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Abstract
For sets given as finite intersections A =

⋂K
k=1Ak the basic normal

cone N(x̄;A) is given as
∑

kN(x̄;Ak), but such a result is not, in general,
available for infinite intersections. A comparable characterization of N(x̄;A)
is obtained here for a class of such infinite intersections.
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1 Introduction

A fundamental concern in variational analysis is the characterization through
first-order optimality conditions of the solution of a constrained minimization
problem

Minimize: f(x) subject to: x ∈ A. (1)

Under quite general conditions the first-order conditions on a local minimizer
x̄ are known [4, Prop. 5.1] to take the form

−[∇f ] (x̄) ∈ N̂0(x̄;A) ⊂ N(x̄;A) (2)

where N(x̄;A) denotes the basic normal cone at x̄ (e.g., in the sense of
Mordukhovich [3]; see Definitions 2.1, 2.2) to the admissible set A. Thus
we are led to the task of computing N(x̄;A) from the specification provided
for A.
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Constraints in large-scale problems are often generated by replicating a
limited number of constraint prototypes over large index sets. In particular,
we may consider, as prototype, constraints of the form ϕ ≥ 0 for a scalar
function ϕ, noting that the constraints in problem (1) are often given in the
form of a family of such inequalities

Minimize: f(x) subject to: ϕ(x) ≥ 0 for ϕ ∈ Φ (3)

where Φ is a set of constraint functions ϕ : X → R. [While this set of in-
equalities could be subsumed by a single inequality: ϕ∗(x) ≥ 0 on taking
ϕ∗(x) = inf{ϕ(x) : ϕ ∈ Φ}, this does not seem helpful. Indeed, we would
have −epiϕ∗ =

⋂
ϕ∈Φ{−epi (ϕ)} so the present consideration of infinite in-

tersections seems as likely to help with differentiation of sup or inf as vice
versa. We also note that (3) is frequently seen with the inequality reversed,
simply corresponding to the replacement ϕ←7 − ϕ.]

Note that (3) means that the admissible set A is presented as an inter-
section

A =
⋂
ϕ∈Φ

Aϕ with Aϕ = {x : ϕ(x) ≥ 0} = ϕ−1([0,∞)) (4)

and we would like to determine N(x̄;A) in terms of the functions ϕ ∈ Φ.
When this is a finite intersection (Φ = {ϕ1, . . . , ϕK}), one has, under quite
mild conditions, an ‘intersection rule’

N

(
x̄;
⋂
ϕ∈Φ

Aϕ
)

=
∑
ϕ∈Φ

N(x̄;Aϕ). (5)

as a special case of [3, Cor. 3.5]. In general, however, no such results are
available for infinite intersections. [We do note that (5) is somewhat analo-
gous to differentiating a sum so working with an infinite intersection might
be compared to term-by-term differentiation of a series: one expects this
to be possible, but under more restrictive hypotheses and perhaps with a
modified statement. Certainly we would expect this shift to involve some
new ideas — e.g., there is an interchange of limits in the background so we
might expect to require some uniformity condition. Even under hypotheses
ensuring its validity for each finite subset of Φ, it is clear that the formula
(5) will generally be false, as stated, for infinite Φ.]
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Example 1.1. We might consider (4) in a restricted but typical setting: for
example A might be the set of non-negative functions in, e.g., X = C(Ω).
This is, indeed, of the form (4) we are considering, here with Φ the set of
evaluation functionals Φ = {[x(·) 7→ x(s)] : s ∈ Ω}, noting that this is rather
special in that A is here a closed convex cone in X .

