
Increasingly Correct Message Passing Algorithms
for Heat Source Detection in Sensor Networks1

K. Plarre and P. R. Kumar
Electrical and Computer Engineering Department

and Coordinated Science Laboratory
1308 W. Main St., Urbana, IL, 61801

Email: {plarre, prkumar}control.csl.uiuc.edu

T. Seidman
Department of Mathematics and Statistics
University of Maryland, Baltimore County

Baltimore, MD, 21250
Email: seidman@math.umbc.edu

Abstract— Solving complex source inference and esti-
mation problems in the distributed environment of sensor
networks is a difficult task. Data is distributed, as is
computational power, and energy is limited.

We consider the problem of detecting and locating a
heat source appearing in a region covered by a sensor
network. This task requires complex computations that
must be shared by all sensors.

One significant difficulty we overcome is the problem
of local minima. By using a two step procedure, where
in the first step nodes estimate their distances to the
source, and in the second step localize it, we avoid the
problem of having very erroneous estimates of location
that local minima can produce. Further, to organize the
computations involved, we draw on ideas from graphical
models. We develop an algorithm that has the a property
which we call “increasing correctness,” that at any time the
algorithm can be stopped and it nevertheless provides the
correct answer for the problem defined by the information
that has been fed into the algorithm up to that time.

I. INTRODUCTION

There are a number of issues that make the design of
applications for sensors networks a difficult task.

Power limitation is a central issue in sensor networks
with nodes powered by batteries. To reduce power
consumption, nodes are provided with a “sleep” mode
in which they consume only a fraction of the power
when awake. Management of sleeping and awake modes
in sensor networks is an important problem.

Power limitations also make communications in a
sensor network an expensive asset. Any application for
sensor networks has to be designed to operate with

1Please address all correspondence to the first author.

minimal communications. The joint design of computa-
tion and communications constitutes another challenging
problem in sensor networks; see [1].

Computational power in sensor networks is also lim-
ited, making complex computations prohibitively slow.
Moreover information in the network is distributed, and
so computations cannot be centralized on one sensor,
even if its computational power would allow it. Even
algorithms that could be trivially programmed on a PC,
prove to be difficult to implement in sensor networks.
The organization of such distributed algorithms is a
challenging task, e.g., [2]–[4].

In this paper we explore these issues through a very
specific problem, namely the detection and location of
a heat source. A number of motes with omnidirectional
temperature sensors are located in a certain region. At
some unknown time a heat source appears in the region.
The tasks of the network are to detect the onset of
the heat source, determine its time of appearance, its
amplitude and location, and then issue an alarm. We
will see that this problem involves a large number of
the issues mentioned above.

Our distributed algorithm draws on ideas from graph-
ical models and message passing [5]–[8]. We provide an
algorithm that has a property which we call “increasing
correctness.” This property allows us to stop the algo-
rithm at any given time and still obtain a result that is
correct for the problem defined by all the information
included in the computation up to that time.

Our algorithm also avoids the problem of getting stuck
in local minima since they can give totally erroneous
estimates of the source ocation. This is done by using
a two step procedure where in the first step each node
estimates its distance to the source, and in the second
step the source is localized by message passing.

Our algorithm also features distributed detection to

determine the onset of a source at a random time.
Graphical models and message passing for

computation in sensor and ad-hoc networks have been
considered before, [3], [4], although in different contexts
and with different approaches than the one we take here.

II. CONTRIBUTIONS

We consider the problem of detecting a heat source
appearing at some random time and position. For this
we devise a multistep algorithm that aims to reduce the
probability of false alarm, and to estimate the location
of the source.

The organization of such an algorithm in a distributed
environment is a difficult task. To aid us in the design
of the algorithm we use ideas from message passing
in graphical models. These ideas are not limited to the
application we consider, but can be used in the design
of other algorithms.

We introduce the notion of an “increasingly correct”
algorithm. We show that message passing for marginal-
ization on trees satisfies this property.

We then discuss an algorithm for the detection and
location of a heat source in a sensor network, and
construct an increasingly correct algorithm that can be
implemented in a sensor network, and one which avoids
local minima that can lead to very wrong estimates of
source location.

