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Abstract
For variational inequalities of an abstract obstacle type, a comparison

principle for the dependence of solutions on the constraint set K is used to
provide a continuity estimate.
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1 Introduction

Our goal is to consider some aspects of the dependence on K of the solution u
of a variational inequality

[F + ∂IK] (u) 3 z, (1.1)

in the context of partially ordered spaces. Here F : X → X ∗
0 is a (possibly

nonlinear) monotone operator1 and IK is the lsc indicator function for an
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1It is convenient here, in looking at the dependence of solutions on the constraint set K,
to introduce the larger space X ⊃ X0 on which F is to be defined, but we then assume, as
a consistency condition on F,K, that

u, v ∈ K ⇒ (v − u) ∈ X0. (1.2)

For a single such variational inequality we could arbitrarily select some u∗ ∈ K and then
consider K̂ = K − u∗ and F̂(u) := F(u∗ + u) for u ∈ X0. This gives the more usual



admissible subset K ⊂ X (i.e., IK(x) = 0 if x ∈ K and = +∞ if x 6∈ K).
[For simplicity we are taking F(x) to be defined and single valued for each
x ∈ K.] We interpret (1.1) in the weak form

u ∈ K; if v ∈ K, then 〈v − u,F(u)− z〉 ≥ 0. (1.3)

Taking X and F as implicitly given, we refer to (1.3) as ‘VI(K, z)’. The
simplest version of this, in the context of a space X of functions on a set Ω,
would be an obstacle problem, by which we mean a variational inequality for
which the constraint set K has the form2

K = {u ∈ X : ϕ− ≤ u(s) ≤ ϕ+(s) for s ∈ Ω} (1.4)

for some given ‘obstacle functions’ ϕ±(·), obviously with ϕ− ≤ ϕ+ pointwise.
In the context of a partially ordered Banach space X , our first result is

the isotonicity, under suitable hypotheses, of the solution dependence — not
only on z, but on K. I.e., for corresponding solutions u, u′ of VI(K, z) and
VI(K′, z′) one has Theorem 3.1:

if K ≺ K′ (and z ≤ z′), then u ≤ u′. (1.5)

[For K,K′ of the obstacle form (1.4), K ≺ K′ would just mean that ϕ− ≤ ϕ′−
and ϕ+ ≤ ϕ′+.] The relevant background material and definitions related
to the partial ordering and its relevance for the constraint set K and the
operator F will be developed in the next section; the comparison theorem
and proof are then in section 3. with some examples in section 4.

From Theorem 3.1 we then obtain, also in section 3., a continuity estimate
— based on the partial order and so independent of (and rather different
from) the kinds of pointwise estimates for dependence on z,K which have
been obtained, e.g., via an embedding: Hs(Ω) ↪→ C(Ω̄).

2 Preliminaries

Remark 2.1. We begin by noting that, without further specificity, we as-
sume throughout that existence of solutions is not an issue for the variational

F̂ : X0 → X ∗
0 and we have VI(K̂, z) using F̂ equivalent (with a solution shifted by u∗) to

the original VI(K, z) using F.
2The case of a single obstacle: K = {u ∈ X : u(s) ≥ ϕ(s) for s ∈ Ω} simply takes

ϕ+ ≡ +∞.
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inequalities under consideration: i.e., implicit in our consideration of varia-
tional inequalities is the imposition of conditions on X ,F,K of monotonicity,
continuity, etc., (cf., e.g., [1], [4], [8]) ensuring that we will have existence of
solutions as needed. See Section 4 for some examples.

It is generally expositionally convenient to assume F everywhere de-
fined: X → X ∗

0 , but in considering variational inequalities of evolution we
will take the domain to be of the form Y = L2([0, T ] → X ) with codomain
Y∗0 = L2([0, T ] → X ∗

0 ) and F0(t, ·) : X → X ∗
0 monotone for each t ∈ [0, T ],

assuming such regularity in t as to ensure that

F : Y → Y∗0 : y 7→ F0(·, y(·)) (2.1)

is consistent with the implicit requirements for existence.

We take the Banach space X to be partially ordered by a convex closed
positive cone P (so x ≤ y means (y−x) ∈ P) with the assumption that P∩X0

is similarly a positive cone for X0. It is then standard that the dual X ∗
0 is

also partially ordered with 0 ≤ ξ ∈ X ∗
0 when 〈x, ξ〉 ≥ 0 for all x ∈ P ∩ X0.

