Obstacle problems and isotonicity

Thomas I. Seidman*

Revised version for NA-TMA: NA-D-06-00007R1+ [June 6,
2006]

Abstract
For variational inequalities of an abstract obstacle type, a comparison
principle for the dependence of solutions on the constraint set K is used to
provide a continuity estimate.
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1 Introduction

Our goal is to consider some aspects of the dependence on I of the solution u
of a variational inequality

[F + 0Ix] (u) > z, (1.1)

in the context of partially ordered spaces. Here F : X — X[ is a (possibly
nonlinear) monotone operator! and I is the Isc indicator function for an
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Tt is convenient here, in looking at the dependence of solutions on the constraint set C,
to introduce the larger space X D Xy on which F is to be defined, but we then assume, as
a consistency condition on F, IC, that

uvek = (v—u)€ X. (1.2)

For a single such variational inequality we could arbitrarily select some u, € K and then
consider K = K — u, and F(u) := F(u, + u) for v € Xy. This gives the more usual



admissible subset K C X (i.e., Ix(z) = 0if 2 € K and = +o0 if z € K).
[For simplicity we are taking F(z) to be defined and single valued for each
x € K.] We interpret (1.1) in the weak form

u € K; if v € IC, then (v —u,F(u) — z) > 0. (1.3)

Taking X and F as implicitly given, we refer to (1.3) as ‘VI(K,z)". The
simplest version of this, in the context of a space X of functions on a set €2,
would be an obstacle problem, by which we mean a variational inequality for
which the constraint set K has the form?

K={ueX: : ¢p_<u(s) <ypi(s) for s € Q} (1.4)

for some given ‘obstacle functions’ ¢ (-), obviously with ¢ < ¢, pointwise.

In the context of a partially ordered Banach space X', our first result is
the isotonicity, under suitable hypotheses, of the solution dependence — not
only on z, but on K. I.e., for corresponding solutions u, v’ of VI(K, z) and
VI(K', ') one has Theorem 3.1:

if K <K' (and z <2), then u < u/'. (1.5)

[For IC, K’ of the obstacle form (1.4), L < K’ would just mean that ¢ < ¢’
and ¢, < ¢..] The relevant background material and definitions related
to the partial ordering and its relevance for the constraint set K and the
operator F will be developed in the next section; the comparison theorem
and proof are then in section 3. with some examples in section 4.

From Theorem 3.1 we then obtain, also in section 3., a continuity estimate
— based on the partial order and so independent of (and rather different
from) the kinds of pointwise estimates for dependence on z, K which have

been obtained, e.g., via an embedding: H*(2) — C(€2).

2 Preliminaries

Remark 2.1. We begin by noting that, without further specificity, we as-
sume throughout that existence of solutions is not an issue for the variational

F : Xy — X7 and we have VI(K, z) using F equivalent (with a solution shifted by u.,) to
the original VI(K, z) using F.
2The case of a single obstacle: K = {u € X : u(s) > ¢(s) for s € Q} simply takes



inequalities under consideration: i.e., implicit in our consideration of varia-
tional inequalities is the imposition of conditions on X', F, KC of monotonicity,
continuity, etc., (cf., e.g., [1], [4], [8]) ensuring that we will have existence of
solutions as needed. See Section 4 for some examples.

It is generally expositionally convenient to assume F everywhere de-
fined: X — X, but in considering variational inequalities of evolution we
will take the domain to be of the form Y = L*([0,7] — X) with codomain

y = L2([0,T] — X7) and Fy(t,-) : X — X; monotone for each ¢t € [0, 7],
assuming such regularity in ¢ as to ensure that

F: Y=Y : y—Fo(-,y(") (2.1)

is consistent with the implicit requirements for existence. |

We take the Banach space X to be partially ordered by a convex closed
positive cone P (so x < y means (y—x) € P) with the assumption that PNA,
is similarly a positive cone for &j. It is then standard that the dual A is
also partially ordered with 0 < ¢ € X when (z,&) > 0 for all x € P N Ap.
We make the key assumption that ‘max’ is well-defined in X — i.e., for each
x,y € X there is an element max{z,y} = x V y in X characterized by

zVy>x,y and z>2xy = z>xVuy.
We note a few consequent properties:
e if P is pointed?, then x V y is unique;
e automatically, x A y = min{x, y} is also defined (as —[—z V —y]) so
ANy <z,Yy and z<z,y = 2<zVy;
e (xVy)+z=(x+2)V(y+z)and (zAy)+z=(x+2)A(y+ 2);

e setting xy := V0 and x_ := z A0, we have x, +x_ = z and
zy A (—z-) =0.