Somewhat more generally, we might consider an arbitrary closed con-
vex set in a Banach space X and note that this is describable as the intersec-
tion of all the half-spaces containing it:

A =
⋂
α∈I

Aα Aα = {x : 〈ξα, x〉 ≥ ρα} (6)

which is of the form (4) with ϕ ∈ Φ of the form ϕ(x) = 〈ξ, x〉 − ρ. Given x̄
at the boundary of A, the active set of constraints is given by Φ∗ = {ϕ ∈ Φ :
〈ξ, x̄〉 = ρ} so the set of support functionals at x̄ is {−ξ : ϕ ∈ Φ∗}. Since
N(x̄;Aα) = {0} for the inactive constraints α ∈ I \ I∗, we have

N(x̄;A) = co {N(x̄;Aα) : α ∈ I} (7)

where “ coS” denotes the conical hull of S, i.e., the closure of the convex
hull of {aξ : a > 0, ξ ∈ S}, so (7) is the natural interpretation of (5).
This characterization depends on our having used the complete set of support
functionals in specifying A.

Example 1.2. As another simple example, take X = R, x̄ = 0, and let
ϕk(x) = x + 1/k. This gives 0 = x̄ in the interior of each Aϕk = [−1/k,∞)
so no given constraint would be active. Here, each N(0;Aϕk) = {0}, while
A = [0,∞) so N(0;A) = (−∞, 0] 6= {0}.

Example 1.3. A slightly different example takes A to be the unit disk cen-
tered at the origin of R2 which we present as the infinite intersection of the
countable set of half-spaces Aϕ given by

ϕ±k(x) = 1−
(
rk, ±

√
1− r2

k

)
· x

where (rk) is an enumeration of the rationals in [−1, 1]. If we then take x̄ =(
1/
√

2, 1/
√

2
)
, none of these constraints are active since x̄ is in the interior

of each of the presenting half-spaces Aϕk above and the support functionals
(a, a) exactly at x̄ do not appear in the specifying {ϕk}. Nevertheless, the
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normal cone N(x̄;A) = {(−a,−a) : a ≥ 0} is expressible in terms of these
through the neighboring support functionals (ϕk(x̄) ≈ 0) :

N(x̄;A) = −
⋂
ω>0

co {ϕ′k(x̄) : ϕk(x̄) < ω} (8)

noting that ϕk(x̄) ≤ ω gives aϕ′k in a wedge centered at (a, a) of angular width
diminishing to 0 as ω → 0.

Example 1.4. Again with X = R2, x̄ = (0, 0), one might consider a quite
different variant taking ϕk(x, y) = {x if y ≥ 0; x− ky2 if y ≤ 0}. Here each
constraint is active at x̄ and each N(x̄;Aϕk) = {(−r, 0) : r ≥ 0}. However,
A = {(x, y) : x, y ≥ 0} with N(x̄;A) = {(r, s) : r, s ≤ 0} and this is not
contained in the hull of {N(x̄;Aϕk) : k = 1, 2, . . .}.

It is clear from Example 1.3 that the active constraints taken from a set of
specifying constraints need not be sufficient and we must also consider ‘almost
active’ constraints, for which ϕ(x̄)/‖ξ‖ is small although not exactly 0. We
thus have a simultaneous concern for two questions:

1. The defining functionals are nonlinear, although moderately smooth, so
the set A need not be convex — and, of course, there may be infinitely
many such defining constraint functionals.

2. We are concerned that the set of ‘presenting functionals’ defining A
may not be complete: the active constraints (support functionals at x̄)
might not appear at all.

Our goal here is to obtain a more general (nonconvex) version of the convex
case (7), replacing the affine functionals ψ = ψρ,ξ appearing there by an
infinite set Φ of nonlinear Fréchet differentiable functionals ϕ : X → R
giving (4) while taking account of ‘almost active’ constraints in formulating
the result. [We also note in this a need for some uniformity condition to rule
out consideration of Example 1.4.]