Graphical models and message passing have been con-
sidered before as candidates for the implementation of
algorithms in sensor and ad-hoc networks, for example,
in [3], [4]. The approach we take here is different from
those.

III. PROBLEM FORMULATION

We consider a collection of sensors S = {s1, s2, . . . , }
distributed on the plane. Let xi ∈ IR2 denote the location
of sensor si. We assume that each sensor knows its own
location.

We assume that sensors can communicate via a multi-
hop protocol, i.e., the communication graph is connected.
See Figure 1. The goal of the network is to detect and
locate a heat source appearing at some location on the
plane. Before the source appears, the temperature at any
point of the plane is some u0. At some random time τ̄ ,
a heat source appears at some position x̄. The presence
of the source should be detected as quickly as possible,
with minimal false alarms.

There are high costs associated with a delay or failure
in detecting the source, as well as with false alarms.

Fig. 1. Connectivity graph of a network of sensors.

In addition to this, sensors run on batteries, so that
computation and communication are costly in terms of
network lifetime.

To deal with these issues we propose a three phase
algorithm:

1) The first phase corresponds to a setup phase in
which sensors are deployed, set up the communi-
cation network, and perform some initial compu-
tations.

2) During the second phase most sensors are in a
“sleep” state, a low power, inactive state. The rest
of the sensors, which we call “sentinels” are awake
and periodically sense the temperature. When a
sentinel sensor detects the presence of a heat
source, it issues an alert signal, waking up other
sensors in its vicinity.

3) Third phase: After a source has been detected,
the sensors that have been woken up cooperate
to minimize the possibility of false alarm. If the
presence of the source is affirmed, an alarm is
issued. Otherwise, non-sentinel sensors go back to
sleep, and the operation returns to the first phase.

The set of sentinel sensors is periodically changed, so
that no sensor is continually awake.

We assume the following approximate heat equation
model for the behavior of the temperature:

u(x, t) =

{

u0 if t ≤ τ̄ ,
āµ(||x− x̄||, t− τ̄) + u0 if t > τ̄ ,

where

µ(∆x, ∆t) :=

∫ ∆t

0

1

4κπθ
e−

∆x2

4κθ dθ .

Here κ is the diffusion coefficient, which we assume
known.

If node si senses the temperature at time tj , its
measurement is given by

ui(tj) = u(xi, tj) + wi(tj) ,

where wi(t), t ≥ 0 is a white Gaussian noise process,
independent of the noise processes at other nodes.

IV. GRAPHICAL MODELS AND MESSAGE PASSING

Graphical models, e.g., [5], [6], [8], represent the
structure of marginalization problems through a graph,
and allow us to construct efficient algorithms for com-
puting marginals. A marginalization problem [5] refers
to a problem where {αj(xSj

)|1 ≤ j ≤ m} is input data
and the goal is to compute the “marginals,”

σ(xS) =
∑

xSc

m
∏

j=1

αj(xSj
) , (1)

where S, and {Sj}mj=1 denote index sets, and we have
used the usual notational convention that variables in-
dexed by a set denote a set of variables, for example,
x{1,2,3} = {x1, x2, x3}. Note that S need not be one
of the sets Sj , but usually one assumes that it is. In
our example, x1, x2, . . . xn are discrete variables, and
the sum is taken over all combinations of values of all
variables in the complement of S.

The graphical structure of a marginalization problem
like (1) can be represented by a graph G = (V, E),
where V = {1, 2, . . . , n}, and (i, j) ∈ E, if and only
if Si ∩ Sj 6= φ. For example, if we let S1 = {1, 2},
S2 = {2, 3}, S3 = {3, 4}, and S4 = {3, 5}, we
obtain the graphical representation shown in Figure 2(a).
Message passing algorithms [5] solve marginalization
problems efficiently by constructing algorithms that work
on the corresponding graph. These algorithms solve a
marginalization problem by letting nodes in the graph
send “messages” to their neighbors, and computing “be-
liefs,” which are estimates of the marginals.