3We need not necessarily assume that P is pointed (z > 0 and = < 0 only for 2 = 0),
although this is the case for all our examples. If P is not pointed, then z V y would be a
coset of the subspace Py = [-P]NP.



We will assume that the constraint sets K under consideration are con-
sistent with the partial order on X'. In particular, we say that  C X is
admissible if it is closed, nonempty, and satisfies both (1.2) and

u,v €K = uAv, uVoek. (2.2)

The collection of all admissible subsets of X will be denoted by A = A(X).
An obstacle problem is a variational inequality in which  C X is a
generalized order interval, meaning that

u,v € K = [u ANv,uVo] CK (2.3)
where [a, b] (with a,b € X', a < b) here denotes the order interval:
[a,b] ={z € X :a <z <b}.

It is easily seen that ordinary order intervals [a, b] are generalized order in-
tervals and that nonempty generalized order intervals are admissible sets.
In the typical cases where X is a function space with pointwise ordering,
a constraint set such as (1.4) is obviously a generalized order interval, but
need not be an order interval since the ‘obstacle functions’ ¢ (-) need not
be in X or even be proper functions at all — e.g., we simply set ¢, = 400
on ' C  to indicate that u € K is unconstrained above on €'; we never
let ¢_ take the value 400 or let ¢, take the value —oo. We then employ
the usual algebra for these obstacle functions and, in particular, if a(-) is any
ordinary function on €2 we write ¢ < ¢’ +a if this holds pointwise where ¢, ¢’
are both finite, otherwise taking 00 + finite = +00 and —oo < finite < 4-o00;
we will have o, — ¢ < aif p, < p_ + a. [One easily sees that (1.4) will
satisfy (2.3) and so (2.2) provided ¢_ < ¢, but must verify separately that
such a K would be nonempty. On the other hand, as we may see by (4.5), a
generalized order interval in this context is more general than the form (1.4).]
We next define a partial ordering on A by writing L < K’ when

uek, v ek = (uAV) e, (uvd) ek’ (2.4)

It is easy to see that ‘<’ is, indeed, a partial order on A and we write [IC, K']
for the order interval {K € A : K < K < K'}. Note that, for admissible K
and any a € X the set K+a :={u+a:u € K} is also admissible, but a > 0
does not imply K < (K+a). For I, K’ of the form (1.4) we note that I < K’
if p_ <l and o, < ¢,



Lemma 2.2. Let IC, K’ be generalized order intervals. Then

1. KK CcK+P, KCK —P is equivalent to K < K';
2. Fora >0 one has (K —a) < K and K < (K + a).

PROOF: The condition: £' € K+ P, K C K' — P just means that: for
u € K there exists u € K with ¥/ > v and for v € K there exists v/ € K’
with v < v — which is immediate from (2.4). For the converse, we sup-
pose u € IC, v € K'. Then the condition gives u < u’ for some v’ € K’ so
v < (uV') < (v V). As K is a generalized order interval, we then have
(uVv') e [, v vo'] € K. Similarly, (uAv') € K. This shows part 1. of the
Lemma and 2. follows immediately. [

Returning to the operator F : X — &A™, we define an important relation
between the operator and the partial order. For a family of admissible sets
Ag C A, we will say that the pair [F, Aq] is compatible if

KK e Ay, K<K and zek, (x+h)eK
N { hy € Xy and (2.5)
(hy,F(x+h) —F(z)) <0 = h<O.

Note that this automatically gives (1.2) for K € Ay: if u,v € K, then (2.5)
gives (v —u)4+ € Ap, noting that £ < K, and also (u — v); € Ay whence
v—u=(v—u)y —(u—v)s isin Ay. Note also that the conclusion h < 0
of the final implication in (2.5) is equivalent to having h, < 0 — which, in
turn, means h, = 0 if P is pointed.

3 Principal results

We are now ready for our first result:

Theorem 3.1. In addition to the standing existence hypotheses of Remark 2.1,
assume compatibility (2.5) of the pair [F, Ag] for some Ay C A. Then the
solution u of (1.3) depends isotonically on z and on KL € Ay. More precisely:

For sets K, K' € Ay and for z,2" € X, let u,u’ be, respectively, solu-
tions of

u € K, ifvel, then (v—u,F(u)—2z) >0,

3.1
u e K if v € K, then (v —u/,F(u') —2') > 0. (3:1)



Then we have the isotonicity (1.5): If K < K" and z < 2’ in X, then u < u'.

