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Abstract

We consider an elastic rod, modeled as a curve in space with an impen-
etrable surrounding tube of radius ρ, subject to a general class of boundary
conditions. The impossibility of self-intersection is then imposed as a family of
scalar constraints on the physical separation of nonlocal pairs of points on the
rod. Thus, the usual variational formulation of energy minimization is consid-
ered in a context of nonconvex, nonsmooth optimization. We show existence
of minimizers within suitably defined homotopy classes associated with both
the centerline and the frame along the rod. The principle results are then
concerned with derivation of first-order necessary conditions for optimality
and some consequences of these for the contact forces and for regularity.

1 Introduction

Following Euler et seq., the classical theory of elastic rods ignores any possibility
of self-intersection for the configurations considered. For rods with almost straight
configurations, as were classically considered, this neglect is nugatory, but for many
applications of elastic rod theory, such as fiber optic cables on the sea floor, twining
of plant tendrils and plectonemically wound DNA, contact plays an important role in
determining the configurations. The focus of this work is the so called hard contact
problem, an elastic rod viewed as a framed centerline surrounded by an impenetrable
tube of radius ρ > 0. We develop existence results, first-order optimality conditions,
and regularity conclusions for a variety of boundary conditions.

Previous work by the authors [?] developed similar results in connection with
an analysis of rods with soft contact in which self-intersection was avoided by the
addition to the classical potential of a singular repulsive potential as an integral term

1Nonlinear Analysis — TMA 74, pp. 5388–5401, (2011).
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in the variational formulation. One contribution of [?] was to distinguish between
local pairs and non-local pairs of points along the rod. Nonlocal points are the points
of potential self-intersections of the rod while the inevitable physical proximity of
parametrically close local pairs does not represent this sort of self-intersection.

We emphasize that a major innovation of [?] and this paper is the pointwise
treatment of the avoidance of self-penetration through non-local pairs: in [?] by a
singular potential penalizing physical proximity and here by the formulation of self-
contact through an infinite family of pointwise scalar constraints, without requiring
use of any constructs of a more nonlocal nature.

In [?], local and non-local pairs of points along the rod were distinguished based
on energy bounds, but for the hard contact problem our distinction between these
depends solely on the tube-size; from this perspective, the hard contact problem is
actually simpler than the soft contact problem. On the other hand, the potential
minimized in [?] is differentiable in a neighborhood of the minimizer so finding the
first order optimality conditions in the form of a pair of differential equations for
the strains just follows the classical calculus of variations of Euler and Lagrange. In
contrast, with the hard contact problem, the impenetrability constraint is modeled
as an infinite intersection of inequality constraints. From the geometry, one easily
sees that this impenetrability constraint is not a convex constraint and the resulting
optimization problem involves minimizing the classical potential subject to the non-
convex inequality constraints. Such problems require techniques from non-smooth
analysis (e.g., [?, ?]). Indeed, since this constraint is given by an infinite family
of non-convex inequalities (separating each nonlocal pair of points on the rod cen-
terline), this problem required new results of non-smooth analysis [?] to obtain the
optimality conditions.

Elastic rods with an impenetrable tube have previously been considered [?, ?, ?,
?, ?, ?] in the context of periodic boundary conditions. The most closely related
work is that of Gonzalez et al. [?] and Schuricht and von der Mosel [?]. In their
formulation, non-locality was addressed using a global radius of curvature function
that gave rise to a nonconvex constraint in the variational formulation. Schuricht and
von der Mosel [?] used Clarke’s calculus of generalized derivatives [?] to formulate
the optimality conditions. In contrast, we use Mordukhovich’s formulation of normal
cones to address the non-convex inequality constraints in our variational formulation.

A more significant difference between their analysis and the one presented here
is the allowable boundary conditions. Schuricht and von der Mosel restricted their
analysis to the case of a periodic centerline and were able to extend topological re-
sults involving the linking number of two closed curves to define the homotopy class
for equilibrium configurations of elastic rods. In our analysis we consider more gen-
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eral types of boundary conditions. We assume that the centerline and orientation
of the elastic rod at one end, s = 0, is fixed, which eliminates translation and rota-
tional symmetries from the problem. In particular, we allow the following boundary
conditions at s = 1: free end with no further conditions, specification of the position
of the centerline, specification of the orientation of the frame, specification of the
tangent vector to the centerline, or combinations of the above conditions; periodic
boundary conditions are, of course, a combination of specifying the position of the
centerline and specifying the orientation of the frame. With this generalization,
we no longer have the notion of linking number available to define homotopy class.
To this end, we have extended the idea of rod homotopy, first developed in [?], to
elastic rods with impenetrable tubes in which the traditional definition of homotopy
extends to both the centerline and the frame of the elastic rod.

Another challenge explicitly considered in this work is the possible kinking of the
impenetrable tube since, to maintain the validity of the elastic rod model, we have
a constraint that the curvature of the centerline κ(s) satisfies κ(s) ≤ 1/ρ, where
ρ represents the radius of the tube surrounding the centerline; this is imposed by
requiring that the elastic stored energy density becomes infinite as the curvature
approaches 1/ρ. Such a blowup of the elastic potential adds significant difficulties
in deriving the optimality conditions, but seems physically appropriate. We note
that Schuricht and von der Mosel refer in [?] to a use of similar techniques in [?,
VII.5] and [?] in addressing this concern.

This article is organized as follows. Section 2 treats the geometric theory of rods:
a brief description of the Cosserat description, discussion of nonlocality and con-
straints and the notion of rod homotopy. The following Section 3 then treats the
potential energy and variational formulation, including the existence result. Sec-
tion 4 uses results from Mordukhovich’s books [?, ?] along with Seidman’s recent
results [?] to formulate the boundary conditions and impenetrability constraints in
terms of basic normal cones. The optimality results following from this, leading to
regularity of the minimizer, are then presented in Section 5.

2 Problem Formulation: Geometry

2.1 The Cosserat Rod Model

As in [?], we continue to use the geometrically exact formulation, following the
Cosserat theory specialized to large deformations of inextensible and unshearable
elastic rods. A comprehensive discussion of Cosserat theory can be found in [?], but
we briefly review here the notation and recall related results of [?].
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The configuration of a rod is initially described by a centerline s 7→ r(s), a function
of arc length along the rod, choosing units so 0 ≤ s ≤ ` = 1. We then introduce a
radius ρ > 0 for the impenetrable tubular neighborhood surrounding the centerline
of the rod, corresponding to the hard contact formulation. For simplicity, we assume
for the tube a circular cross section of constant radius, but our subsequent analysis
would easily allow for a tube size slowly varying along the length of the rod and, with
somewhat more effort, even for varying noncircular shape. We emphasize, however,
that the present model neglects tangential forces along the rod: there is no friction.

The relationship between the tube size ρ surrounding the centerline and the cur-
vature of that centerline helps to distinguish between parametrically nearby points
and parametrically nonlocal pairs of points along the rod. The radius of curvature
of the centerline at a point s is 1/κ(s) and one easily sees from the geometry that
having 1/κ < ρ would have nearby cross sections of the tube actually intersecting
within the tube: this is a purely local consideration leading to the condition

κ(s) ≤ 1/ρ for each s ∈ [0, 1] (2.1)

(bounding the curvature pointwise along the centerline) as a constraint necessary
to ensure the validity of the rod model, although we will treat this through energy
considerations rather than as an imposed constraint; see Subsubsection 2.2.2 and
Remark 1. We are led to the following:

Definition 1. A pair of points (s, σ) ∈ [0, 1]2 is called nonlocal if |s−σ| ≥ 2πρ; the
set of such nonlocal points is denoted NL.

Depending on the imposed boundary conditions this may be modified at the end
points: e.g., for a periodic centerline we will take (s, σ) mod 1 in defining the set
of nonlocal pairs

NL = {(s, σ) ∈ [0, 1]2 : |s− σ| ≥ 2πρ}. (2.2)

Consideration of the local geometry then shows that with the curvature bound (2.1)
one can have no self-intersecting contact of centerline points closer along the rod
than the minimal circumference 2πρ of an osculating circle, i.e., the self-intersections
we wish to avoid are meaningfully possible only for nonlocal pairs of points along
the rod centerline.