Remark 1.5. We are motivated here by considerations [2] involving a hy-
perelastic inextensible rod with centerline x(·) ∈ X = H2([0, 1] → R3). The
relevant constraint there is that this rod, viewed as a solid tube of radius ρ
around the centerline, should not intersect itself. Geometrically, this means
that while local pairs (close together along the rod) are necessarily physically
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close, for nonlocal pairs — P = {(s, s′) ∈ [0, 1]2 : |s − s′| ≥ πρ} — we must
have at least a 2ρ separation. Thus, we are asking that ϕ(x̄) ≥ 0 for each ϕ
of the form

ϕ(x) = |x(s)− x(s′)| − 2ρ with (s, s′) ∈ P as above. (9)

This constraint can clearly be formulated as requiring that x̄ should lie in the
(uncountably infinite) intersection of the sets Aϕ with ϕ ranging over Φ: the
functions of (9), indexed by the set P of nonlocal pairs. We easily see that
this is not a convex constraint — one easily constructs pairs of configurations
not involving self-intersection such that the average does intersect itself —
so we cannot expect convex analysis to be adequate for the treatment of this
problem.

In this setting we note that active constraints correspond to contact
pairs: P∗ = {(s, s′) ∈ P : |x̄(s) − x̄(s′)| = 2ρ}. For these we would have,
by the chain rule, N(x̄;Aϕ) = {−rξϕ : r ≥ 0} where ξϕ = ϕ′(x̄). We would
then expect the normal cone N(x̄;A) to be expressible in terms of these —
while being aware that this intuition is necessarily somewhat suspect in view
of Example 1.2.

Next, we note that the normal cone is constructed in X ∗ which here is
topologized as H−2([0, 1]→ R3). On the other hand, while the functions ϕ of
(9) are initially given on X , they may certainly be extended as functions on
the larger space Y = C([0, 1]→ R3) and are also Fréchet differentiable when
considered there. We would hope, then, that N(x̄;A) would then turn out to
be in Y∗ so its elements would be vector-valued measures with support in the
set of contact points: s ∈ [0, 1] for which there is some s′ with (s, s′) ∈ P∗.

From this point of view, the culmination of this paper is Theorem 4.3
below, which will provide these desired results, subject to the contextual ver-
ification in [2] of the abstract hypotheses imposed here.

2 Setting, notation, hypotheses

We recall from [3] Mordukhovich’s definition of N(z̄; Ω) ⊂ Z∗, the basic
normal cone at a point z̄ ∈ Z to a subset Ω of a Banach space Z.

Definition 2.1. For ẑ ∈ Ω ⊂ Z and ε ≥ 0, we have ζ ∈ N̂ε(ẑ; Ω) ⊂ Z∗ if:
lim sup〈ζ, zk〉 ≤ ε for every sequence (tk, zk) in R+ × Z such that:

‖zk‖Z = 1 and tk → 0 in R+ with (ẑ + tkzk) ∈ Ω.
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Definition 2.2. ζ̄ is in the basic normal cone N(z̄; Ω) ⊂ Z∗ if:
there is a sequence (εj, ẑj, ζj) in R×Z×Z∗ such that: εj ↓ 0, ẑj → z̄,

ζj
∗
⇀ ζ̄ (weak-* convergence in Z∗) and ζj ∈ N̂εj

(ẑj; Ω).

[Note that only a neighborhood U of z̄ is relevant for this.]

As the initial setting for our considerations we begin with a Banach space
X , a point x̄ ∈ X , a neighborhood x̄ ∈ U ⊂ X . We then have a family Φ
of scalar functions ϕ : U → R and wish to consider the set A on which each
ϕ ∈ Φ is non-negative, i.e.,

A = {x ∈ U : ϕ(x) ≥ 0 for all ϕ ∈ Φ}

Note that A is the infinite intersection of singly constrained sets:

A =
⋂
ϕ∈Φ

Aϕ Aϕ = {x ∈ U : ϕ(x) ≥ 0} (10)

Our first hypothesis here is that:

Each ϕ ∈ Φ is Fréchet differentiable on U ⊂ X with 0 6= ϕ′(x̄) ∈ X ∗. (11)