Let Ni denote the set of neighbors of i in G, and
Ni,j := Ni \ {j}. Denote Si,j := Si ∩ Sj . The message
that node i sends to node j is a function of xSi,j

,

mi,j(xSi,j
) =

∑

xSi\Sj

αi(xSi
)

∏

k∈Ni,j

mk,i(xSk,i
) . (2)

the product over the empty set being unity.
The belief at node i, i.e., the estimate of the marginal

σ(xSi
) is

b(xSi
) = α(xSi

)
∏

k∈Ni

mk,i(xSk,i
) . (3)

1, 2 2, 3

3, 4

3, 5

(c)

S3

m3,2

S4

S2S1

m1,2

(b)

S3

m3,2

m2,4

m1,2

S1 S2

S4

(a)

S1 S2

S3

S4

m4,2

Fig. 2. Graphical representation of marginalization problem.

This message passing process is shown in Figure 2(b),
and the computation of the belief is shown in Figure
2(c). Note that message passing allows us to construct
estimates bxSi

, for the marginal at each node σxSi
at the

same time.
It is well known that when G is a tree, message

passing will converge after a finite number of steps, and
deliver the correct marginals; see for example [5], [7].
When G has cycles (i.e., “is a loopy graph”), message
passing might not converge, and, even if it converges,
produces only approximations to the marginals; see [5],
[7]).

We will construct a message passing algorithm to
estimate the location, amplitude, and onset time of the
source. We will not use message passing for marginal-
ization directly, but construct an algorithm that follows
similar ideas. We will design our algorithm to operate on
a spanning subtree of the communication graph; hence
we do not need to worry about cycles.

One of the properties of message passing in trees,
which we will attempt to replicate, is that, at each
time, the belief at node i is the correct solution of a
subproblem of (1), which includes all the nodes that i
“has heard of” up to that time. This set can be formally
defined in the following way: Let Hi ⊂ V be the set of
nodes i has heard of at time t. Then, if i sends a message

to j, Hj is updated according to the rule

Hj ← Hj ∪Hi ∪ {i} .

Initially Hi = {i}, for i = 1, 2, . . . , n. We call this
property “increasing correctness,” and an algorithm with
this property “increasingly correct.” Note also that this
algorithm is asynchronous. Hence little or no synchro-
nization is necessary.

Increasingly correct algorithms are of interest to us
because they allow us to control the time of operation of
the algorithm in a large network. An increasingly correct
algorithm can be stopped at any given time, and node i
would have the correct answer to a problem that includes
all the nodes in Hi.

V. INCREASINGLY CORRECT ALGORITHMS

In this section we generalize the notion of increasing
correctness of increasing correctness to trees. We begin
with some definitions.

Definition 1: Let G = (V, E) be a tree, with V =
{1, 2, . . . , n}. To each i we associate a vector of parame-
ters ai. Let a := {a1, a2, . . . , an}. For each i, let σi(G, a)
be a function of G and a, and let σ := {σ1, σ2, ..., σn}.
We let P [G, a, σ] denote the problem of computing
σi(G, a), for each i = 1, 2, . . . , n.

Definition 2: Given G, a, and σ, a message passing
algorithm for P [G, a, σ] is an algorithm of the form:

mi,j ← fi,j

(

{mk,i}k∈Ni,j
, ai

)

,

bi ← fi ({mk,i}k∈Ni
, ai) ,

Hi,j ← ⋃

k∈Ni,j

Hk,i ∪ {i} ,

Hi ← ⋃

k∈Ni

Hk,i ∪ {i} ,

such that bi = σi(G, a), when Hi = {1, 2, . . . , n}.
As above Ni denotes the set of neighbors of i in G,
Ni,j := Ni \{j}, while fi,j and fi are given functionals.

Note that it is not necessary to include Hi,j and Hi

in the definition of a message passing algorithm, since
many computations can be performed without them. We
include them here because these sets carry information
about the identity of the nodes that have already partic-
ipated in the computations, which is useful information,
especially in sensor networks, as we will see.

Let G = (V, E) be a tree, with V = {1, 2, . . . , n}.
Let a and σ be given. For any S ⊂ V , let GS denote

the subgraph of G induced by S. Assume that for every
S ⊂ V , we can define a restriction of σi to (GS , aS),
which we denote by σi(GS , aS). We can then define a
family of problems PS [GS , aS , σS].