For non-periodic conditions, there is still a possibility that the rod might intersect
itself at an endpoint — e.g., the point at s = 0 could interact with the point
at s = 1/3 — and in order to impose the same pointwise constraint we will, for
convenience, think of the rod as having hemispheres of radius ρ attached at the
endpoints. We recall that similar endpoint considerations applied in the soft contact
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problem: cf., Hoffman and Seidman [?, Lemma 3], where nonlocality was defined in
terms of energy considerations.

Next, the Cosserat formulation attaches an orthogonal pair of unit vectors d1, d2

to the cross-sectional disk and sets d3 = d1 × d2 so the set of directors

D(s) = {d1(s), d2(s), d3(s)}

forms an orthonormal frame describing the orientation of the cross-section of the rod
at each point s along the centerline. Note that D(s) is then a 3×3 matrix in SO(3),
which is viewed as a manifold embedded in the linear space M = M3×3 of 3 × 3
matrices. This implies a Darboux vector uD(s), defined by d′i(s) = uD(s) × di(s)
for i = 1, 2, 3 and we express uD in the local rod frame with coefficients ui(s) ≡
uD(s) · di(s), giving the strains. Thus u = Σiui di = Du, with u = u1i + u2j + u3k =
(u1, u2, u3)T.

In this paper, as in [?], we restrict our attention to inextensible and unshearable
rods for which the third director d3 = Dk coincides with the tangent vector to the
centerline: d3(s) = r′(s). [Although this may seem a simplification from a more
general problem, assuming inextensibility and unshearability imposes a pointwise
constraint on the variational problem, making the problem even more challenging;
however, this does allow for a consistent comparison of our results to others in the
literature.] This formulation is summarized by a pair of differential equations along
the rod:

D′ = (Du)×D = D S(u) r′ = d3 = Dk for 0 ≤ s ≤ 1 (2.3)

with S

 u1

u2

u3

 =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (2.4)

so S : R3 → S3 = {skew}; the canonical basis of R3 is denoted by {i, j, k}.
Fixing 1 < p < ∞ (and so also the conjugate index q such that 1/p + 1/q = 1),

we define the (reflexive) spaces

X = Lp([0, 1]→ R3), X̂ = Lp([0, 1]→M3×3),
Y = W 1,p([0, 1]→M3×3), Y0 = {y ∈ Y : y(0) = 0},
Z = W 2,p([0, 1]→ R3), Z0 = {z ∈ Z : z(0) = 0 = z′(0)}

= {z ∈ X : z′′ ∈ X , z(0) = 0 = z′(0)}.
(2.5)

Without loss of generality, we will assume that our coordinate system has been
chosen so that

D(0) = I r(0) = 0. (2.6)
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and then adjoin (2.6) to the differential equations (2.3) to define maps

D : u(·) 7→ D(·) : X → Y
R : D(·) 7→ r(·) : Y → Z

so R ◦D : u(·) 7→ r(·) : X → Z.
(2.7)

Theorem 1. We have

1. The composed map R ◦D : u(·) 7→ r(·) is continuous and Fréchet differentiable
as a function from X to Z.

2. The map D is continuous (and so necessarily compact) from the weak topology
of X to C([0, 1]→M3×3), and correspondingly R ◦D is continuous from Xweak to
C1([0, 1]→ R3).

Proof. Part 1. of this Theorem was proved in [?, Thm 1, Cor 1] and Part 2. was
proved in [?, Lemma 1, Cor. 1].

In addition to (2.5) we will also need

Ŷ = {y ∈ W 1,p([0, 1]→ S3) : y(0) = 0}

Ẑ =
{
z ∈ W 2,p([0, 1]→ R3) : z = 0, z′(0) = 0, z′ · D̄k ≡ 0

} (2.8)

where D̄ = D(ū) for a fixed ū ∈ X ; clearly Ŷ may be viewed as a closed subspace of
Y0 on embedding S into M3×3 and Ẑ is a closed subspace of Z0

2.2 Constraints

Apart from the kinematic constraints incorporated in the map R◦D, the admissible
centerline configurations will be those that satisfy the impenetrability constraint for
tube radius ρ as well as any boundary conditions imposed at s = 0, 1. We are
here imposing both equality constraints and inequality constraints: the boundary
conditions at s = 1 are imposed as equality constraints, but the impenetrability of
the tube is imposed as a family of inequality constraints: the distance between any
nonlocal pair of points along the centerline must be at least 2ρ.

2.2.1 Boundary Conditions at s = 1

Equation (2.6) specifies the boundary conditions at the left end of the rod (s = 0),
but boundary conditions at the right end of the rod s = 1 may further be imposed
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to complete the formulation; any such conditions on D, r at s = 1 (or, perhaps,
elsewhere in (0, 1]) remain as constraints on u(·). There are numerous relevant
possibilities:

a. a free end with no further conditions imposed
b. specification r(1) = r1

c. specification of D(1) = D1

d. specification of r′(1) = D(1)k

(2.9)

as well as combinations of these boundary conditions. [We note that the condition
(2.6) is a somewhat arbitrary coordinatization so conditions like b. or c. of (2.9)
should more properly be written relatively: r(1) − r(0) = r1 or D(1)[D(0)]−1 = D̂1;
we will continue to treat these simply as boundary conditions “at s = 1.”] Our
analysis remains largely independent of any particular choice among the indicated
boundary conditions at s = 1; whichever choice is to be made, let

Ω1 = {u ∈ X : D = D(u), r = R(D) satisfy the conditions at s = 1}. (2.10)

We emphasize the fact, obvious from (2.9) and further discussed in Subsection 4.3,
that each of our possible choices here is an equality constraint.

2.2.2 Curvature Constraint

The pointwise restriction (2.1) which was used to preclude self-intersection of dis-
tinct cross-sections within the tube might be formally imposed (as an inequality
constraint) in defining admissibility. It is convenient to write

ũ = (u1, u2) ∈ R2 so u = (ũ, u3) = (u1, u2, u3) ∈ R2 ⊕ R = R3 (2.11)

and note that κ(s) = |r′′(s)| = |D′k| so

κ = κ(s) = |u2d1 − u1d2| =
√
|u1(s)|2 + |u2(s)|2 = |ũ|

u = [κ cos θ, κ sin θ, u3].
(2.12)

At each s the set of u satisfying the condition (2.1) is the (closed) unbounded circular
cylinder in R3 with axis k and radius 1/ρ.

However, rather than explicitly imposing (2.1) as a constraint, we will instead
treat it through the local energy functional W in Subsection 3.1 as an increasing
resistance to infinite compression by kinking; see Remark 1 and compare the dis-
cussion in [?] (in a dynamic context), although some of that concern about infinite
compression is here obviated by the inextensibility assumption. This way of han-
dling (2.1) involves significant technical difficulty, but seems the physically correct
treatment.
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2.2.3 Impenetrability Constraint

Our principal concern in this paper is with the possibility of self-intersection of the
rod. In visualizing the geometry for a tube of radius ρ it is easy to see that this
non-self-intersection constraint just means that nonlocal pairs (s, σ) of centerline
points are physically separated at least by the widths of the local tubes. Thus,
impenetrability is interpreted as the family of inequality constraints

For each (s, σ) ∈ NL one has ψ(s,σ)[r] ≥ 0
where ψ(s,σ)[r] := |r(s)− r(σ)| − 2ρ

(2.13)

with NL as in (2.2), the set of nonlocal points of Definition 1.
Much as with (2.10), we let Ω2 be the set of strains defining centerline configura-

tions for which self-intersections do not occur, i.e.,

Ω2 = Ω2(ρ) = {u ∈ X : r = [R ◦D](u) satisfies the conditions (2.13)}. (2.14)

[Impenetrability could, equivalently, be enforced by a single inequality constraint

