [M,N] and [M̂, N̂] with ‖M−1N‖ ≤ 1,
the implication (4.7) holds.

Again the question arises as to whether (4.7) in (2) of Theorem 4.7 can
be replaced by the assumption (4.3).

5 Comparison for spectral radii

We begin this section with a corollary to Theorem 4.2. For P = RK
+ , this is

found in [NP] and [FS], except that (as already noted after Theorem 4.2) we
have weakened the hypothesis required for the strict inequality.

Corollary 5.1. Consider a splitting [M,N] of T as in (4.1) for which M−1N
has a Perron vector w (i.e., M−1Nw = ρ(M−1N)w) such that

w > 0 with Tw ≥ 0. (5.1)

Then
M−1 ≤ M̂−1 implies ρ(M̂−1N̂) ≤ ρ(M−1N), (5.2)

i.e., the map: M−1 7→ ρ(M−1N) is antitone. The conditions for strict in-
equality are the same as in Theorem 4.2.

Proof: Let ρ = ρ(M−1N) and let ‖·‖ be the cone max norm determined
by w as in (4.2). For 0 ≤ x ≤ w, we have 0 ≤ M−1Nx ≤ M−1Nw and
M−1Nw = ρw. It then follows from Theorem 2.1 that ‖M−1N‖ = ρ and as
ρ(M̂−1N̂) ≤ ‖M̂−1N̂‖, we obtain (5.2).

The strict inequality follows as in Theorem 3.1.
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The additional conditions (5.1) imposed in Corollary 5.1 to obtain the
spectral radius inequality correspond to the condition (3.3) used in The-
orem 3.1. In view of Theorem 3.4 we expect that this cannot simply be
omitted and adapt here an interesting example due to Elsner ([E, p.283]).
In our example the Perron vector of M−1N does not satisfy (5.1), but, for
a different w, (3.3) is satisfied, which leads to inequality of spectral radius
and norm in opposing directions. The last part of this example illustrates
Theorem 4.4 and shows that the assumption Tw ≥ 0 is really needed for the
conclusion (4.3).

Example 5.2. Consider the right weak regular splittings

T =
(

1 −1
−1/2 1

)
= M−N =

(
3/2 −1

−3/4 1

)
−

(
1/2 0

−1/4 0

)
= M̂− N̂ =

(
7/5 −3/5

−7/10 4/5

)
−

(
2/5 2/5

−1/5 −1/5

)
for which we have

M−1 =
(

4/3 4/3
1 2

)
, M−1N =

(
1/3 0

0 0

)
;

M̂−1 =
(

8/7 6/7
1 2

)
, M̂−1N̂ =

(
2/7 2/7

0 0

)
.

Here the Perron eigenvector w := (1, 0)T for M−1N is not strictly positive
and, more significantly, Tw = (1,−1/2)T 6≥ (0, 0)T so the hypothesis (5.1)
does not hold for this example. We then observe that M̂−1 ≤ M−1 in the
sense of the usual R2

+ ordering, but ρ(M̂−1N̂) = 2/7 6≥ ρ(M−1N) = 1/3 so
(5.2) fails. Of course, (consistent with Theorem 3.3, noting that T(1, 1)T

is nonnegative) we do have ‖M̂−1N̂‖ > ‖M−1N‖ with the usual `∞ norm
(even though (4.4) does not hold). However, if we use w′ = [1, 100]T as
defining vector for our norm, and P = diag(w′), we obtain

‖M̂−1N̂‖′ = 1/3 > 2/7 = ‖M−1N‖′

where ‖ · ‖′ = ‖P · P−1‖ is the operator norm induced by the weighted max
norm given by w′. We note that Tw′ � 0.

Comparison theorems for spectral radii of splittings of matrices have been
generalized to bounded operators in Banach space, see [M], [MS] and [CP]. In
these papers additional conditions are imposed on positive operators, specif-
ically the existence of a Perron vector is assumed.

We here adopt a different approach. For our final result, we use series
domination in a Banach algebra setting to generalize the well-known result
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[V, Theorem 3.32]. We employ convergence properties of series so this applies
to infinite dimensions without any appeal to the Perron-Frobenius theory of
positive operators.

Thus we consider a real Banach algebra A (see [R, p.245]) partially or-
dered by a proper cone P (with interior) consistent with addition and mul-
tiplication, viz.

P, Q ∈ P implies P + Q, PQ ∈ P .

We also assume that the norm on A is monotone2 on P .
In this setting we note that the spectral radius ρ is given by the formula

ρ(A) = lim
n→∞

‖An‖1/n, (5.3)

which is consistent with the usual definition on M+. It is well known (see,
e.g., [R, p.263]) that (5.3) is equivalent to

ρ(A) = inf
n≥1

‖An‖1/n (5.4)

and easy to see that it is also equivalent to

1/ρ(A) = sup
{
α : {‖ [αA]k ‖} bounded in k

}
. (5.5)

A splitting [M,N] of T ∈ A is called regular if T = M−N where M−1 ≥ 0
and N ≥ 0.