We make the key assumption that ‘max’ is well-defined in X — i.e., for each
x, y ∈ X there is an element max{x, y} = x ∨ y in X characterized by

x ∨ y ≥ x, y and z ≥ x, y ⇒ z ≥ x ∨ y.

We note a few consequent properties:

• if P is pointed3, then x ∨ y is unique;

• automatically, x ∧ y = min{x, y} is also defined (as −[−x ∨ −y]) so

x ∧ y ≤ x, y and z ≤ x, y ⇒ z ≤ x ∨ y;

• (x ∨ y) + z = (x+ z) ∨ (y + z) and (x ∧ y) + z = (x+ z) ∧ (y + z);

• setting x+ := x ∨ 0 and x− := x ∧ 0, we have x+ + x− = x and
x+ ∧ (−x−) = 0.

3We need not necessarily assume that P is pointed (x ≥ 0 and x ≤ 0 only for x = 0),
although this is the case for all our examples. If P is not pointed, then x ∨ y would be a
coset of the subspace P0 = [−P] ∩ P.
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We will assume that the constraint sets K under consideration are con-
sistent with the partial order on X . In particular, we say that K ⊂ X is
admissible if it is closed, nonempty, and satisfies both (1.2) and

u, v ∈ K ⇒ u ∧ v, u ∨ v ∈ K. (2.2)

The collection of all admissible subsets of X will be denoted by A = A(X ).
An obstacle problem is a variational inequality in which K ⊂ X is a

generalized order interval, meaning that

u, v ∈ K ⇒ [u ∧ v, u ∨ v] ⊂ K (2.3)

where [a, b] (with a, b ∈ X , a ≤ b) here denotes the order interval:

[a, b] = {x ∈ X : a ≤ x ≤ b}.

It is easily seen that ordinary order intervals [a, b] are generalized order in-
tervals and that nonempty generalized order intervals are admissible sets.

In the typical cases where X is a function space with pointwise ordering,
a constraint set such as (1.4) is obviously a generalized order interval, but
need not be an order interval since the ‘obstacle functions’ ϕ±(·) need not
be in X or even be proper functions at all — e.g., we simply set ϕ+ = +∞
on Ω′ ⊂ Ω to indicate that u ∈ K is unconstrained above on Ω′; we never
let ϕ− take the value +∞ or let ϕ+ take the value −∞. We then employ
the usual algebra for these obstacle functions and, in particular, if a(·) is any
ordinary function on Ω we write ϕ ≤ ϕ′+a if this holds pointwise where ϕ, ϕ′

are both finite, otherwise taking ±∞+ finite = ±∞ and −∞ ≤ finite≤ +∞;
we will have ϕ+ − ϕ− ≤ a if ϕ+ ≤ ϕ− + a. [One easily sees that (1.4) will
satisfy (2.3) and so (2.2) provided ϕ− ≤ ϕ+, but must verify separately that
such a K would be nonempty. On the other hand, as we may see by (4.5), a
generalized order interval in this context is more general than the form (1.4).]

We next define a partial ordering on A by writing K ≺ K′ when

u ∈ K, v′ ∈ K′ ⇒ (u ∧ v′) ∈ K, (u ∨ v′) ∈ K′ (2.4)

It is easy to see that ‘≺’ is, indeed, a partial order on A and we write [K,K′]
for the order interval {K̂ ∈ A : K ≺ K̂ ≺ K′}. Note that, for admissible K
and any a ∈ X the set K+ a := {u+ a : u ∈ K} is also admissible, but a ≥ 0
does not imply K ≺ (K+a). For K,K′ of the form (1.4) we note that K ≺ K′

if ϕ− ≤ ϕ′− and ϕ+ ≤ ϕ′+.
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Lemma 2.2. Let K,K′ be generalized order intervals. Then

1. K′ ⊂ K + P , K ⊂ K′ − P is equivalent to K ≺ K′;

2. For a ≥ 0 one has (K − a) ≺ K and K ≺ (K + a).

Proof: The condition: K′ ⊂ K + P , K ⊂ K′ − P just means that: for
u′ ∈ K′ there exists u ∈ K with u′ ≥ u and for v ∈ K there exists v′ ∈ K′

with v ≤ v′ — which is immediate from (2.4). For the converse, we sup-
pose u ∈ K, v′ ∈ K′. Then the condition gives u ≤ u′ for some u′ ∈ K′ so
v′ ≤ (u ∨ v′) ≤ (u′ ∨ v′). As K′ is a generalized order interval, we then have
(u∨ v′) ∈ [v′, u′ ∨ v′] ⊂ K′. Similarly, (u∧ v′) ∈ K. This shows part 1. of the
Lemma and 2. follows immediately.