φ∗[r] := min
(s,σ)∈NL

{|r(s)− r(σ)|} ≥ 2ρ, (2.15)

but it is easier to work with (2.13).]
Note that if we fix a centerline configuration r̄(·) satisfying the constraint (2.13),

then we may let d∗(s) be the distance from r̄(s) to the nearest nonlocally related
point on the centerline so

d∗(s) = d∗(s; r̄) = min
σ
{|̄r(s)− r̄(σ)| : (s, σ) ∈ NL}, (2.16)

noting that this is well-defined on [0, 1] by the continuity of r̄(·) and the compactness
of NL with 2ρ ≤ d∗(s) ≤ 2πρ. It is clear that d∗(·) is at least lower semicontinuous:
at worst there may be jump discontinuities at s = 2πρ and at s = 1 − 2πρ, where
the number of components of {σ ∈ [0, 1] : (s, σ) ∈ NL} would change. The contact
set for this centerline will then be the closed set

C = C(r̄) = {s ∈ [0, 1] : d∗(s; r̄) = 2ρ}. (2.17)

2.3 Admissible Triples and Rod Homotopy

We now introduce the space V = Xweak × Y × Z and define the set A = A(ρ)
of admissible triples as a subset of V ; we may then call u ∈ X admissible if v =
[u,D(u), [R ◦D](u)] is an admissible triple.
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Definition 2. For a given ρ, [u,D, r] ∈ V is called an admissible triple if it satisfies

a. u ∈ X with D, r given, as in (2.7), by (2.3) with (2.6) giving D = D(u) ∈ Y
and r = R(D) ∈ Z,

b. u ∈ Ω1 — any specified boundary conditions at s = 1 are satisfied,

c. u ∈ Ω2 = Ω2(ρ) — there is no self-intersection for the tube, i.e., (2.13).

A sequence of such triples converges [uk,Dk, rk] → [u∞,D∞, r∞] provided uk ⇀ u∞
(weak convergence in X ) with corresponding convergence of Dk, rk as in Theorem 1.

Of course A depends on ρ through the imposition of the condition (2.13) in c. We
further remark that it is possible for A to be empty, that there are no admissible
triples at all, e.g., if we were to impose a boundary condition at s = 1 requiring
|r(1)| > 1. On the other hand, it should be noted that this notion of admissibility
has not imposed the condition (2.1); as noted in Subsubsection 2.2.2, this will be
imposed through finiteness of the energy functional.

It is clear from part 2. of Theorem 1 that uk ⇀ u∞ implies that one also has
strong convergence of Dk, rk in Y ,Z, respectively so this is convergence in V and
one has D∞ = D(u∞) and r∞ = R(D∞). The topology of Z then ensures that
the constraints — both the boundary conditions as in (2.9) and the impenetrability
conditions (2.13) — continue to hold in the limit where rk → r∞ uniformly. This
means that Ω1 and Ω2 are each closed in Xweak whence the set A of admissible triples
is closed in V = Xweak × Y × Z.

Following [?], we next use Definition 2 to define a rod homotopy as follows:

Definition 3. A rod homotopy joining the triples v0 = [ū, D̄, r̄] and v1 = [û, D̂, r̂] is
a map t 7→ [u(·, t),D(·, t), r(·, t)] from [0, 1] to admissible triples such that

a. [u(·, 0),D(·, 0), r(·, 0)] = [ū, D̄, r̄] and [u(·, 1),D(·, 1), r(·, 1)] = [û, D̂, r̂],

b. each [u(·, t),D(·, t), r(·, t)] is an admissible triple,

c. the map is continuous in the sense of Definition 2.

Two triples v0, v1 ∈ A(ρ) are rod homotopic if such a rod homotopy exists.

Thus, a rod homotopy is an arc joining v0 to v1 within A(ρ), i.e., an element v(·)
of C([0, 1] → A(ρ)) with v(0) = v0 and v(1) = v1 so Definition 3 just means that
rod homotopic triples [ū, D̄, r̄] and [û, D̂, r̂] are arcwise connected within the set A
of admissible triples, viewed as a (closed) subset of V = Xweak × Y × Z.
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We emphasize that this definition depends on the rod radius ρ and to indicate
this we may say that “v0 and v1 are rod homotopic in the context of ρ” or that
v(·) is a “rod ρ-homotopy.” Although the homotopy involves the entire triple, the
dependence on ρ only involves r.

For the treatment in [?] it was significant that an admissible triple there (in the
somewhat different soft contact setting in which impenetrability was enforced by
a singular repulsion term) gave some clearance — each admissible triple (except
the special case with r(1) = k) had a neighborhood of admissible triples — and
the proof of [?, Thm. 2] took advantage of that fact in explicitly constructing rod
homotopies within such a neighborhood. For the present setting there can be be no
such neighborhood when actual hard contact occurs and we are led to introduce an
apparently weaker notion:

Definition 4. Two triples v0 = [ū, D̄, r̄] and v1 = [û, D̂, r̂] are called mildly rod
homotopic in the context of ρ if they are rod ρ̂-homotopic for each 0 < ρ̂ < ρ. It is
clear that mild rod homotopy is an equivalence relation so we may say that v0, v1

are in the same mild homotopy class.

Since A(ρ̂) ⊂ A(ρ) for 0 < ρ̂ ≤ ρ, it is clear that any rod ρ-homotopy is also a ρ̂-
homotopy for each ρ̂ < ρ. Hence rod ρ-homotopy implies mild rod ρ-homotopy. [At
this point, however, we have no proof of the converse to show that the notions are
equivalent, although we know of no example of v0, v1 which are mildly ρ-homotopic
without a ρ-homotopy existing; see Remark 2.]

3 Energy and Existence

3.1 Energy

The classical potential energy consists of the local internal potential energy W and
the external potential energy F . The local internal potential energy W is the part
of the energy cost due to local deformation of the rod when one would deform to
u from an unstressed reference configuration specified by û(s). [For a naturally
straight rod, the unstressed configuration function would be û ≡ 0; our formulation
is general enough to include naturally anisotropic and non-uniform elastic rods for
which û(s) 6≡ 0.]

The external potential energy in the system is here assumed to have the form

F [r] =

∫ 1

0

F (s, r(s)) ds (3.1)
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where, for convenience, we have implicitly assumed some symmetry of the rod about
its centerline in taking each F (s, ·) to depend only on r(s) and not also on D(s). [Note
that the function F depends on the coordinate system, which we have here specified
by (2.6). Also, one might, of course, have written F = F [u] since r = R ◦D(u), but
it is convenient to leave it as (3.1).] We assume here that:

F : [0, 1]× R3 → [0,∞) is bounded and satisfies Carathéodory conditions. (3.2)

The formulation in (3.1) with the assumption (3.2) precludes any interaction with
an external hard obstacle, but see Remark 4 for further comment on this possibility.

Phenomenologically, the internal potential energy W will be given as usual by
integrating a (material-dependent) strain energy density function:

W [u] =

∫ 1

0

W (s, u(s)) ds. (3.3)

[Note that W (s, ·) at each point s along the rod is here a function only of the
strain u(s) at that point, but we are allowing for dependence on the material prop-
erties associated with that point. This part of the formulation is essentially classical.]
We will assume here that:

a. W : [0, 1]× R3 → [0,∞] satisfies:
W (·, u) is measurable for each u ∈ R3,
W (s, ·) is continuous where finite, uniformly in s ∈ [0, 1]

b. each W (s, ·) is strictly convex

c. ψ(|κ|) + b|u3|p ≤ W (s, u) ≤ c[ψ(|κ|) + b|u3|p]
for s ∈ [0, 1], u = (ũ, u3) = (u1, u2, u3) ∈ R2 ⊕ R = R3

(3.4)

where b, c > 0 and ψ : [0,∞)→ [0,∞] is increasing and continuous with

0 ≤ ψ <∞ on (0, 1/ρ) and ψ(κ) =∞ for κ ≥ 1/ρ. (3.5)

Remark 1. We consider the physical significance of the hypothesis (3.4 c), apart
from Lp coercivity of this potential. We are imposing the curvature condition (2.1)
not merely as a constraint, but as resulting from the material’s increasing resistance
to the internal compression associated with kinking, i.e., as cross-sections become
squeezed together when curvature approaches 1/ρ; compare Subsubsection 2.2.2. This
hypothesis is not really a problem for existence, but imposes significant technical
difficulties for our treatment of optimality conditions; we do things this way because
it seems the right way to represent the physics.
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Combining the local and external contributions, the total classical energy E of
the elastic rod is then given by

E [u] =
W [u] + F [r]∫ 1

0

[
W (s, u(s)) + F (s, r(s))

]
ds.