Definition 3: A message passing algorithm for a prob-
lem P [G, a, σ] is called increasingly correct if its re-
striction to GS is a message passing algorithm for
PS [GS , aS , σS] for each S ⊂ G.

We state the following lemma here and give the proof
in Appendix A.

Lemma 1: Message passing for marginalization on
trees is increasingly correct.

A. Example: Computation of the maximum

As a small example, consider the computation of the
maximum of a set of numbers. Let G be as before,
and a = {a1, a2, . . . , an} ∈ IR. We wish to compute
the maximum of the ai. We then have σi(G, a) =
max{ai|i = 1, 2, . . . , n}. For S ⊂ V , the restriction
of σi to (GS , aS) is σi(GS , aS) = max{ai|i ∈ S} We
can accomplish this with the following message passing
algorithm

mi,j ← max{max{mk,i|k ∈ Ni,j}, ai}

bi ← max{max{mk,i|k ∈ Ni}, ai}

Hi,j ← ⋃

k∈Ni,j

Hk,i ∪ {i} ,

Hi ← ⋃

k∈Ni

Hk,i ∪ {i} .

It is easy to see that this algorithm will indeed compute
the maximum of the ai, and also that it is increasingly
correct.

VI. ALGORITHM

We present here the algorithm to estimate the location
and amplitude of the source, and the time it appears. It
is a simple algorithm, but implementing it in a sensor
network presents a large number of difficulties.

As was already mentioned, the algorithm is divided
into three phases. We now describe in detail the tasks
that the sensor network has to perform in each phase,
and their implementation.

A. First phase: Setup

During the setup phase, all sensors are awake, and
cooperate to estimate the background temperature and a
model for the noise. Sensors also precompute and store
some of the computations they will require later.

Let us first consider the estimation of u0 and the
measurement noise variance. For this the sensors first
find a spanning subtree of the communication graph,
and collect temperature measurements. Let Ui :=
{ui,j , ui,2, . . . , ui,mi

} be the set of temperature measure-
ments taken by sensor si.

To compute the average temperature and noise vari-
ance we use a message passing algorithm:

mµ
k,i ←

∑

k∈Ni,j

mµ
k,i +

mi
∑

j=1
ui,j

bµ
i ← ∑

k∈Ni

mµ
k,i +

mi
∑

j=1
ui,j

mσ
k,i ←

∑

k∈Ni,j

mσ
k,i +

mi
∑

j=1
u2

i,j ,

bσ
i ← ∑

k∈Ni

mσ
k,i +

mi
∑

j=1
u2

i,j ,

Hi,j ←
⋃

k∈Ni,j

Hk,i ∪ {i} ,

Hi ← ⋃

k∈Ni

Hk,i ∪ {i} .

Then, si can estimate the background temperature and
noise variance as

u0 = b
µ

i

|Hi|

σ2 = bσ
i

|Hi|
− u2

0 .

During this phase, sensors also precompute some of
the computations they will require during the third phase,
and store them. In particular, the values of µ(∆x, ∆t)
are needed. These values are computationally intensive
to compute. They are thus especially beneficial to pre-
compute initially, when no other computational load is
present, rather than in real-time when the computational
resources are needed for other purposes.

In order to reduce the number of values to be stored,
we exploit the structure of the function µ(∆x, ∆t). It
can be rewritten as

µ(∆x, ∆t) =
∫ ∆t

0
1

4κπθ
e−

∆x2

4κθ dθ

= 1
4kπ

η(∆t/∆x2) ,

where

η(z) :=

∫ z

0

1

θ
e−

1

4κθ dθ .

This is a one dimensional function. Each sensor com-
putes a table of values of η(zl), for zl = (l−1)h, where
h is a fixed small number. Let

f(θ) :=
1

θ
e−

1

4κθ .

To compute the integrals we can use any numerical
integration algorithm. When a value of µ(∆x, ∆t) is
needed, the values in the table can be interpolated,
for example by cubic splines, and the needed value
computed.

B. Second phase: Sentinels

Each sentinel sensor si periodically senses the
temperature, and uses these data to perform a statistical
test to either declare the presence of a source or continue
sampling.