PROOF: Let v = v/ Auand v = o' Vu. With u € K, v € K/, the
inequality definition (2.4) ensures that v € IC, v' € K'. We now set h = u—1u/
and note that v —u = —h, and v' —u’ = h, by the distributivity of addition
over max. With these choices, (3.1) becomes

(b Fw)—2) 20, (b, F()—#) >0
and adding these we have
(he B + h) = F()) = (hy, F(u) — F()) < (hy, 2 — ) <0
since z < 2’ in A By (2.5) this gives h <0, i.e., u < ' as asserted. [ |

Compare? [1, Proposition 1.9], [3]; Theorem 3.1 differs in the distinction
between X and A&} and in the formulation of the abstract compatibility con-
dition (2.5).

[While we had not previously assumed that solutions of VI(K,z) are
necessarily unique, we now observe that one necessarily has uniqueness for
VI(K, 2) if K € Ay when P is pointed and [F,.Ag] is compatible: if there
were two solutions u, u’ we could take K’ = K and apply Theorem 3.1 to see
that « > u; similarly, u > u' so u = u'.]

We next give our principal result, an estimate for the solution map:
K,z — u of VI(,-) for obstacle problems, i.e., when K is a generalized
order interval. In this generality the result is a somewhat clumsy corollary
to Theorem 3.1; its value may become more apparent through the examples
in the next section.

Theorem 3.2. Given F : X — X, a generalized order interval I C X, and
z € Xy, let u be the solution of VI(K,z). Suppose that, for some positive
w,w € X we have

(=Fu)—Flu—-w)>0, (=Fu+uw)—Fu)>0. (3.2)

Further, suppose the pair [F, Ao is compatible for some Ay C A containing
(K -w), K, (K+w). Then K —w < K < K+ '] and the solution i of
VI(KC, 2) will then be in the order interval [u —w, u + '], i.e.,

—w<ti—u<do (3.3)

“We are indebted to the referee for pointing out the reference to [1]. Brezis notes there
that the argument follows [3].



for any 2 such that —C < 2 — 2 < ¢ and any K € AgN[K —w, K+ o] —
where [ — w, K 4 W] is here the order interval in A.

PROOF: Setting K' = K + ' and 2/ = 2z + (/, we first note that, as IC
is a generalized order interval and w’ > 0 by assumption, Lemma 2.2 gives
K < K'; similarly, K — w < K. From (1.3) we note that v = u + &' is
the solution of VI(KC 4+ ', z + (') — indeed, this is precisely equivalent to
having u as a solution of VI(K, z). As K < K’ and 2 < z+ ¢’ by assumption,
Theorem 3.1 then applies to show o < u+w’. Similarly, u —w is the solution
of VI(K —w, z — {) and Theorem 3.1 gives u —w < 4. Combining these gives
(3.3) as desired. |

4 Examples and remarks

Example 4.1. As a first example, we let X = X, = R? with the usual
entrywise partial order and consider symmetric M-matrices A so the matrix
entries A;; satisfy

Ay=A;  Ay<0fori#j Y Ay;>0. (4.1)
J

We first note that symmetry gives real eigenvalues and the Gershgorin Lemma
then ensures that these are positive so (4.1) means A must be positive def-
inite. We next claim the compatibility of [F,A| for F(z) = Az. By lin-
earity, we are claiming that (h,, Ah) < 0 only if h < 0, i.e., that the set
S ={j: h; > 0} is empty. To see this, note that when i € S we have
A;jh; > 0 for j ¢ S so (hy, Ah) > (hy, Ahy). Using the positive definite-
ness, we then have (2.5). [One consequence of this is the well-known fact
that (4.1), here with symmetry, implies the positivity of A= in the sense of
preserving the partial order.|

Somewhat more generally, we observe that we have (2.5) for any C!
nonlinear function F : R? — RY whose derivative satisfies (4.1) pointwise.
Since

(hi,F(z +h) — F(z)) = /01<h+, F'(z + th)h) dt,



we could only have (hi,F(x + h) — F(x)) < 0 if (hy,F'(x + th)h) < 0 for
some t whence, as above, we would have h, = 0.