For each ϕ ∈ Φ it is now convenient to define

ωϕ = ϕ(x̄), ξϕ = ϕ′(x̄). (12)

Since each set Aϕ is independent of any scaling of ϕ, we will assume, with
no loss of generality, the normalization

‖ξϕ‖X ∗ = 1 for each ϕ ∈ Φ. (13)

As ω̄ → 0, the sets
Φω̄ = {ϕ ∈ Φ : ωϕ ≤ ω̄} (14)

then give the ‘almost active’ constraints in Φ. [Only ϕ ∈ Φ0 are actually
active constraints at x̄, but it is easily possible to have Φ0 empty yet still
have A constrained at x̄ ‘in the limit’ so we cannot simply discard all the
individually inactive constraints. It is important to note that the normaliza-
tion (13) will affect the specification of Φω for ω > 0 although it does not
affect A. ]
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We next impose a uniformity condition on Φ, assuming that the derivative
functions ϕ′ : X ⊃ U → X ∗ are equicontinuous at x̄ — i.e.,

For each γ > 0 there exists β = β(γ) > 0 such that:

for all x ∈ U with ‖x− x̄‖X ≤ β(γ) one has

‖ϕ′(x)− ϕ′(x̄)‖X ∗ ≤ γ for all ϕ ∈ Φ.

(15)

Our final hypothesis here is a qualification condition: for some ω > 0, one
has

There exist x∗ with ‖x∗‖ = 1 and σ > 0 such that,

if ‖x‖X ≤ σ and ϕ ∈ Φω then 〈ξϕ, x∗ + x〉 ≥ 0.
(16)

This just means that the set

Bω = {x ∈ X : 〈ξϕ, x〉 ≥ 0 for each ϕ ∈ Φω}, (17)

has nonempty interior, specifically that it contains the ball centered at x∗
with radius σ. Clearly, (16) for some ω > 0 implies (16) for all 0 < ω′ < ω.
We also note that the inequality 〈ξϕ, x∗〉 ≥ 〈ξϕ, x〉 for all x with ‖x‖X ≤ σ
gives

〈ξϕ, x∗〉 ≥ σ‖ξϕ‖X ∗ for each ϕ ∈ Φω. (18)

3 Main theorem

Theorem 3.1. Assume the hypotheses (11), (15), (16). Then the basic nor-
mal cone at x̄ to the infinite intersection A =

⋂
{Aϕ : ϕ ∈ Φ} satisfies

N(x̄;A) ⊂
⋂
ω>0

N(0;Bω) (19)

with Bω given by (17), using (14).

Proof: We begin by setting

δ(ε) = δ(ε, ω,M) =
1

2
min

{
ω

2
, β(1), β

(
3εσ

8M

)}
(20)

where we obtain β(·) from (15) with γ = 1 and with γ = 3εσ/8M , taking σ
from (16) with ‖x∗‖X = 1.

7



Our first step is then to show the key inclusion:

If ‖x̂− x̄‖X ≤ δ(ε), then

{ξ ∈ N̂ε(x̂;A) : ‖ξ‖X ∗ ≤M} ⊂ N̂3ε(0;Bω).
(21)

Suppose (21), using (20), were false. Then we would have ‖x̂−x̄‖X ≤ δ(ε)
and ξ ∈ N̂ε(x̂;A) with ‖ξ‖X ∗ ≤ M , yet ξ 6∈ N̂3ε(0;Bω). I.e., since Bω is a
cone, Definition 2.1 just says that there is some x̃ ∈ Bω with ‖x̃‖X = 1 and
〈ξ, x̃〉 > 3ε. [We note that, with ‖x̃‖X = 1, this requires 3ε ≤ ‖ξ‖X ∗ .]