(3.6)

Lemma 1. Let F satisfy (3.2). Then the external energy functional u 7→ F [r], de-
fined by (3.1) with R ◦D : u 7→ r, is continuous from Xweak.

Let W : [0, 1] × R3 → [0,∞] satisfy (3.4). Then the internal energy func-
tional W, defined by (3.3), is convex and lower semicontinuous from Xweak.

Given both (3.4) and (3.2), the energy functional E : Xweak → [0,∞] is lower
semicontinuous and coercive. Further, for u with E [u] <∞, one has (2.1) for r.

Proof. The continuity of r 7→ F : Z → R is standard, given (3.2). The continuity
of u 7→ F [r] : Xweak → R then follows from part 2 of Theorem 1.

Convexity of W is immediate from (3.4 b). Lower semicontinuity from Xweak is
less obvious since, using (3.5), the lower bound in (3.4 c) ensures that the (convex)
set DW = {u :W [u] <∞} has empty interior in X so we shift consideration to X‡,
defined by using an L∞[0, 1]-norm for the first two components while retaining the
Lp-norm for the third. Note that DW is in X‡, now with nonempty interior; further
X‡ embeds in X and is itself a dual space [L1([0, 1]→ R2)⊕Lq(0, 1)]∗. Thus, if there
were a sequence uk ⇀ ū in X with lim infW [uk] < W [ū] so uk ∈ DW ⊂ X‡, then we
could extract a (X‡)weak∗-convergent subsequence, necessarily with the same limit ū
and conclude that W [ū] ≤ lim infW [uk].

Combining these then gives the lower semicontinuity of E : Xweak → [0,∞].
Coercivity and (2.1) on DW are immediate from the lower bound in (3.4 c).

3.2 Existence

Stable mechanical equilibria are usually obtained as (local) minimizers of the total
energy E , viewed as a functional defined on an appropriate set of admissible func-
tions. In this section, we prove the existence of a minimizer of the total energy E
and a minimizer within each mild rod homotopy class. Apart from the homotopic
consideration, we are thus considering the constrained optimization problem:

minimize: E [u] as in (3.6)

subject to:

{
a. the boundary conditions at s = 1
b. the impenetrability constraint (2.13)

(3.7)
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[We need not include (2.1) in the constraints here since, by Lemma 1, this is implicit
in the minimization.]

We then have the following existence theorem:

Theorem 2. If the constitutive functions satisfy (3.2) and (3.4) with (3.5) and
there is some admissible u0 with finite energy, then (3.7) attains its minimum. If
an admissible u0 with finite energy is specified, then E attains its minimum over the
mild rod ρ-homotopy class containing the admissible triple v0 = [u0,D0, r0].

Proof. The first existence assertion is entirely standard. Let vk = [uk,Dk, rk] be a
minimizing sequence for E in the set A(ρ) of admissible triples. By the coercivity
following from Lemma 1, a bound on E also implies a bound on the X -norms {‖uk‖},
so we can extract a weakly convergent subsequence uk ⇀ u∞ whence, according
to our observations above, we have convergence of vk to an admissible triple v∞.
Lemma 1 also guarantees that v 7→ E [v] is lower semicontinuous, which ensures that
the energy infimum is actually attained at v∞ as a global minimum.

We may next consider a minimizing sequence in the mild rod homotopy class
containing v0 and, as above, can extract a subsequence converging in A(ρ) to a
limit v∞ = [u∞,D∞, r∞]. Again, the energy infimum is attained at v∞ so we again
have the desired minimum provided v∞ is itself in the mild homotopy class of v0.

To see this we make the key observation that, for any 0 < ρ̂ < ρ, the rod with
tube radius ρ̂ corresponding to the ρ-admissible centerline r∞ must have clearance
D∗ = 2(ρ − ρ̂) > 0 in the sense of [?, Thm. 2]. Thus r∞ has a neighborhood in
C([0, 1]→ R3) of ρ̂-admissible centerlines and v∞ has a neighborhood in V of triples
in A(ρ̂). Convergence then gives vk in this neighborhood for some k and so, for each
of the possible cases of boundary conditions at s = 1, the constructions given in the
proof of [?, Thm. 2] give a rod ρ̂-homotopy joining this vk to v∞ in A(ρ̂); of course,
v∞ is then rod ρ̂-homotopic to each other triple in that homotopy class. Since we
can do this for each 0 < ρ̂ < ρ, we have shown that v∞ is itself in the specified mild
rod ρ-homotopy class as desired.

Remark 2. Note that as ρ̂→ ρ and D∗ → 0, the neighborhoods of v∞ in the proof
above can be expected to shrink, forcing k → ∞ here. [More to the point, while v0

is joined to v∞ by a rod ρ̂-homotopy, there seems no reason to expect a compactness
result within C([0, T ]→ A(ρ)) to suggest subsequential convergence and so existence
of a rod ρ-homotopy joining v0 to v∞ as a limit. [Indeed, simple examples in compact
regions in the plane show that, although the closure of a connected set is always
connected, the closure of an arcwise connected set need not be arcwise connected.]
In general, there seems no strong reason to expect that two arbitrary rods in the same
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mild ρ-homotopy class should actually be connectable by a rod ρ-homotopy.
We note the difference in the definitions of rod homotopy class for elastic rods

with a repulsive potential (see [?]) and elastic rods with an impenetrable tube as
here. Elastic rods with singular repulsive potentials have infinite energy barriers
that prevent the elastic rods from actual contact, but, on the other hand, our present
consideration of elastic rods with impenetrable tubes allows points of contact in which
parametrically nonlocal points are exactly a distance 2ρ apart. The proof of [?,
Theorem 2] requires “wiggle-room” not provided by nonlocal pairs with such direct
contact — hence the introduction of the smaller radius ρ̂.

4 Characterization of the Constraint Cone

In this section and the next we will derive first order optimality conditions for a
specific (local) minimizer for the constrained minimization problem (3.7). Thus,
throughout this section v̄ = [ū, D̄, r̄] is a specific (local) minimizer of the energy as
in (3.7) so minimization is taken over some suitable neighborhood: ū ∈ U ⊂ X
or, more precisely, over the intersection of U with the constrained set Ω = Ω1 ∩ Ω2

of (2.10) and (2.14).
In our treatment we will largely follow Mordukhovich [?] as a basic reference,

but will also note [?], which was developed specifically to handle aspects of the
present situation as in Subsection 4.2. In particular, we will make considerable use
of Mordukhovich’s basic normal cone, denoted N(∗; ∗), as defined in [?, Defn.1.1]. In
particular, this section is devoted to characterizing the constraint cone N(ū; Ω1∩Ω2).
Note that, in parallel with the relation of Sections 2 and 3, this section depends only
on the geometrical considerations of the constraints and not at all on the energy
functional we will be minimizing, to which we return in Section 5.