For box variational inequalities, with IC an order interval [a, b], Theo-
rem 3.1 just means that increasing a and/or b will increase (or at least not
decrease) the solution of VI(K, z) for such F. Theorem 3.2 is easiest to in-
terpret in the linear case F = A (with z fixed so we are looking only at the

dependence of solutions on K): for the solutions u of VI([a,b],2) and v’ of
VI([a', V'], z) Theorem 3.2 gives

—w< d—-ab—-b<d = —w<u —u<d (4.2)
provided w, w’ and Aw, Aw’ are each positive.

Example 4.2. As a second example, we let X' be the Hilbert space H'(Q)
for some bounded region 2 C R? taken with the usual pointwise partial
order: z > 0in X if z(s) > 0 for almost all s € . It is well-known (cf., e.g.,
[7]) that the Nemytski operator: u — 1 o u with 1 (r) = {r for r > 0;0 for
r < 0} (so ¢¥(u) = uy ) is continuous on X with, pointwise ae on {2,

Vi, = { Vu where Vuy # 0, where u > 0

0 else (4.3)

We then let Xy = H}(Q) so X; = H'(Q) and let F be the Laplace oper-
ator —A on 2 with unspecified boundary conditions. An application of the
Divergence Theorem gives

(v —u, F(v) — Fu)) = / V(o —u)? — / w2 = g
Q a0 ov

where (-, -) is the Xy~AX duality pivoting on L*(2). We will take Ay to con-
sist of constraint sets imposing Dirichlet boundary conditions so the bound-
ary integral vanishes (compare the comment following (1.2)) and, noting the
Poincaré Inequality, we then have strong monotonicity and existence of so-
lutions is not an issue; cf., e.g., [1] or [8]. Thus, we are considering Ay to
consist of X C X having the form

K={ueX: ¢o- <u<yp;onfwithu=gondQ} (4.5)

where ¢_, o, are specified functions on (2 — allowing, e.g., ¢, = +00 to
consider a single obstacle problem; we assume consistency to ensure K # ()

8



and so require that ¢_ < ¢, on {2 (with suitable regularity where one might
have p_ = ) and that g is given in H'/?(0Q) with ¢_ < g < ¢, on 9.

[Note that we cannot write (4.5) as K = {u € [p_, p4] : u’m = g} since p4

need not be in &' so there would be no order interval [p_, ¢ ].]

Clearly each K as above is a generalized order interval in X’ so Aqg C A
and we next claim (2.5) with respect to this Ay. First, for K, K’ of the form
(4.5) with K < K’, we must have g < ¢’ in H/2(09Q) so, for x € K, v+h € K',

we have h = g — ¢’ < 0 on 0f) giving hJF‘a = 0 whence hy € &) and the
Q
boundary term of (4.4) will vanish. Then, using (4.3),

(h+,F(x+h)—F(x)>:/QVh+-Vh:/Q|Vh+|2

giving the implication (2.5).

Theorem 4.3. Let K,K' be of the form (4.5). Assume (o — ¢'.) and
(p_ — ") arein L>®(Q) and (g — ¢') € L>®(0Q). Then the solutions u,u’ of
VIIK, z), VI(K', z) satisfy the L™ continuity estimate

[l — '] Lo (4.6)
< max{||p— — ¢’ ||, |+ — @l |9 — 9'llL=@0) }-

[Note that having (¢ — ¢, ) € L>() still permits ¢, ¢’, to be simultane-
ously infinite on a subset of 2, and similarly for ¢_, ¢’ ]

PROOF: This is now a corollary to Theorem 3.2. Noting (4.4) in inter-
preting (1.3), u € K is the solution of

|V (v— u)H%Q(Q) +{(v—u,2z) >0 forve K

and correspondingly for ' € K'. Note that any constant w = w’ = ¢ satisfies
F(u+w) —Fu =0 = (, etc. — and, as we are keeping z fixed so we are
looking only at the dependences on ¢4 and on g, we have —( < z — 2 < (
as in Theorem 3.2. If we take € to be the right hand side of (4.6), then one
easily sees that our assumptions give X —w < K’ < K + w so Theorem 3.2
gives —¢ < v/ — u < ¢ pointwise on €2, which is just (4.6). [



Everything above holds if we take F(u) = —V - AVu where the matrix
A = A(x) is bounded and is positive definite ae. Some modification of (4.6)
would be needed if we also add to F a Lipschitzian Nemytsky operator and/or
wish to consider variation of z. It is possible, albeit a bit more complicated,
to apply the comparison ideas of Theorems 3.1 and 3.2 in the context of
Neumann boundary conditions. Finally, in view of (4.3) we note that

[V(uAv)|, [V(uV o) <max{[Vul, [Vo[},

so we could include in the specification of K a pointwise bound on the gra-
dient: |Vu| < af(-). Etc.