We wish to use this x̃ to show, in applying Definition 2.1, that we could
not, in fact, have ξ ∈ N̂ε(x̂;A); we will set

v = x̃+
ε

‖ξ‖X ∗
x∗, (22)

noting that ‖v‖X ≤ 4/3. We then have

〈ξ, v〉 = 〈ξ, x̃〉+ ε

‖ξ‖X ∗
〈ξ, x∗〉

≥ 3ε− ε

‖ξ‖X ∗
‖ξ‖X ∗ = 2ε ≥ 3

2
ε‖v‖X .

(23)

so the condition lim sup〈ξ, zk〉 ≤ ε of Definition 2.1 would fail for the nor-
malized sequence zk = v/‖v‖X . This last ensures that ξ 6∈ N̂ε(x̂;A) if we can
show that x̂+ tkzk ∈ A, i.e., that

ϕ(x̂+ tv) ≥ 0 for each ϕ ∈ Φ (24)

for small enough t > 0, considering t = tk/‖v‖X .
We will split the task of verifying (24) into two parts: for ϕ ∈ Φ \Φω and

for ϕ ∈ Φω. In each case we will use the assumption that ‖x̂ − x̄‖X ≤ δ —
whence, (also with t < δ/‖v‖X ) one has ‖xτ − x̄‖X < 2δ for 0 ≤ τ ≤ 1 with
either

xτ = τ(x̂+ tv) + (1− τ)x̂ or xτ = τ(x̂+ tv) + (1− τ)x̄

giving xτ on the segment joining (x̂+ tv) either to x̂ or to x̄. Thus we will be
able to apply the hypothesis (15) with (20) to estimate ‖ϕ′(xτ )− ξϕ‖X ∗ ≤ γ,
as appropriate.
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For the first case we have ϕ(x̄) = ωϕ > ω and estimate ϕ(x̂+ tv) by

ϕ(x̂+ tv)− ϕ(x̄) =

∫ 1

0

〈ϕ′(xτ ), x̂+ tv − x̄〉 dτ

= 〈ξϕ +R, x̂− x̄+ tv〉
≥ −(1 + ‖R‖X ∗)(2δ)

with

R =

∫ 1

0

[ϕ′(xτ )− ϕ′(x̄)] dτ so ‖R‖X ∗ ≤ γ = 1

since 2δ ≤ β(1). Our choice of δ also gives 2δ < ω/2 so

ϕ(x̂+ tv) = ϕ(x̄) + 〈ξϕ +R, x̂− x̄+ tv〉 > ω − 4δ ≥ 0.

For the second case we estimate ϕ(x̂+ tv), much as above, by

ϕ(x̂+ tv)− ϕ(x̂) = t

∫ 1

0

〈ϕ′(xτ ), v〉 dτ

= t [〈ξϕ, x̃〉+ (ε/‖ξ‖X ∗)〈ξϕ, x∗〉+ 〈R, v〉]
(25)

now with

R =

∫ 1

0

[ϕ′(xτ )− ϕ′(x̂)] dτ so ‖R‖X ∗ ≤ 2γ =
3εσ

4M

since |ϕ′(xτ )−ϕ′(x̂)| ≤ |ϕ′(xτ )−ϕ′(x̄)|+|ϕ′(x̂)−ϕ′(x̄)| and 2δ ≤ β(3εσ/8M).
We note that ϕ(x̂) ≥ 0 since we have x̂ ∈ A and that 〈ξϕ, x̃〉 ≥ 0 since ϕ ∈ Φω

and x̃ ∈ Bω; we also can use (18). Thus (25) gives

ϕ(x̂+ tv) ≥ t [(ε/‖ξ‖X ∗)〈ξϕ, x∗〉+ 〈R, v〉]
≥ t [(ε/‖ξ‖X ∗)σ − ‖R‖X ∗‖v‖X ]

≥ t[(ε/M)σ − (3εσ/4M)(4/3)] = 0.

This completes the proof of the key inclusion (21) and we now return to (19)
for our conclusion.