Returning to the operator F : X → X ∗, we define an important relation
between the operator and the partial order. For a family of admissible sets
A0 ⊂ A, we will say that the pair [F,A0] is compatible if

K,K′ ∈ A0, K ≺ K′ and x ∈ K, (x+ h) ∈ K′

⇒
{

h+ ∈ X0 and
〈h+,F(x+ h)− F(x)〉 ≤ 0 ⇒ h ≤ 0.

(2.5)

Note that this automatically gives (1.2) for K ∈ A0: if u, v ∈ K, then (2.5)
gives (v − u)+ ∈ X0, noting that K ≺ K, and also (u − v)+ ∈ X0 whence
v − u = (v − u)+ − (u − v)+ is in X0. Note also that the conclusion h ≤ 0
of the final implication in (2.5) is equivalent to having h+ ≤ 0 — which, in
turn, means h+ = 0 if P is pointed.

3 Principal results

We are now ready for our first result:

Theorem 3.1. In addition to the standing existence hypotheses of Remark 2.1,
assume compatibility (2.5) of the pair [F,A0] for some A0 ⊂ A. Then the
solution u of (1.3) depends isotonically on z and on K ∈ A0. More precisely:

For sets K,K′ ∈ A0 and for z, z′ ∈ X ∗
0 , let u, u′ be, respectively, solu-

tions of

u ∈ K; if v ∈ K, then 〈v − u,F(u)− z〉 ≥ 0,

u′ ∈ K′; if v′ ∈ K′, then 〈v′ − u′,F(u′)− z′〉 ≥ 0.
(3.1)
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Then we have the isotonicity (1.5): If K ≺ K′ and z ≤ z′ in X ∗
0 , then u ≤ u′.

Proof: Let v = u′ ∧ u and v′ = u′ ∨ u. With u ∈ K, u′ ∈ K′, the
inequality definition (2.4) ensures that v ∈ K, v′ ∈ K′. We now set h = u−u′
and note that v−u = −h+ and v′−u′ = h+ by the distributivity of addition
over max. With these choices, (3.1) becomes

−〈h+,F(u)− z〉 ≥ 0, 〈h+,F(u′)− z′〉 ≥ 0

and adding these we have

〈h+,F(u′ + h)− F(u′)〉 = 〈h+,F(u)− F(u′)〉 ≤ 〈h+, z − z′〉 ≤ 0

since z ≤ z′ in X ∗
0 . By (2.5) this gives h ≤ 0, i.e., u ≤ u′ as asserted.

Compare4 [1, Proposition 1.9], [3]; Theorem 3.1 differs in the distinction
between X and X0 and in the formulation of the abstract compatibility con-
dition (2.5).

[While we had not previously assumed that solutions of VI(K, z) are
necessarily unique, we now observe that one necessarily has uniqueness for
VI(K, z) if K ∈ A0 when P is pointed and [F,A0] is compatible: if there
were two solutions u, u′ we could take K′ = K and apply Theorem 3.1 to see
that u′ ≥ u; similarly, u ≥ u′ so u = u′.]

We next give our principal result, an estimate for the solution map:
K, z 7→ u of VI(·, ·) for obstacle problems, i.e., when K is a generalized
order interval. In this generality the result is a somewhat clumsy corollary
to Theorem 3.1; its value may become more apparent through the examples
in the next section.

Theorem 3.2. Given F : X → X ∗
0 , a generalized order interval K ⊂ X , and

z ∈ X ∗
0 , let u be the solution of VI(K, z). Suppose that, for some positive

ω, ω′ ∈ X we have

ζ = F(u)− F(u− ω) ≥ 0, ζ ′ = F(u+ ω′)− F(u) ≥ 0. (3.2)

Further, suppose the pair [F,A0] is compatible for some A0 ⊂ A containing
(K − ω), K, (K + ω′). Then K − ω ≺ K ≺ K + ω′] and the solution û of
VI(K̂, ẑ) will then be in the order interval [u− ω, u+ ω′], i.e.,

−ω ≤ û− u ≤ ω′ (3.3)

4We are indebted to the referee for pointing out the reference to [1]. Brezis notes there
that the argument follows [3].
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for any ẑ such that −ζ ≤ ẑ − z ≤ ζ ′ and any K̂ ∈ A0 ∩ [K − ω, K + ω′] —
where [K − ω,K + ω′] is here the order interval in A.