Example 4.4. As a final example we consider Moreau’s sweeping process
(cf., e.g., [2]) for the motion of a heavy particle in R? constrained to remain
in a moving convex set C(t): the particle is stationary when in the interior
C°(t) and is pushed frictionlessly normal to the wall, as necessary, when in
contact with 0C(t). Thus, we have

—T € Nc(t)(l’) CL’(O) =X € C(O) (47)

where N¢(x) is the outward normal cone to C = C(t) at x = x(t). The
problem (4.7) can then be formulated as a variational inequality (1.1) with
X = Lip(0,T), F = d/dt, and K = {z € X : 2(0) = =z, z(t) € C(t)},
and z = 0. The choice of space here comes from the existence result [2,
Theorem 2]):

If the set-function C(-) is Lipschitz continuous (with respect to
the Hausdorff metric) and xy € C(0), then (4.7) has a (unique)
Lipschitz solution. Further, one has the well-posedness estimate:

2(t) — ' (O < o — 22 + 2L + L’)/O Als)ds  (48)

where L, L' are the respective Lipschitz constants for C(-),C'(+)
and A(t) is their Hausdorff distance.

In order to apply Theorems 3.1 and 3.2, we use the usual entrywise partial
order on R? to induce a partial order on X) and restrict each C(t) to be a
box so K would have the form

K={zeX: :2(0)=up; a(t) <xz(t) <b(t) for 0 <t <T}. (4.9)

10



We will take Ay to consist of K C X of the form (4.9) with the assumptions
that: the functions a,b : [0,T] — R? are Lipschitzian; a(t) < b(t) on [0, 7],
and a(0) <z < b(0).

For (1.1), we have F = d/dt and z = 0; in view of the causality of the
problem — we can restrict to any [0,7"] C [0,7] — the weak form of (4.7)
is then

T/
x ek, / (y—x)zdt >0 foraly(-) e K, all T € [0,T7]. (4.10)
0

To see that the pair [d/dt, Ay is compatible for the specified Ay, note that
K < K for K,K' € Ay means: zy < xj with a < @/, b < ' pointwise on
[0,7] and (2.5) means here that

T
02/h+hdt =  h.=0. (4.11)
0

Asin (4.3), we have hy h = hy by = [2(hy)?] s0, as K < K’ gives z <
and so hy(0) = (zo — x)+ = 0, the inequality on the left in (4.11) just
gives ho(T) = 0. By causality, a solution on [0,77] is also a solution on each
[0,7"] C [0,T] so we actually have hy(7") = 0 for each 0 < 7" < T — i.e.,
hy =0 on [0,7T] as asserted by (4.11).

We now see that — at least for constraints of this box form — we
can extend the notion of solution from Lipschitzian to continuous constraints
with an improved continuity estimate for the solution map — compare (4.12)
below to (4.8). We may also note Proposition II1.2.5 of [9], following [5].

Theorem 4.5. Assume a,b : [0,T] — R are continuous with a(t) < b(t)
on [0,T] and a(0) < xo < b(0); let K have the form (4.9) with X = C[0,T].
Then there is a unique mild solution x € X of the variational inequality
(4.10). We have, componentwise, the well-posedness estimate for the differ-
ence of two solutions:

24() — 24(¢)] < max {|<wo>k (el max{Ax(s)} } (1.12)

0<s<t

where A, = max{|ay — a}|, |bx — b|}.

PROOF: Initially restricting attention to Lipschitzian a(-), b(-) to take

11



advantage of [2, Theorem 2], we prove (4.12) much as (4.6) above. Again we
have F(z 4+ ') — F(z) = 0 = ( for any constant ', etc., when considering
the problem on the interval [0, ¢]. Taking the constant to be, componentwise,
the right hand side of (4.12), we see from Theorem 3.2 that 2’ < x + ' on
0,¢]. Similarly, we get ' > = — w so we have (4.12).

This gives Lipschitz continuity of the map: a(-),b(:) — z(-) in max-
norm for Lipschitzian a, b, x and this map therefore extends by continuity to
continuous a, b, x from that dense set — of course retaining the well-posedness
estimate (4.12). We refer to the solutions in this extended sense as mild so-
lutions of the variational inequality — even though these new mild solutions
need not satisfy (4.10) or (4.7) in any more direct sense, since such a solution
x(+) need not even be the integral of its derivative. |
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