Suppose, then, we have ξ̄ ∈ N(x̄, ;A) so, by Definition 2.2, there are

sequences εk ↓ 0, x̂k → x̄, and ξk ∈ N̂εk
(x̂k;A) such that ξk

∗
⇀ ξ̄ in X ∗;

necessarily (ξk) is bounded so, for some fixed M , we have ‖ξk‖X ∗ ≤ M . We
can now choose k = k(j) recursively so that

‖x̂k(j) − x̄‖ ≤ δ(εj;ω,M), k(j) > k(j − 1),
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and then set ε̃j = εj, ξ̃j = ξk(j). Note that each k(j) ≥ j so εk(j) ≤ εj = ε̃j
whence

ξ̃j = ξk(j) ∈ N̂εk(j)
(x̂k(j);A) = N̂εk(j)

(x̃j;A) ⊂ N̂ε̃j
(x̃j;A)

since Definition 2.1 gives N̂ε(x;A) ⊂ N̂ε′(x;A) when ε ≤ ε′. We also have
‖x̃j − x̄‖ ≤ δ(ε̃j) by our construction so (21) applies with ε = ε̃j and ξ = ξ̃j.

We thus have ξ̃j ∈ N̂3ε̃j
(0;Bω). Clearly 3ε̃j ↓ 0 and 0 → 0 while, as a

subsequence of ξk we have ξ̃j
∗
⇀ ξ̄.

Using Definition 2.2 again, this means that each such ξ̄ ∈ N(x̄, ;A) must
be in N(0;Bω); since this holds for each ω > 0, we have (19).

4 Further remarks

We would like to clarify the meaning of Theorem 3.1 by providing a more
geometric characterization of the right hand side of (19).

Corollary 4.1. Under the hypotheses of the Theorem, with X reflexive, one
has

N(x̄;A) ⊂ −
⋂
ω>0

co Ξω where Ξω = {ϕ′(x̄) : ϕ ∈ Φ, ωϕ ≤ ω}.

which corresponds a bit more closely to (5) and, we note is precisely parallel
to (8) in Example 1.3.

Proof: We note that (17) gives

Bω = {x ∈ X : 〈ξ, x〉 ≥ 0 ∀ξ ∈ Ξω} = {x ∈ X : 〈ξ, x〉 ≥ 0 ∀ξ ∈ co Ξω}.

On the other hand, since Bω is a convex cone (pointed at 0) we have from
this (following, e.g., [1, p. 136], [3, Prop. 1.5]) that

N(0;Bω) = N̂(0;Bω) = {ξ ∈ X ∗ : 〈ξ, x〉 ≤ 0 ∀x ∈ Bω}.

Given reflexivity, one now easily sees that N(0;Bω) = −co Ξω and the result
is then immediate from Theorem 3.1.
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Remark 4.2. Suppose we could strengthen the qualification condition (16)
to a similar condition with respect to another, weaker, Banach space Y —
i.e., with X (densely) embedded in Y so also Y∗ ↪→ X ∗. We would thus be
requiring that, for some ω > 0,

There exist y∗ ∈ X and σ′ > 0 such that, for all ϕ ∈ Φω, x ∈ X ,
if ‖x‖Y ≤ σ′, then 〈ξϕ, y∗ + x〉 ≥ 0.

(26)

This just means that the intersection of X ⊂ Y with the ball in Y centered at
y∗ with radius r′ = σ′/‖y∗‖Y is contained in Bω. The condition ensures that
if ξ ∈ Ξω ⊂ X ∗, then |〈ξ, x〉| ≤ 〈ξ, y∗〉 whenever ‖x‖Y ≤ σ so ξ must extend
by continuity to Y with ‖ξ‖Y∗ ≤ 〈ξ, y∗〉/σ. In particular, (26) implies that
each ξϕ is actually in Y∗. [We also note that (26) implies (16) with σ = Kσ′

where K is the norm of the embeddings X ↪→ Y and Y∗ ↪→ X ∗.]
As noted, each ξϕ will then be in Y∗ and we now define

B̂ω = {y ∈ Y : 〈ξϕ, y〉 ≥ 0 for all ϕ ∈ Φω},

noting that B̂ω is just the Y-closure of Bω ↪→ Y . Of course, when we compute
N(0; B̂ω), etc., we are now applying Definition 2.2 with Z = Y .