Let H0 be the hypothesis “no source present,” and
H1 be “source present.” Then under each hypothesis we
have:

H0 : ui(ti,j) = u0 + wi(ti,j) ,

H1 : ui(ti,j) > u0 + wi(ti,j) .

where ui(ti,j) is the temperature measured by sensor si

at time ti,j .

To decide between H0, and H1, si keeps
a record of its M + 1 last measurements.
Let {u(tk), u(tk−1), . . . , u(tk −M)} be these
measurements. A Student t-test is used to make
the decision. For this, si also keeps record of the
following running sums

Ak =
M
∑

j=0
u(tk−j) ,

Sk =
M
∑

j=0
u(tk−j)

2 .

These values are updated at each time according to the
rules:

Ak+1 = Ak − u(tk−M) + u(tk+1) ,

Sk+1 = Sk − u(tk−M)2 + u(tk+1)
2 .

With these values we can estimate the noise variance as

σ̂2 =
1

M + 1
Sk −

1

M2
A2

k .

The statistics for the Student t-test is given by

ttest =
Ak −Mµ0√

Sk

.

which has the t-distribution wirth M degrees of freedom.

Since the cost of failing to detect the source is higher
than the cost of a false alarm, we reject H0 at a low
significance level. For example, for M = 15, with a
significance level of 0.05, we reject H0, and hence
declare an alert, if ttest ≥ 1.735.

C. Third phase: Location detection

The sentinel sensor that issues the warning wakes
up other sensors in its vicinity. After waking up, these
sensors quickly take their own temperature samples. Let
{ui(ti,1), ui(ti,2), ..., ui(ti,mi

)} denote the set of mea-
surements taken at sensor Si.

We define the following local cost functions:

Ji(a, τ, x) :=
mi
∑

j=1
[aµ(||x− xi||, ti,j − τ)− ui(ti,j)]

2

J̄i(a, τ, di) :=
m1
∑

j=1
[aµ(di, ti,j − τ)− ui(ti,j)]

2 .

Given any set of sensors S ′ ⊂ S, we define the following
cost functions:

JS′(a, τ, x) :=
∑

si∈S′

Ji(a, τ, x) ,

J̄S′(a, τ, dS′) :=
∑

si∈S′

J̄i(a, τ, di) .

The estimates of the amplitude, time, and location of the
source, will be obtained from:

(â, τ̂ , x̂) = argmin
a,τ,x

JS′(a, τ, x) , (4)

where S′ is the set of sensors that have time to participate
in above the computations.

Before discussing the implementation of this phase
of the algorithm, we briefly mention the difficulties we
expect to encounter.

Besides the already mentioned difficulties, such as
power, time constraints, and false alarms, we see that
the algorithm presents the following challenges:

1) Computational complexity: The algorithm we pro-
pose requires computationally intensive operations.
These operations are performed in-network, on the
relatively slow processors of the sensors.

Fig. 3. Typical landscape of cost function to be minimized to find
location of the source. Note the presence of local minima, and that
the locations of the local minima are scattered all over the domain.

2) Organization: It is a challenging task to organize
the computations in the sensor network. It is here
that the message passing approach is helpful.

3) Nonconvex optimization: We see that (4) is a
nonconvex optimization problem. We are forced
to find a global minimum of this problem because
local minima will indicate false positions of the
source. Even if ā and τ̄ are known exactly, the
optimization problem (4) is nonconvex in x. A
typical landscape for this cost function is shown
in Figure 3. Note that the locations of the local
minima are scattered all over the domain and so
a localization procedure which finds only a local
minimum can be completely useless.

The general approaches we will follow to solve these
problems are:

1) Power constraints: Besides the use of sentinel
sensors, we will reduce the power consumption by
adequate coding of data transmitted in the network.
This will reduce the lengths of the messages to be
transmitted.

2) Time constraints: By reducing the sizes of the
messages transmitted, we also reduce the time
required for transmission and the probability of
collisions. The fact that a large part of the nec-
essary computations have been precomputed and
stored during the setup phase, and can be retrieved
instead of recomputed, largely reduces the reaction
time of the network to the presence of a source.