The boundary conditions of (2.9) may each be presented as an equality con-
straint of the form g(u) = 0 and, provided the Fréchet derivative g′(ū) is surjective,
the constraint cone will then be the range of [g′(ū)]∗; a similar need for surjectiv-
ity of L = [R ◦ D]′ arises for the normal cone for the impenetrability constraint.
This surjectivity is complicated somewhat by the hidden constraints implicit in
our formulation: the frame D = D(u) takes values in the manifold pointwise re-
stricted to SO(3) ⊂ M3×3, rather than surjective to a fixed linear space, and
r = RD is similarly in a manifold where r′ is pointwise restricted to the unit sphere
S2 ⊂ R3. It will thus be convenient to reformulate the condition in terms of new
maps D̂ : u 7→ D̂ = D̄−1D and R̂ : D̂ 7→ r, constructed specifically with respect to
the particular minimizer; Subsection 4.1 discusses these maps, their linearizations
at the minimizer, the appropriate codomains, and the adjoint maps.
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Following that, in Subsection 4.2 we use results of [?], developed specifically for
this purpose, to find a cone Ξ containing N(r̄; Ω̂2) with Ω̂2 = {r :(2.13)}. [The convex
cone Ξ is associated with the contact forces resulting from the non-selfintersection
constraint (impenetrability).] We use the chain rule to get N(ū; Ω2) ⊂ L∗ Ξ. In Sub-
section 4.3 we then find normal cones Tr, TD corresponding to boundary conditions
at s = 1 as in (2.9). Finally, we will use the sum rule [?, Cor.3.5, p.268] to obtain

N(ū; Ω1r ∩ Ω1D ∩ Ω2} = N(ū; Ω1r) +N(ū; Ω1D) +N(ū; Ω2)

from which we conclude that

N(ū; Ω1 ∩ Ω2) ⊂ Tr + TD + L∗Ξ. (4.1)

4.1 Linearizations and their adjoints

In this subsection, we consider the maps D′ = [∇uD] and L = ∇u[R ◦D] = RD′,
each taken at u = ū. Denoting the variations in r,D, u by r,D, u, respectively, we
then have D′ : u 7→ D and L : u 7→ r. The initial condition at s = 0 forces D(0) = 0
and r(0) = 0 so, nominally, r ∈ Z0 and D ∈ Y0. We will later need surjectivity of
these derivatives, giving corresponding injectivity for their adjoints; however, due
to the hidden constraints in embedding SO(3) in M3×3 and embedding S2 in R3,
surjectivity does not hold for the spaces of (2.5). It is easiest to see the appropriate
codomain modifications if we compose with pointwise multiplication by D̄−1 = D̄T

and by D̄ to get D̂ : u 7→ [D̄]T D = D̂ and R̂ : D̂ 7→ r.

Lemma 2. The maps D̂ and R̂ ◦ D̂ ≡ R ◦D are Fréchet differentiable with

[∇uD̂](ū) = K : u 7→ D̂ [∇u (R̂ ◦ D̂)](ū) = L : u 7→ r.

The linear maps K : X → Ŷ and L : X → Ẑ with Ŷ , Ẑ as in (2.8) are well defined
through solving the differential equations:

D̂′ = [D̂S(ū)− S(ū)D̂] + S(u) D̂(0) = 0 (r′ = D̄ D̂k r(0) = 0) (4.2)

with D̂(0) = 0, r(0) = 0 = r′(0). With these codomains K,L are surjective. We also
have D̂ = S(y) pointwise, with y satisfying the differential equation:

y′ = y× ū + u y(0) = 0,
r′ = D̄P2y r(0) = 0

with P2 =

 0 1 0
−1 0 0
0 0 0

 : y 7→ S(y)k.
(4.3)
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[Pointwise use of S is an isomorphism of Ỹ = {y ∈ W 1,p([0, 1] → R3) : y(0) = 0}
with Ŷ , so we will take these as effectively equivalent and note that the map: u 7→ y
is surjective from X to Ỹ .]

Proof. Differentiating D = D̄D̂ with respect to s, we have D̂′ = [D̂S(u) − S(ū)D̂]
from (2.3) and differentiating this with respect to u at u = ū gives the first equation
of (4.2). From the identity [S(u)S(v)− S(v)S(u)] = S(u× v) and the invertibility of
S, we then obtain (4.3). The equation r′ = D̄ D̂k of (4.2) is immediate.

Pointwise, the variation D(s) must lie in the tangent space to SO(3) at D̄(s) so
D̂ = [D̄(s)]TD takes its pointwise values in the tangent space to SO(3) at I — i.e.,
in the space S3 of skew matrices. Noting that [AB − BA] is skew for any skew
matrices A,B, we see that (4.2) does keep D̂ pointwise in S3 so we have D̂ ∈ Ŷ .
The second equation of (4.2) clearly gives r′ ⊥ D̄k since D̄ is orthogonal and S(y) is
skew. We have shown that D̂ ∈ Ŷ and r ∈ Ẑ.

To show the surjectivity of K, let D̂ be arbitrary in Ŷ , so S3-valued. Then D̂′

and [D̂S(ū)−S(ū)D̂] are also S3-valued so D̂′− [D̂S(ū)−S(ū)D̂] is (pointwise) S(u)
for some u(s) ∈ R3, necessarily with u ∈ X . One then has the differential equation
defining Ku = D̂ with this u so this arbitrary D̂ ∈ Ŷ is in the range of K.

To show the surjectivity of L, let r be arbitrary in Ẑ so D̄r′ ⊥ k. This gives D̄r′

of the form ai + bj (necessarily with W 1,p regularity) so, e.g., setting x = (−b, a, 0)T

we would have D̄r′ = P2x = S(x)k, with S(x) in Ŷ . This gives r = R̂P2x, in the
range of R̂ from Ŷ and so in the range of L.

We next compute the adjoints

K∗ η (η ∈ Ŷ
∗
), L∗ ζ (ζ ∈ Ẑ

∗
).

[It will be convenient to work with y rather than with D, noting that y 7→ S(y) = D
pointwise is an isomorphism to Ŷ , so we pivot on the L2 inner product to write
〈η,D〉 =

∫
η̂ · y ds for a suitable η̂.]

Lemma 3. The adjoint K∗ is computed by solving

ω′ = ω × ū− η̂ ω(1) = 0 (4.4)

to get ω = K∗η. One obtains R̂∗ ζ = η̂ for ζ ∈ Ẑ
∗

by

η̂(s) = P2
T[D̄(s)]Tz(s) with z(s) =

∫ 1

s

ζ(σ) dσ. (4.5)

Then L∗ = K∗R∗ : ζ 7→ y→ u is obtained by composing (4.4), (4.5).
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Proof. We have

〈η, D̂〉 =

∫ 1

0

η̂ · y ds =

∫ 1

0

[ω × ū− ω′] · y ds

=

∫ 1

0

(ω × ū) · y ds +

∫ 1

0

ω · y′ ds− ω · y
∣∣∣∣1
0

=

∫ 1

0

[(ω × ū) · y + ω · (y× ū] ds+

∫ 1

0

ω · u ds

= 〈ω, u〉

where we have used (4.4), (4.3) (including the boundary conditions) and the triple
product identity. Thus, since D = Ku, we have ω = K∗η.

We have, from (4.5), that z′ = −ζ with z(1) = 0 and note that r = R∗D gives
r′ = D̄D̂k = D̄P2 y with D̂ = S(y) as above. Thus,

〈ζ, r〉 = −
∫ 1

0

z′ · r ds =

∫ 1

0

z · r′ ds =

∫ 1

0

z · D̄P2 y ds =

∫ 1

0

η̂ · y ds

so, indeed, η̂ as given by (4.5) is R∗ζ.

Remark 3. We must be quite careful in the interpretation of the formula (4.4) —
and its boundary condition, in particular — since η, η̂ are given as distributions, not
functions. For example, the functional η̂ = η̂e : y 7→ e · y(1) is in Ỹ∗. For this we
interpret (4.4) as giving a jump between ω(1−) and ω(1+) with “ω(1) = 0” applying
to the latter: effectively we would have

K∗η̂e = ω = ωe with ω′ = ω × ū, ω(1) = e. (4.6)

The same concern also applies to (4.5), e.g., for ζe : r 7→ e · r(1) we would similarly
get from (4.5)

R∗ζe = η̂ = P2
TD̄Te, (4.7)

which we can verify by noting directly that∫ 1

0

[P2
TD̄Te] · y ds =

∫ 1

0

e · [D̄P2y] ds = e ·
∫ 1

0

r′ ds = e · r(1).
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4.2 The cone N(ū; Ω2)

The set Ω2 consists of u ∈ X for which the resulting rods have no self-intersections
and we easily see that this can be written, along the lines of (2.13), as an infinite
intersection of simpler sets. The sum rule [?, Cor.3.5, p.268] considers intersections
of two sets and so, by induction, finite intersections; indeed, we will use it in that
form in Subsection 4.4 below. However, results have apparently been unavailable for
infinite intersections as here so, motivated by the present application, Seidman [?]
studied normal cones of certain infinite intersections and obtained abstract results
directly applicable to the present situation. This enables us to follow [?] here in
computing N(r̄; Ω̂2) and so N(ū; Ω2).