Proof: Setting K′ = K + ω′ and z′ = z + ζ ′, we first note that, as K
is a generalized order interval and ω′ ≥ 0 by assumption, Lemma 2.2 gives
K ≺ K′; similarly, K − ω ≺ K. From (1.3) we note that u′ = u + ω′ is
the solution of VI(K + ω′, z + ζ ′) — indeed, this is precisely equivalent to
having u as a solution of VI(K, z). As K̂ ≺ K′ and ẑ ≤ z+ ζ ′ by assumption,
Theorem 3.1 then applies to show û ≤ u+ω′. Similarly, u−ω is the solution
of VI(K−ω, z− ζ) and Theorem 3.1 gives u−ω ≤ û. Combining these gives
(3.3) as desired.

4 Examples and remarks

Example 4.1. As a first example, we let X = X0 = Rd with the usual
entrywise partial order and consider symmetric M -matrices A so the matrix
entries Aij satisfy

Aij = Aji Aij ≤ 0 for i 6= j
∑

j

Aij > 0. (4.1)

We first note that symmetry gives real eigenvalues and the Gershgorin Lemma
then ensures that these are positive so (4.1) means A must be positive def-
inite. We next claim the compatibility of [F,A] for F(x) = Ax. By lin-
earity, we are claiming that 〈h+, Ah〉 ≤ 0 only if h ≤ 0, i.e., that the set
S = {j : hj > 0} is empty. To see this, note that when i ∈ S we have
Aijhj ≥ 0 for j /∈ S so 〈h+, Ah〉 ≥ 〈h+, Ah+〉. Using the positive definite-
ness, we then have (2.5). [One consequence of this is the well-known fact
that (4.1), here with symmetry, implies the positivity of A−1 in the sense of
preserving the partial order.]

Somewhat more generally, we observe that we have (2.5) for any C1

nonlinear function F : Rd → Rd whose derivative satisfies (4.1) pointwise.
Since

〈h+,F(x+ h)− F(x)〉 =

∫ 1

0

〈h+,F
′(x+ th)h〉 dt,
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we could only have 〈h+,F(x + h) − F(x)〉 ≤ 0 if 〈h+,F
′(x + th)h〉 ≤ 0 for

some t whence, as above, we would have h+ = 0.
For box variational inequalities, with K an order interval [a, b], Theo-

rem 3.1 just means that increasing a and/or b will increase (or at least not
decrease) the solution of VI(K, z) for such F. Theorem 3.2 is easiest to in-
terpret in the linear case F = A (with z fixed so we are looking only at the
dependence of solutions on K): for the solutions u of VI([a, b], z) and u′ of
VI([a′, b′], z) Theorem 3.2 gives

−ω ≤ a′ − a, b′ − b ≤ ω′ ⇒ −ω ≤ u′ − u ≤ ω′ (4.2)

provided ω, ω′ and Aω, Aω′ are each positive.

Example 4.2. As a second example, we let X be the Hilbert space H1(Ω)
for some bounded region Ω ⊂ Rd, taken with the usual pointwise partial
order: x ≥ 0 in X if x(s) ≥ 0 for almost all s ∈ Ω. It is well-known (cf., e.g.,
[7]) that the Nemytski operator: u 7→ ψ ◦ u with ψ(r) = {r for r ≥ 0; 0 for
r ≤ 0} (so ψ(u) = u+) is continuous on X with, pointwise ae on Ω,

∇u+ =

{
∇u where ∇u+ 6= 0, where u > 0
0 else

(4.3)

We then let X0 = H1
0 (Ω) so X ∗

0 = H−1(Ω) and let F be the Laplace oper-
ator −∆ on Ω with unspecified boundary conditions. An application of the
Divergence Theorem gives

〈v − u,F(v)− F(u)〉 =

∫
Ω

|∇(v − u)|2 −
∫

∂Ω

(v − u)
∂(v − u)

∂ν
(4.4)

where 〈·, ·〉 is the X0–X ∗
0 duality pivoting on L2(Ω). We will take A0 to con-

sist of constraint sets imposing Dirichlet boundary conditions so the bound-
ary integral vanishes (compare the comment following (1.2)) and, noting the
Poincaré Inequality, we then have strong monotonicity and existence of so-
lutions is not an issue; cf., e.g., [1] or [8]. Thus, we are considering A0 to
consist of K ⊂ X having the form

K = {u ∈ X : ϕ− ≤ u ≤ ϕ+ on Ω with u = g on ∂Ω} (4.5)

where ϕ−, ϕ+ are specified functions on Ω — allowing, e.g., ϕ+ ≡ +∞ to
consider a single obstacle problem; we assume consistency to ensure K 6= ∅
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and so require that ϕ− ≤ ϕ+ on Ω (with suitable regularity where one might
have ϕ− = ϕ+) and that g is given in H1/2(∂Ω) with ϕ− ≤ g ≤ ϕ+ on ∂Ω.