3) Complexity: Computational complexity is greatly
reduced by the use of precomputation. We comple-
ment this with the use of parallel implementations

of the most computationally demanding portions of
the algorithm, to reduce the workload of individual
sensors. Note that the use of parallelism also helps
in reducing the reaction time of the network.

4) Organization: We make use of the message pass-
ing approach to facilitate the organization of the
algorithm. We will design the algorithm in such a
way that it is increasingly correct. This will also
help us in managing the time constraint, because
the algorithm can be stopped at any time, and
yet it is guaranteed to produce the correct answer
given all the information that has been fed into the
computation up to that point in time.

5) Local minima: To avoid local minima in the op-
timization problems we will adopt a two step
procedure. First, each sensor estimates its distance
to the source and then, in the second step, the
nodes collaborate to find the location of the source.

Now we address the above issues (2-5) in detail.
To define a message passing algorithm to solve (4),

we need to define the messages and beliefs. Assume first
that, at the beginning of the third phase, all the sensors
posses a “good enough” estimate of ā, τ̄ , and x̄. We
discuss how to obtain this initial estimate in Section 6.

For each i, we let

Ui := {ui(ti,1), ui(ti,2), . . . , ui(ti,mi
)} ,

Ti := {ti,1, ti,2, . . . , ti,mi
} .

The message that si sends to sj has the form:

mi,j = (Hi,j , Ui,j , Ti,j , Xi,j , Pi,j) ,

where Pi,j = (ai,j , τi,j , xi,j). The update rules for these
messages are:

Hi,j ← ⋃

k∈Ni,j

Hk,i ∪ {i} ,

Ui,j ← ⋃

k∈Ni,j

Uk,i ∪ Ui ,

Ti,j ← ⋃

k∈Ni,j

Tk,i ∪ Ti ,

Xi,j ← ⋃

k∈Ni,j

Xk,i ∪ {xi} ,

The computation of Pi,j is more involved. First note that
Hk,i contains the indices of all sensors sk has heard from
in the subtree Gk,i; see Figure 4. From the way we will

sk

si

sj

Gk,i

Fig. 4. The message that sk sends to si contains information coming
only from the subtree Gk,i.

construct the algorithm, we will also have

(ak,i, τk,i, xk,i) = argmin
a,τ,x

JHk,i
(a, τ, x) .

To compute Pi,j , sensor i then solves

(ai,j , τi,j , xi,j) = argmin
a,τ,x

JHi,j
(a, τ, x) . (5)

Note that the information that si receives from its
neighbors allows it to do these computations.

To reduce the time to solve (5), sensor si uses the
received estimated parameters Pk,i, k ∈ Ni,j as initial
conditions for a descent algorithm, for example Newton’s
method. Note that si starts Newton iterations at |Ni,j |
different points. In the case that these iterations do not
converge to the same point, si chooses the minimum of
the resulting costs.

The belief at node i is given by

bi = (Hi, Ui, Ti, Xi, Pi) ,

where Pi = (ai, τi, xi). The update of these beliefs is
done according to the following rules:

Hi ←
⋃

k∈Ni

Hk,i ∪ {i} ,

Ui ← ⋃

k∈Ni

Uk,i ∪ Ui ,

Ti ← ⋃

k∈Ni

Tk,i ∪ Ti ,

Xi ←
⋃

k∈Ni

Xk,i ∪ {xi} ,

Pi is obtained from

(ai, τi, xi) = argmin
a,τ,x

JHi
(a, τ, x) .

Again, si uses the received Pk,i as initial conditions
for a descent method, and chooses the minimum of the
obtained results.

Figure 5 shows how the information from sensors in a
vicinity of si is incorporated progressively into the belief
at si. It illustrates the property of increasing correctness.

We have not yet specified how to obtain the initial
estimate of (ā, τ̄ , x̄). We do so now.

1) Obtaining the initial estimate: Let s0 be the first
sensor that detects the source. Let N0 be the set of
neighbors of s0. After detecting the source, s0 wakes up
its neighbors. Together they form a crude, initial estimate
of the source location.