We state the principal result of [?] in a notation easily adaptable to this paper:

Theorem 3 (Seidman [?, Thm. 3.1]). Let Z be a Banach space and Ψ a family of
(nonlinear) functionals ψ : Z ⊃ Û → R; fix z̄ ∈ Ω̂ =

⋂
ψ∈Ψ{z ∈ Z : ψ(z) ≥ 0} and,

for ω > 0, set Ψω = {ψ ∈ Ψ : ψ(z̄) ≤ ω}. Suppose

a. each ψ ∈ Ψ is differentiable on the open set Û ⊂ Z with the derivatives
{ψ′ : Û → Z∗ : ψ ∈ Ψ} equicontinuous at z̄ and

b. for some ω > 0 and some space Ẑ with Z ↪→ Ẑ, the Ẑ-closure of
Bω := {z ∈ Ẑ : 〈ψ′(z̄), z〉 ≥ 0 for all ψ ∈ Ψω} has nonempty interior in Ẑ .

Then the basic normal cone to Ω̂ at z̄ satisfies

N(z̄; Ω̂) ⊂
⋂
ω>0

cone {ψ′(z̄) ∈ Ẑ∗ : ψ ∈ Ψω} (4.8)

with N computed for Ω̂ ⊂ Z, but the closure of each cone taken in Ẑ∗.

[We have denoted by cone(S) the closed conical hull of S, i.e., the closed convex
hull of {aξ : ξ ∈ S, a > 0}, although that notation does not explicitly indicate the
norm used for this closure.]

Proof. This actually combines material presented in [?] as Theorem 3.1, Corol-
lary 4.1, and Theorem 4.3.

Theorem 4. Under our hypotheses on the constitutive functions, let r̄ = [R ◦D](ū)
for a local minimizer ū of (3.7) and let Ω̂2 = {r ∈ Z : (2.13)}. Then

N(r̄; Ω̂2) ⊂ Ξ =
⋂
ω>0

cone {ψ′(s,σ) ∈ Ẑ∗ : (s, σ) ∈ NLω} (4.9)
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where NLω = {(s, σ) ∈ NL : |r(s)− r(σ)| ≤ 2ρ+ ω} and Ẑ = C([0, 1]→ R3). [Note
that Ξ ⊂ Ẑ∗, a space of R3-valued Borel measures on [0, 1].] Also

N(ū; Ω2) ⊂ L∗ Ξ. (4.10)

Finally, each ξ ∈ Ξ is orthogonal to constants in X and is (pointwise in s) orthogonal
to the centerline.

Proof. Most of this result is a corollary to Theorem 3: we need only check the
hypotheses a,b of that theorem for this setting. With ψ = ψ(s,σ) as in (2.13), an
easy calculation gives

ψ′(r) =
dψ

dr
: r 7−→ r(s)− r(σ)

|r(s)− r(σ)|
· [r(s)− r(σ)]. (4.11)

so

‖ψ′(r)− ψ′(r̄)‖ ≤ 2

∥∥∥∥ r(s)− r(σ)

|r(s)− r(σ)|
− r̄(s)− r̄(σ)

|̄r(s)− r̄(σ)|

∥∥∥∥ .
Noting that r̄ ∈ Ω̂2 so |̄r(s) − r̄(σ)| ≥ 2ρ for each pair (s, σ) ∈ NL, we see that the
denominators are bounded away from 0 uniformly on the compact set NL ⊂ [0, 1]2

and for all r close to r̄ in Z or Ẑ. Thus we have the equicontinuity condition a even
for the Ẑ-norm.

We note next that ψ ∈ Ψω just means that ψ = ψ(s,σ) with (s, σ) ∈ NLω. For any

ω > 0 one gets from (4.11) that, using the Ẑ-norm,

〈ψ′(r̄), z〉 =
r̄(s)− r̄(σ)

|̄r(s)− r̄(σ)|
· [z(s)− z(σ)] ≥ |̄r(s)− r̄(σ)| − 2‖z − r̄‖Ẑ .

Thus, noting that r̄ satisfies the constraint so |̄r(s)− r̄(σ)| ≥ 2ρ for (s, σ) nonlocal,
we see that the convex set Bω contains the (open) Ẑ-ball of radius ρ and center r̄,
giving the qualification condition b. Applying Theorem 3 gives N(r̄; Ω̂2) ⊂ Ξ and
then N(ū; Ω2) = L∗N(r̄; Ω̂2) ⊂ L∗ Ξ by the chain rule.

If r is constant one has [r(s)− r(σ)] = 0 so then 〈ψ′(r), r〉 = 0 for any ψ = ψ(s,σ)

by (4.11). Each such ξ = ψ′(s,σ) ∈ Ξω is thus orthogonal to the 3-dimensional
subspace of constants in X ; we note that this then holds for multiples, sums and
limits so 〈ξ, r〉 = 0 for each ξ ∈ Ξ and each constant r.

Finally, we wish to show pointwise orthogonality to the centerline, i.e., that one
has ξ(s) ⊥ r̄′(s) for each s ∈ [0, 1] and each ξ ∈ Ξ. If ξ ∈ Ξ were of the special form
ψ′(s,σ) with the constraint active so |̄r(s)−r̄(σ)| = 2ρ for this pair (s, σ) ∈ NL, the fact

that |̄r(ŝ)− r̄(σ)| ≥ 2ρ for nearby ŝ makes s a minimizer of the distance from r̄(σ) so
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r̄′(s)· [̄r(s)− r̄(σ)] = 0, i.e., ξ(s) ⊥ r̄′(s); in view of (4.11), we are treating the measure
ξ near s as a vector delta function with direction [̄r(s) − r̄(σ)]. More generally, for
(s, σ) ∈ NLω, a slightly more delicate argument along the same lines shows that, in
the presence of a bound on r̄′′ = κ we have an estimate |̄r′(s) · [̄r(s)− r̄(σ)]| = O(ω)
uniform as ω → 0 which gives a corresponding estimate for ξ in the cone generated
by such ψ′(s,σ) for ψ ∈ Ψω. Taking limits and then letting ω → 0 gives the desired
result.

Remark 4. As noted, (3.2) does not permit external hard obstacles, but this pos-
sibility could be treated much as the prohibition against self-intersection was treated
here. Any hard external obstacle O, taken as a closed subset of R3, may be viewed
as a constraint: no point of the tube is to coincide with O. We then enforce this by
imposing a family of scalar constraints

For each [s,x] ∈ [0, 1]×O one has ψ[s,x][r] ≥ 0
where ψ[s,x][r] := |r(s)− x| − ρ (4.12)

much like (2.13) but now parametrized by s ∈ [0, 1],x ∈ O. If we let Ω̂3 = {r : (4.12)}
and Ω3 = {ũ : r = [R ◦ D](u) ∈ Ω̂3}, then one would expect to apply Theorem 3
as above. We do not address here any regularity requirements on the set O which
might be needed for this to be possible or the verification of a modified Lemma 4,
below.

4.3 The cones N(ū; Ω1r) and N(ū; Ω1D)

This subsection is concerned with constraints arising from the possible imposition
of boundary conditions at s = 1 as in (2.9). We consider separately constraints
involving D(1) and those involving r(1), with the obvious treatment of mixed cases
in which some combinations or partial specifications might be imposed.