Theorem 5.3. With the properties of the Banach algebra A as above, ei-
ther suppose that ρ(NM−1) < 1 or suppose that T is invertible with T−1

nonnegative.

1. If [M,N], [M̂, N̂] are regular splittings of T, then

M̂ ≤ M implies ρ(N̂M̂−1) ≤ ρ(NM−1) ≤ 1, (5.6)

i.e., the spectral radius of the iteration matrix is then isotone with re-
spect to M.

2With small verbal changes, our proof below holds if the norm is semi-monotone, i.e.,

There is a c > 0 such that 0 ≤ x ≤ y ⇒ ‖x‖ ≤ c‖y‖.

This is a common assumption in this area; see, e.g., [KLS, p.37] or [DH].
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2. Further, suppose that, for P ≥ 0, the sequence I + P + · · · + Pk + · · ·
converges whenever its partial sums are uniformly bounded (viz., I +
P+ · · ·+Pk ≤ Q for some Q and all k). Then T−1 ≥ 0 already implies
that ρ(NM−1) < 1.

Proof:
1. We begin by setting P = NM−1 and ρ = ρ(P). With M− M̂ ≥ 0, we

also introduce
A = I− M̂M−1 = (M− M̂)M−1 ≥ 0

and note that A = (N − N̂)M−1 so B = P − A = N̂M−1 ≥ 0 — i.e.,
0 ≤ A ≤ P. Finally, we introduce

C = (P−A)(I−A)−1 = N̂M̂−1 ≥ 0.

Our first observation is that the condition T−1 ≥ 0 implies ρ ≤ 1. To see
this, note that T = (I−P)M so invertibility of T (and of M) gives existence
of (I−P)−1. Since (I−P)(I + P + · · ·+ Pk) = I−Pk+1 it follows that

Pk ≤
[
I + P + · · ·+ Pk

]
+ Pk+1(I−P)−1 = (I−P)−1, (5.7)

for all k. Thus, each Pk ≤ (I − P)−1 whence, since the norm is monotonic,
we deduce that for α = 1,

{
‖[αP]k‖

}
is uniformly bounded by ‖ (I−P)−1 ‖,

giving ρ ≤ 1 by (5.5). We can now choose α ≥ 1 arbitrarily close to 1/ρ —
of course taking α = 1 if ρ = 1 — and have

{
‖[αP]k‖

}
uniformly bounded.

To show (5.6) as desired means showing ρ(C) ≤ ρ for which, by (5.5), it
is sufficient to show that

{
[αC]k

}
is uniformly bounded for α as here. We

now define the nonnegative matrices

Zα := (I− αP)−1, Cα := B(I− αA)−1.

When ρ < 1 we always take α < 1/ρ so we have convergence of the Neumann
series in each case, noting the comparison 0 ≤ A ≤ P. Note that comparison
of the Neumann series gives C = C1 ≤ Cα for α ≥ 1, as we are assuming. [If
we were to have ρ = 1 so α = 1, then Zα = Z1 = (I−P)−1, whose existence
and nonnegativity have been assumed, and Cα = C ≥ 0.]

One can immediately compute the identities

Zα = I + αAZα + αBZα, BZα = Cα(I + αBZα)
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— multiply I = [(I − α[A + B]) + αA + αB] by Zα and, after noting that
B = Cα(I − αA), multiply I − αA = [(I − α[A + B]) + αB] on the left by
Cα and on the right by Zα. The first of these identities is the case N = 0 of
the induction

Zα =
N∑
0

[αCα]k + αAZα + α [αCα]N BZα

=
N∑
0

[αCα]k + αAZα + α [αCα]N Cα (I + αBZα)

=
N+1∑

0

[αCα]k + αAZα + α [αCα]N+1 BZα.

(5.8)

Since each term is in M+, this shows that

[αC]k ≤ [αCα]k ≤ Zα independently of k.

for each such α so, as above,
{
‖ [αC]k ‖

}∞
0

is bounded. Choosing α arbitrar-
ily close to 1/ρ, this gives ρ(C) ≤ ρ, completing the proof of 1.

2. We have noted that the partial sums
[
I + P + · · ·+ Pk

]
are uniformly

(order) bounded by (I−P)−1 so, under our additional hypothesis, the series
converges. Of course the individual terms then go to 0, so certainly

∥∥Pk
∥∥ < 1

for large k whence, using (5.4), we have ρ(P) = infk

{∥∥Pk
∥∥1/k

}
< 1.

We remark that the condition in 2. of Theorem 5.3 is satisfied when A =
M+, since all linear topologies are equivalent to the Euclidean norm in finite
dimensions. In this finite dimensional case we have thus obtained the full
force of Varga’s Theorem 3.32 in [V] without any appeal to Perron-Frobenius
theory.
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