Let N̄0 := N0∪{0}. The sensors sN̄0
obtain the initial

estimate by solving

(a0, τ0, x0) = argmin
a,τ,x

JN̄0
(a, τ, x) . (6)

This is however a nonconvex problem in four variables,
to overcome it the sensors first solve the related problem

(a0, τ0, d0
N̄0

) = argmin
a,τ,dN̄0

J̄N̄0
(a, τ, dN̄0

) . (7)

Note that (7) involves more variables than (6). It might
seem that this is then a harder problem. But notice that
we can rewrite (7) as

(a0, τ0, d0
N̄0

) = argmin
a,τ

∑

i∈N̄0

argmin
di

J̄i(a, τ, di) .

We can thus divide the optimization problem into an
“outer loop” in a and τ , and an “inner loop” in each
di, i ∈ N̄0. These last series of optimizations can be
performed in parallel by each si in N̄0. Specifically, each
sensor si, i ∈ N̄0, computes a table

di,l,m = argmin
di

J̄i(al, τm, di) ,

for every (al, τm) on a grid:

0 = a0 < a1 < . . . < ana
= amax ,

0 = τ0 < τ1 < . . . < τnτ
= τmax ,

where amax, and τmax are the maximum possible values
of ā, and τ̄ , respectively.

Each sensor sends its corresponding table to s0.
For each (l, m), the following triangulation problem is
solved:

xl,m = argmin
x

∑

i∈N̄0

[

||x− xi||2 − di,l,m

]2
.

si si

si si

Fig. 5. Illustration of how the information from the vicinity of si

is progressively included into the belief at si. Black disks represent
sensors in Hi as time passes.

To reduce the workload of each single sensor, s0 reas-
signs these problems to its neighbors, which solve them
in parallel.

In the last step of this process, each (al, τm, xl,m)
is used as an initial condition for a descent algorithm
for solving (6). Again, this step can be performed in
parallel. The minimizing value found in this process is
then (a0, τ0, x0).

2) Coding: We notice that the computation of the
initial parameter estimate involves the communication of
a large amount of data. Although this communication is
local, i.e., it does not involve multi-hop communication,
we find it convenient to reduce the length of the messages
sent, by coding them in an appropriate way.

For doing so, we view di,l,m as a two dimensional
function of l and m. We can thus construct a linear
regression

di,l,m = αl + βm + γ + εl,m .

We can therefore encode the values of α, β, γ, and
εl,m. Since, in general |ε(l, m)| � |di,l,m|, this encoding
reduces the number of required bits.

VII. SIMULATIONS

In this section, we present some simulation results.
where, given the space constraints we present simula-
tions of the triangulation algorithm only.

We let 10 sensors located in the unit square, determine
the location of a heat source. The source appears at time
τ̄ = 0.6. Sensors have available temperature measure-
ments at times {1, 1.2, 1.4, 1.6, 1.8, 2}. The amplitude of
the source is ā = 1. The noise variance is σ2 = 0.001.
We for these simulations we use a value κ = 1. The

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Configuration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
First estimate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Refinement

0.2 0.3 0.4 0.5
0.3

0.4

0.5

0.6

Close−up

Fig. 6. Two step location process: First a rough estimate of the
source location is found, then this estimate is refined.

value of u0 is irrelevant to the results, therefore we set
u0 = 0.

In the upper left plot in Figure 6, we show the
configuration of sensors. Sensors are represented by
circles, while the true heat source location is shown as
a cross.

The first approximation of the source location, given
by the triangulation step is shown in the top right plot
in Figure 6. The diamond shows the estimated location.

The previous location estimate is then used as initial
condition to minimize the global cost function (4). The
refined estimated location is shown in Figure 6 (bottom
left).

Figure 6 (bottom right) shows a close-up of the region
surrounding the source. It can be seen that the our two
step procedure converges to the source location.

VIII. CONCLUSIONS

The notion of incresing correctness we introduced
proves to be useful in the design of algorithm for
computations in distributed environments, especially in
large networks and time constrained situations, and with
unreliable communication. In fact, increasingly correct
algorithms always give the correct answer to the problem
defined on the data they have been fed with. This
allows each node to gracefully incorporate new arriving
information into the computations, in a graceful way.