[Note that we cannot write (4.5) as K = {u ∈ [ϕ−, ϕ+] : u
∣∣∣
∂Ω

= g} since ϕ±

need not be in X so there would be no order interval [ϕ−, ϕ+].]
Clearly each K as above is a generalized order interval in X so A0 ⊂ A

and we next claim (2.5) with respect to this A0. First, for K,K′ of the form
(4.5) with K ≺ K′, we must have g ≤ g′ in H1/2(∂Ω) so, for x ∈ K, x+h ∈ K′,

we have h = g − g′ ≤ 0 on ∂Ω giving h+

∣∣∣
∂Ω

= 0 whence h+ ∈ X0 and the

boundary term of (4.4) will vanish. Then, using (4.3),

〈h+,F(x+ h)− F(x)〉 =

∫
Ω

∇h+ · ∇h =

∫
Ω

|∇h+|2

giving the implication (2.5).

Theorem 4.3. Let K,K′ be of the form (4.5). Assume (ϕ+ − ϕ′+) and
(ϕ− − ϕ′−) are in L∞(Ω) and (g − g′) ∈ L∞(∂Ω). Then the solutions u, u′ of
VI(K, z), VI(K′, z) satisfy the L∞ continuity estimate

‖u− u′‖L∞(Ω)

≤ max{‖ϕ− − ϕ′−‖L∞(Ω), ‖ϕ+ − ϕ′+‖L∞(Ω), ‖g − g′‖L∞(∂Ω) }.
(4.6)

[Note that having (ϕ+ − ϕ′+) ∈ L∞(Ω) still permits ϕ+, ϕ
′
+ to be simultane-

ously infinite on a subset of Ω, and similarly for ϕ−, ϕ
′
−.]

Proof: This is now a corollary to Theorem 3.2. Noting (4.4) in inter-
preting (1.3), u ∈ K is the solution of

‖∇(v − u)‖2
L2(Ω) + 〈v − u, z〉 ≥ 0 for v ∈ K

and correspondingly for u′ ∈ K′. Note that any constant ω = ω′ ≡ ε satisfies
F(u ± ω) − Fu = 0 = ζ, etc. — and, as we are keeping z fixed so we are
looking only at the dependences on ϕ± and on g, we have −ζ ≤ z − z ≤ ζ
as in Theorem 3.2. If we take ε to be the right hand side of (4.6), then one
easily sees that our assumptions give K − ω ≺ K′ ≺ K + ω so Theorem 3.2
gives −ε ≤ u′ − u ≤ ε pointwise on Ω, which is just (4.6).
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Everything above holds if we take F(u) = −∇·A∇u where the matrix
A = A(x) is bounded and is positive definite ae. Some modification of (4.6)
would be needed if we also add to F a Lipschitzian Nemytsky operator and/or
wish to consider variation of z. It is possible, albeit a bit more complicated,
to apply the comparison ideas of Theorems 3.1 and 3.2 in the context of
Neumann boundary conditions. Finally, in view of (4.3) we note that

|∇(u ∧ v)|, |∇(u ∨ v)| ≤ max{|∇u|, |∇v|},

so we could include in the specification of K a pointwise bound on the gra-
dient: |∇u| ≤ a(·). Etc.