If one were to specify D(1) = D1, then D̄ satisfies this so we are always specifying
D̂(1) = I. Except that we are viewing this as a constraint, this is much like the initial
condition at s = 0 and requires that variations D̂ vanish at s = 1 or, equivalently,
that each 〈η̂e,Ku〉 = e·y(1) should vanish for e ∈ R3. Letting Ω1,D = {u : D̂(u) = I},
corresponding to this specification, then gives the normal cone

N(ū; Ω1,D) = [Ω1,D]T = span {K∗η̂e : e ∈ R3} = TD (4.13)

if we impose such a condition. We then have TD = span {ωe : e = i, j, k}, using (4.6)
from Remark 3.
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Similarly,if one were to specify r(1) = r1, then the variations r must vanish at
s = 1, i.e., 〈ζe,Lu〉 = e · r(1) = 0 for each e ∈ R3. Letting Ω1,r = {u : RD(u) = r1},
corresponding to this specification, then gives the normal cone

N(ū; Ω1,r) = [Ω1,r]
T = span {L∗ζe : e ∈ R3} = Tr (4.14)

if we impose such a condition. We then have Tr = span {L∗ζe : e = i, j, k}, for which
we use (4.7) from Remark 3.

4.4 The Sum Rule

In this subsection, we relate the separate cones to the normal cone N(ū; Ω) with the
constrained set Ω = Ω1r ∩ Ω1D ∩ Ω2 and show that (4.1) holds. To this end we will
apply the sum rule [?, Cor.3.5,p.268] to get

N(ū; Ω1r ∩ Ω1D ∩ Ω2) = N(ū; Ω1r) +N(ū; Ω1D) +N(ū; Ω2), (4.15)

noting that we have already shown that

N(ū; Ω1r) = Tr, N(ū; Ω1D) = TD, N(ū; Ω2) ⊂ L∗Ξ (4.16)

in the previous subsections. Allowing for the various possibilities in (2.9), we write
T = Tr + TD.

Lemma 4. N(ū; Ω) ⊂ T + L∗Ξ.

Proof. To apply [?, Cor.3.5] for (4.15), it is sufficient to verify the qualification
condition:

If ω† ∈ N(ū; Ω1r), ω‡ ∈ N(ū; Ω1D), ω ∈ N(ū; Ω2)
with ω† + ω‡ + ω = 0,

then ω† = 0, ω‡ = 0, ω = 0.

(4.17)

Given (4.16) we have

ω† = L∗ζe† , ω‡ = K∗η̂e‡ , ω = L∗ξ

for some e†, e‡ ∈ R3 and some ξ ∈ Ξ. Since K∗ is injective by (4.2), we have
η̂e‡ + R̂∗[ζe† + ξ] = 0 as we know 0 = ω† + ω‡ + ω = K∗ ( η̂e‡ + R̂∗[ζe† + ξ] ). Note
that anything in the range of R̂∗ is a continuous function whereas η̂e‡ : y 7→ e‡ · y(1)
cannot be a function unless e‡ = 0. Thus ω‡ = 0 and 0 = ω† + ω = L∗(ζe† + ξ).
By the injectivity of L∗, we then have ζe† + ξ = 0. Taking r =constant= e†, we
have 〈ξ, r〉 = 0 by Theorem 4 while 〈ζe† , r〉 = |e†|2 so e† = 0 and ω† = 0, ω = 0.
This gives (4.17) whence [?, Cor.3.5] applies to give (4.15) and so the desired result
by (4.16).
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5 Optimality Conditions and Regularity

In this section, we derive necessary first-order optimality conditions

−Wu = t∗ + L∗[Fr + ξ∗] some t∗ ∈ T , some ξ∗ ∈ Ξ, (5.1)

(much like the KKT conditions for constrained optimization problems in finite-
dimensional settings) for an elastic rod with an impenetrable tube surrounding the
centerline, i.e., for (3.7).

We begin by computing E ′,for which the major new challenge is that our treatment
of (2.1) requires (3.4)c so, unlike the situation in [?] whereW was finite everywhere
in X , the domain of the functional W now has empty interior. We then use these
conditions to show regularity of the minimizer along the lines of [?, Theorem 5].

5.1 Computation of E ′

Lemma 5. Assume, in addition to (3.4), (3.2), that F (s, x) is smooth (in the vari-
ables s ∈ [0, 1] and x ∈ R3) and that W is locally smooth where finite. Then F is
Fréchet differentiable with F ′ = ∇uF given, as in [?, Lemma 7], by

∇uF = L∗[∇rF ] = L∗[Fr] (5.2)

where Fr is given pointwise as Fr(s, r̄(s)). The subdifferential ∂W of the convex
functionW is a singleton at each point whereW is finite, and this is given pointwise
by Wu = Wu(s, u(s)). Then

E ′ := ∇uE = Wu + L∗[Fr] (5.3)

with the right hand side interpreted as an R3-valued function of s ∈ [0, 1].

Proof. Since the argument of F (s, r̄(s)) is uniformly bounded, the assumed smooth-
ness easily justifies bringing differentiation under the integral sign so

〈∇rF , r〉 := lim
t→0

∫ 1

0

t−1[F (s, r(s) + tr(s))− F (s, r(s))] ds =

∫ 1

0

[
∂F

∂r
(s, r(s))

]
r(s) ds

and this is continuous in r, r so we have a Fréchet derivative∇rF = Fr. In considering
F [r] = F [R(D(u))], the chain rule then gives ∇uF = L∗[∇rF ].

From [?, Thm.1.93], we have ∂W [u] = {ξ ∈ X : W [u + u] − W [u] ≥ 〈ξ, u〉}.
We then easily verify that Wu(s) = [∂W/∂u](s, û(s)) is in ∂W [û] when W(û) <∞,
much as for the computation above of ∇rF (noting that the condition on ξ ∈ ∂W [u]
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is vacuous when u is such that W [u + u] =∞). To see that this is the only element
of ∂W [u], we note that we can always find subsets of X with dense span consisting
of u for which W [u + tu] <∞ for small |t|, e.g., bounded u with support where |ũ|
(the first two components of u) is bounded below 1/ρ. The limit argument shows
that 〈ξ −Wu,±u〉 ≤ 0 for all such u whence, in view of the strict convexity of each
W (s, ·), ξ = Wu and ∂W [u] is that singleton. Note that (3.4)c ensures that the
domain of W has empty interior in X so we cannot, at this point, claim that W ′[ū]
is continuous as a functional on X : we have only identified it pointwise as a function
of s ∈ [0, 1].

Finally, since F is certainly strictly differentiable in the sense of [?, Defn.1.13],
the sum rule [?, Prop.1.107(ii)] gives ∂E = ∂W +∇uF and so (5.3).

5.2 First order necessary conditions

In this subsection we show that the optimization condition

−E ′[ū] ∈ N(ū; Ω) (5.4)

holds at the constrained minimizer. Since we have already calculated E ′[ū] and
N(ū; Ω), this will provide the first order necessary conditions we desire.

This standard optimality condition (5.4) would be given by [?, Thm. 5.1, p.4] if
E [u] would be Fréchet differentiable near ū ∈ X or by [?, Prop.1.107(ii)] provided we
had strict differentiability. However, even strict differentiability (which would imply
a local Lipschitz condition) is impossible in the present context in view of (2.1) as
imposed by (3.4)c. [Our approach will be to replace the X -norm by a stronger X‡-
norm temporarily. This would be simpler if we already knew here that ū satisfied
(2.1) as a uniform strict inequality; this, indeed, will later be shown in Theorem 6,
but that proof relies on (5.4).]

Theorem 5. Under the hypotheses of Lemma 5 one has the first order necessary
condition (5.4) at the constrained minimizer ū.

Proof. We begin by setting E‡[u] = E [ū + u] and similarly shifting the constraint set.
It is immediate that E‡[u] is finite when

|ũ(s)| < α0(s) = 1/ρ− |˜̄u(s)|

(where we note that α0(s) > 0 except perhaps on some set of measure 0) with
u3(·) ∈ Lp. For each s where α0 6= 0 it is possible to take 0 < α(s) < α0(s) small
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enough to get differentiability of u 7→ W‡[u] = W [ū + u] at 0 (i.e., at u = ū(s))
uniformly in s with perturbations relative to α(s). We now define a norm

‖u‖‡ = sup
s∈[0,1]

{
|ũ(s)|
α(s)

}
+ ‖u3‖Lp(0,1) (5.5)

and the corresponding space X‡. This choice of the function α ensures that we
have strict differentiability of W with respect to this X‡-norm and already had
Fréchet differentiability of F with respect to the weaker X -norm. Thus, using [?,
Prop.1.107(ii)], we have (5.4) at the constrained minimizer ū in this context —
noting that the basic normal cone N(0; Ω − ū) is now computed in the context of
the dual space to X‡. On the other hand, we recall from Theorems 3 and 4 that

the cone N(r̄; Ω̂) can be equivalently computed in C∗ as noted in the analysis of
Section 4.