Theorem 4.3. Assume the hypotheses (11), (15), (26). Then the basic nor-
mal cone at x̄ to the infinite intersection A = ∩{Aϕ : ϕ ∈ Φ} satisfies

N(x̄;A) ⊂
⋂
ω>0

N̂0(0; B̂ω) (27)

where, of course, the right hand side is to be computed in Y∗ ↪→ X ∗.

Proof: Immediate from Theorem 3.1 and the discussion above.

Remark 4.4. If we think of the construction of
⋂
ϕ∈ΦAϕ as a limit of par-

tial intersections, e.g., considering an increasing sequence of (finite) subsets
of Φ, then our concerns here seem equivalent to investigating continuous de-
pendence of the normal cone N(x̄; Ω) on the set Ω — at least for monotone
(nested) convergence of the argument.

Results of the sort obtained here must certainly also be relevant for
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computational approximation to constrained minimizers where, given appro-
priate spatial regularity of elements of the function space X , one seeks to
discretize, inevitably reducing a distributed pointwise constraint to some fi-
nite dimensional inequalities applied to the discretized approximation. We
do not explore this here, but note the relevance of the present questions to
the justification of some computational approaches of this nature.

Remark 4.5. Suppose the functions ϕ ∈ Φ need not be scalar-valued and we
instead would be considering an apparent generalization to the intersection
A =

⋂
ϕ∈Φ Aϕ where

ϕ : X → Zϕ Aϕ = {x ∈ X : ϕ(x) ∈ Cϕ ⊂ Zϕ}

with each Cϕ a closed convex cone in Zϕ; without loss of generality we take
the vertex of each Cϕ to be 0 ∈ Zϕ. We assume each such ϕ ∈ Φ is Fréchet
differentiable near x̄ ∈ A ⊂ X and, generalizing (12), we set

ωf = ϕ(x̄) ∈ Zϕ ξϕ = ϕ′(x̄) ∈ L(X → Zϕ) (28)

and assume ξϕ is surjective. Note that each Cϕ can be written as

Cϕ = {z ∈ Zϕ : 〈ζ, z〉 ≥ 0 for all ζ ∈ Λϕ}

for a suitable set Λϕ ∈ [Zϕ]∗ and set

ψζ : X → R : x 7→ 〈ζ, ϕ(x)〉 for each ζ ∈ Λϕ

[Note that with ζ 6= 0 we have [ψζ ]′(x̄) = ζξϕ 6= 0 by the assumed surjectivity
of ξϕ.] Then

Aϕ =
⋂
ζ∈Λϕ

Aψζ Aψ = {x ∈ X : ψ(x) ≥ 0}

and
A =

⋂
ψ∈Ψ

Aψ Ψ =
⋃
ϕ∈Φ

{ψζ : ζ ∈ Λϕ}

so this apparently more general situation reduces to our previous one: the
principal difficulties would seem to be finding suitable formulations of the
normalization of ξϕ, the definition of Φω, etc., so as to be able to state new
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hypotheses corresponding to (11), (15), (16) in terms of these ϕ, Cϕ, · · · .
Of course there would be no such reduction if the cones Cϕ would not

be convex, but we are hopeful in conjecturing that the approach of this pa-
per might be useful in obtaining a suitably corresponding result when each
Cϕ would be a polyhedral cone in a finite dimensional space with a bound
on the dimensions and the number of faces involved in this presentation.
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