Example 4.4. As a final example we consider Moreau’s sweeping process
(cf., e.g., [2]) for the motion of a heavy particle in Rd constrained to remain
in a moving convex set C(t): the particle is stationary when in the interior
Co(t) and is pushed frictionlessly normal to the wall, as necessary, when in
contact with ∂C(t). Thus, we have

−ẋ ∈ NC(t)(x) x(0) = x0 ∈ C(0) (4.7)

where NC(x) is the outward normal cone to C = C(t) at x = x(t). The
problem (4.7) can then be formulated as a variational inequality (1.1) with
X = Lip(0, T ), F = d/dt, and K = {x ∈ X : x(0) = x0, x(t) ∈ C(t)},
and z = 0. The choice of space here comes from the existence result [2,
Theorem 2]):

If the set-function C(·) is Lipschitz continuous (with respect to
the Hausdorff metric) and x0 ∈ C(0), then (4.7) has a (unique)
Lipschitz solution. Further, one has the well-posedness estimate:

|x(t)− x′(t)|2 ≤ |x0 − x′0|2 + 2(L+ L′)

∫ t

0

∆(s) ds (4.8)

where L,L′ are the respective Lipschitz constants for C(·), C ′(·)
and ∆(t) is their Hausdorff distance.

In order to apply Theorems 3.1 and 3.2, we use the usual entrywise partial
order on Rd to induce a partial order on X ) and restrict each C(t) to be a
box so K would have the form

K = {x ∈ X : x(0) = x0; a(t) ≤ x(t) ≤ b(t) for 0 ≤ t ≤ T}. (4.9)
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We will take A0 to consist of K ⊂ X of the form (4.9) with the assumptions
that: the functions a, b : [0, T ] → Rd are Lipschitzian; a(t) ≤ b(t) on [0, T ],
and a(0) ≤ x0 ≤ b(0).

For (1.1), we have F = d/dt and z = 0; in view of the causality of the
problem — we can restrict to any [0, T ′] ⊂ [0, T ] — the weak form of (4.7)
is then

x ∈ K,
∫ T ′

0

(y − x) ẋ dt ≥ 0 for all y(·) ∈ K, all T ′ ∈ [0, T ]. (4.10)

To see that the pair [d/dt,A0] is compatible for the specified A0, note that
K ≺ K′ for K,K′ ∈ A0 means: x0 ≤ x′0 with a ≤ a′, b ≤ b′ pointwise on
[0, T ] and (2.5) means here that

0 ≥
∫ T

0

h+ ḣ dt ⇒ h+ ≡ 0. (4.11)

As in (4.3), we have h+ ḣ = h+ ḣ+ = [1
2
(h+)2] ˙ so, as K ≺ K′ gives x0 ≤ x′0

and so h+(0) = (x0 − x′0)+ = 0, the inequality on the left in (4.11) just
gives h+(T ) = 0. By causality, a solution on [0, T ] is also a solution on each
[0, T ′] ⊂ [0, T ] so we actually have h+(T ′) = 0 for each 0 ≤ T ′ ≤ T — i.e.,
h+ ≡ 0 on [0, T ] as asserted by (4.11).

We now see that — at least for constraints of this box form — we
can extend the notion of solution from Lipschitzian to continuous constraints
with an improved continuity estimate for the solution map — compare (4.12)
below to (4.8). We may also note Proposition III.2.5 of [9], following [5].

Theorem 4.5. Assume a, b : [0, T ] → Rd are continuous with a(t) ≤ b(t)
on [0, T ] and a(0) ≤ x0 ≤ b(0); let K have the form (4.9) with X = C[0, T ].
Then there is a unique mild solution x ∈ X of the variational inequality
(4.10). We have, componentwise, the well-posedness estimate for the differ-
ence of two solutions:

|xk(t)− x′k(t)| ≤ max

{
|(x0)k − (x′0)k|, max

0≤s≤t
{∆k(s)}

}
(4.12)

where ∆k = max{|ak − a′k|, |bk − b′k|}.

Proof: Initially restricting attention to Lipschitzian a(·), b(·) to take
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advantage of [2, Theorem 2], we prove (4.12) much as (4.6) above. Again we
have F(x + ω′) − F(x) ≡ 0 = ζ for any constant ω′, etc., when considering
the problem on the interval [0, t]. Taking the constant to be, componentwise,
the right hand side of (4.12), we see from Theorem 3.2 that x′ ≤ x + ω′ on
[0, t]. Similarly, we get x′ ≥ x− ω so we have (4.12).

This gives Lipschitz continuity of the map: a(·), b(·) 7→ x(·) in max-
norm for Lipschitzian a, b, x and this map therefore extends by continuity to
continuous a, b, x from that dense set — of course retaining the well-posedness
estimate (4.12). We refer to the solutions in this extended sense as mild so-
lutions of the variational inequality — even though these new mild solutions
need not satisfy (4.10) or (4.7) in any more direct sense, since such a solution
x(·) need not even be the integral of its derivative.
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