An immediate consequence of this and the analyses of Section 4 and Lemma 5 is
the first order necessary condition (5.1) for optimality.

5.3 Regularity

We continue to consider some specific (local) energy minimizer ū. In this subsection
we show some consequences of the first order necessary condition (5.1) obtained
above under the assumptions, in addition to (3.2), (3.4), that F is smooth and
that W is smooth where finite. In some sense, our principal result will be that the
curvature assumption (2.1) is never active as a constraint: the minimizer ū(·) is
continuous, with (3.4 c) ensuring that κ(·) remains uniformly bounded away from
1/ρ. Further regularity of ū, up to a point, then follows from a more careful look at
the cone Ξ and the usual bootstrap argument as in [?, Theorem 5].

We next wish to show that (2.1) will be satisfied with a (uniform) strict inequality.

Theorem 6. Assume (3.2), (3.4), that F is smooth and that W is smooth where
finite with invertible Hessian at each such s, u. Let ū be a solution of the constrained
minimization problem (3.7). Then ū(·) is a continuous function with (2.1) holding
uniformly on [0, 1]: κ is bounded below 1/ρ.

Proof. Looking at W (s, ·) on the infinite cylinder in R3 where it is finite, and set
µ = min{W} so µ ≤ cψ(0). In view of the assumed convexity, we have (for large
values of W ) that

|∇uW | ≥
∣∣∣∣∂W∂u3

∣∣∣∣ ≥ W − µ
|u3|

≥ b|u3|p − µ
|u3|

→ ∞ as |u3| → ∞
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with growth uniform in s, ũ, whence bounding |Wu| bounds |u3|. Similarly,

|∇uW | ≥
∣∣∣∣∂W∂κ

∣∣∣∣ ≥ W − µ
κ

≥ ψ(κ)− µ
κ

→∞ as κ→ 1/ρ

uniformly in s, θ, u3 so bounding |∇uW | also implies a (computable) bound away
from 1/ρ for κ.

Letting w(s) = Wu(s, ū(s)), we have, from (5.1), that w = t∗ + L∗[Fr + ξ∗] with
t∗ ∈ T and ξ∗ ∈ Ξ. From (4.13), (4.14), it is clear that t∗(·) must be (at least)
Lipschitzian and one also has at least this regularity for [L∗Fr](·). Since Theorem 4
gives Ξ ⊂ [C([0, 1] → R3)]∗, a space of finite Borel measures, one must have R∗ξ
bounded for any measure ξ ∈ Ξ so L∗ξ∗ is again Lipschitzian. It follows that
w(·) must be a (Lipschitz) continuous function on [0, 1]. In particular, this bounds
w = ∇uW on [0, 1] so the estimates above apply to bound u3 and to bound κ
below 1/ρ.

Thus we have shown that (2.1) is never active as a constraint and that ū takes
its values in a compact set where W is smooth. At each s ∈ [0, 1] the invertibility
of the Hessian ensures, by the Implicit Function Theorem, that we can locally solve
the defining equation w(s) = Wu(s, ū(s)) for ū(s) as a continuous function of s, w(s)
so ū is a continuous function of s as asserted.

We next note that ξ∗ in (5.1) has the interpretation of forces on the rod due to
the constraint against self-intersection, i.e., contact forces. It should not, then, be
surprising that they are restricted to the contact set C = C(r̄) of (2.17).

Lemma 6. Each ξ ∈ Ξ is a vector Borel measure whose support (in the sense of
distributions) lies in the contact set.

Proof. From Theorem 4 we have that Ξ is in Ẑ∗ = [C([0, 1] → R3)]∗, a space of
vector Borel measures and we must localize the support of ξ ∈ Ξ. To this end, let
I be any open subinterval in the complement of C and let φ be any (vector-valued)
smooth function with (compact) support I∗ ⊂ I. We must show that 〈ξ, φ〉 = 0 for
such φ.

Let ω∗ = [inf{d∗(s) : s ∈ I∗} − 2ρ] with d∗ as in (2.16); this is attained as a
minimum since d∗ is lower semicontinuous and I∗ is compact. Since I∗ is disjoint
from C(r̄), we must have ω∗ > 0. For any (s, σ) ∈ NLω with 0 < ω < ω∗ we will
then have s, σ 6∈ I∗ so φ(s) = 0, φ(σ) = 0 so we have 〈ψ′, φ〉 = 0 for each such
ψ′ ∈ {ψ′(s,σ) : (s, σ) ∈ NLω}. As in the proof of Theorem 4, we note that this

orthogonality then also holds for multiples, sums and limits so 〈ξ, φ〉 = 0 for all
ξ ∈ Ξ . Since φ is an arbitrary test function with support in the complement of C,
we have demonstrated that the support of ξ lies in C.
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In [?, Theorem 5] a bootstrapping argument was used to obtain further regularity
of the minimizer ū in that setting. While we again use an argument of that nature,
we are now limited by the localized regularity of ξ∗ ∈ Ξ as above.

Theorem 7. Under the hypotheses of Theorem 6, the minimizer ū will be will be a
continuously differentiable function on [0, 1], indeed, with ū′ ∈ BV . Further, ū will
be infinitely differentiable (to the extent that the regularity of F,W supports this)
on the complement of the contact set, i.e., on the open intervals between contact
points. In each case there will be corresponding regularity of the frame D̄ and of the
centerline r̄.

Proof. This is essentially a corollary to Theorem 6 and Lemma 6 and a continuation
of the proof of Theorem 6, from which we recall, in particular, that the standard
bootstrapping argument gives regularity of ū to be the same (supported by the
regularity of W ) as the regularity of

Wu(·, ū(·)) = w(·) = t∗ + L∗[f∗ + ξ∗].

Using (5.4), we have here t∗ ∈ T given by (4.6), (4.7) and f∗ = Fr(·, r̄(·)) with,
finally, the self-contact forces ξ∗ ∈ Ξ.

From (4.6), (4.7) we have t′∗ = t∗ × ū − η̂ — with η̂ = 0 and t∗(1) = e or with
η̂ = P2

TD̄Te and t∗(1) = 0 or a combination, so t′∗ is at least as smooth as ū. Thus,
the t∗ term does not limit regularity. Also, since f∗ has regularity comparable to
that of r̄ = R(D(ū)), the regularity of (f∗ + ξ∗) is dominated by that of ξ∗ ∈ Ξ.

Globally on [0, 1] we note from Theorem 4 that ξ∗ ∈ Ξ ⊂ [C([0, 1] → R3)]∗,
a space of vector Borel measures. Using (4.5) (and noting Remark 3 in case the
measure ξ∗ might have an atom at s = 1), we get the integral z(·) in BV so, as
D̄ is at least in Y , η̂ = R∗ξ∗ is also in BV . Using (4.4) gives ω = K∗η̂ satisfying
ω′ = ω × ū− η̂ and we have seen that the regularity of ū matches that of ω = L∗ξ∗,
hence gives ū′ with the regularity of η̂ ∈ BV as asserted.

This argument localizes as the differential equations involved can be restricted to
any open set. In particular, the contact set is closed so its complement consists of
open intervals and we have ξ∗ ≡ 0 on each of these by Theorem 4. Thus, the same
argument used above can there proceed indefinitely, subject only to the regularity
of the constitutive functions W,F , to give an arbitrary level of differentiability for
the restriction of ū.

Remark 5. Observe that Theorem 4 has shown that, pointwise, these forces are
orthogonal to the centerline and also, since they are orthogonal to constants, that
the total internal force must vanish. These results and Theorem 7 are consistent
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with previous work by Schuricht and von der Mosel [?] on this problem with periodic
boundary conditions.
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