We have used these ideas to construct a multistage
algorithm for the detection and localization of a heat
source in a sensor network.

j

i

pj

Fig. 7. Subtree of G, induced by Hi, and rooted at i.

APPENDIX

A. Proof of lemmma 1

Consider the marginalization problem defined by (1),
and the message passing iteration defined by (2) and
(3). Suppose that at some given time the algorithm is
stopped. Call this time t. Let bt

i be the last belief at node i
computed before the algorithm stopped. Likewise, let H t

i

be the set of nodes i “heard from,” before the algorithm
was stopped.

We can show that bt
i is the correct marginal for the

marginalization problem:

σt
i(xSi

) =
∑

xHi\Si

∏

j∈Hi

αj(xSj
) .

Let GHi
be the subgraph of G induced by the nodes in

Hi. It is easy to see that GHi
is connected: If j ∈ Hi,

then there exists a path from j to i in G, otherwise i
would “never have heard from j.” Then GHi

is a subtree
of G containing i. Let Ti be the corresponding tree,
rooted at i, and for each j ∈ Hi, j 6= i, let pj denote the
parent if j in Ti. For each j ∈ Hi, let Cj be the set of
children of j in Ti. See Figure 7.

Let MT be the set of all messages sent during message
passing up to time t. We note that not all messages in
M t contributed to the computed value of bt

i. We now
construct the minimal set of messages that determined
the value of bt

i. We call this set M t
i

First note that no message from a node j ∈ Hi to a
node in Cj can be in M t

i . This is so because a message
from j to k never uses the information sent to j by k,
and Ti is cycle free. So, only messages from a node j
to pj can be in M t

i .
We also note that, for each j ∈ Hi, only one message

from j to pj can be in M t
i . We call this message mt

j .
We now construct M t

i recursively:

1) If j ∈ Ci, then mt
j is the last message that j sent

to i before i computed bt
i.

2) For every j ∈ Hi, j /∈ Ci, mt
j is the last message

that j sent to pj before pj sent mt
pj

.

Given M t, M t
i is unique by construction.

Let j be a leaf node of Ti. Then mt
j contains only

information that is local to j. This is so because:
• mt

j cannot contain information from any of its
ancestors, because Ti is cycle free.

• mt
j cannot carry information from any k ∈ Nj,pj

.
Otherwise k ∈ Hi, which is a contradiction.

In fact,

mt
j(xSj,pj

) =
∑

xSj\Spj

αj(xSj
) .

For any j ∈ Hi, j not a leaf of Ti, we then have

mt
j,pj

(xSj,pj
) =

∑

xSj\Spj

αj(xSj
)

∏

k∈Cj

mk,j(xSk,j
) .

We also have:

bt
i(xSi

) = αi(xSi
)
∏

k∈Ci

mk,i(xSk,i
) .

These are exactly the messages and belief that a syn-
chronous message passing (started at the leaves, then the
parents of the leaves, etc.) produced. We know that, since
Ti is a tree, this set of messages produces the correct
marginal bt

i. So, message passing for marginalization in
trees is increasingly correct.

REFERENCES

[1] A. Giridhar and P. R. Kumar, “Data fusion over sensor networks:
Computing and communicating functions of measurements,”
Submitted to Journal on Selected Areas in Communications,
December 2003.

[2] D. Scherber and H. Papadopoulos, “Locally constructed al-
gorithms for distributed computations in ad-hoc networks,” in
Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks, 2004, pp. 11–19.

[3] A. Ihler, J. Fisher, R. Moses, and A. Willsky, “Nonparametric
belief propagation for self-calibration in sensor networks,” in
Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks, 2004, pp. 225–233.

[4] R. Biswas, L. Guibas, and S. Thrun, “A probabilistic approach
to inference with limited information in sensor networks,” in
Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks, 2004, pp. 269–276.

[5] M. Jordan and C. Bishop, An introduction to graphical models.
Preprint, October 2001.

[6] B. Frey, Graphical models for machine learning and digital
communication. Cambridge, MA: MIT Press, 1998.

[7] S. M. Aji and J. McEliece, “The generalized distributive law,”
IEEE Transactions on Information Theory, vol. 46, pp. 325–343,
1999.

[8] F. R. Kschiang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 498–519, 2001.

