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Abstract

In the classic theory of elastic rods, two non-adjacent points along the rod
may upon contact occupy the same physical space. We develop an elastic
rod model with a pairwise repulsive potential such that if two non-adjacent
points along the rod are close in physical space, there is an energy barrier that
prevents contact. For adjacent pairs, the repulsive potential is negligible and
the elastic rod is described by a classical elastic rod model. The framework
for this model is developed to prove the existence of minimizers within each
homotopy class, where the idea of topological homotopy of a curve is gener-
alized to a framed curve, or an elastic rod. Finally, the first-order necessary
conditions are derived.

1 Introduction

Although a focus of scientific study for centuries, much of the scientific literature
on elastic rod theory has neglected the contact problem, formally permitting rods
to have self-intersecting configurations: for ‘almost straight’ rods this neglect is
nugatory while incorporating the contact forces is an analytically challenging and
computationally expensive task.

Recently there has been increased interest in elastic rod theories which go be-
yond the classical theory and eliminate the possibility of self-penetration. Elastic
rod theory is typically formulated in terms of an energy functional whose minima
correspond to stable equilibria. Generally, such models fall into one of two cate-
gories: soft contact techniques by pairwise repulsive potentials, which are naturally
singular, and the hard contact approach, in which a tubular neighborhood surrounds
the centerline of the curve imposing a fixed positive thickness p. This paper falls
into the first of these categories, developing an appropriate pairwise repulsive po-
tential to model the impenetrability of the rod. This paper is concerned with the



existence of minima of elastic rod energies using these pairwise repulsive potentials.
Building on classical existence results (see, for example, [1, 2, 3, 4, 6, 8]), we prove
the existence of minima within each homotopy class while extending the traditional
definition of homotopy of a curve to framed curves, or elastic rods. We also develop
the consequent nonlocal equilibrium equations and discuss regularity.

The hard contact model is challenging because of the discontinuities arising at
the boundary of the contact region. Schuricht [28, 29, 30, 19] and collaborators have
used the Clarke derivative to overcome these analytical challenges, focusing on three
dimensional elastic bodies. Gonzalez et al. [15, 16] developed the idea of a global
radius of curvature. They consider the circumcircle radius as a function of three
points on the curve, which they call the global radius of curvature function. The
constraint on the radius of the centerline is then given by a prescribed positive lower
bound on the global radius of curvature function as one varies among all possible
triplets of distinct points along the curve (compare Lemma 2). Their formulation
is an analytically tractable notion of ‘hard contact’ and has inspired a sequence
of papers addressing various existence and regularity questions of this formulation
7,31, 36]. Coleman and Swigon [10, 9] developed tests on the second-order variation
to determine which equilibria correspond to minima for elastic rod models where
opposing forces are introduced at points of self-contact, whereas van der Heijden et
al. [37] focus on finding bifurcation diagrams that identify and classify “jump phe-
nomena” at points of self-contact. Starostin [35] has investigated the computation
of non-penetrating equilibria by assembling them from simple loop elements and
exploiting the symmetries of the problem; in particular cases, the problem admits
an analytic solution [34]. Delrow [11] investigates the validity of the hard contact
assumption in an elastic model of DNA with Coulomb interactions. Strzelecki et
al. [36] studied an energy functional that includes the elastic potential energy and a
contact term intermediate between pairwise repulsive potentials and hard obstacle
conditions; they further develop the conditions under which existence of minimizers
is guaranteed within a given homotopy class.

Where most of the literature on contact of elastic rods has focused on the hard
contact problem, it is interesting to note that knot theorists have created a signif-
icant literature using the soft contact approach. Knot theorists seek optimal knot
representatives as energy minimizers within a given knot class [14, 33, 26, 21|. Exis-
tence and regularity results exist for the well-known O’Hara knot energy for inverse
square repulsive potentials [26]; similar results in higher dimensions have been devel-
oped by [24]. The pairwise repulsive potentials considered by knot theorists can also
be used to model soft contact of elastic rods; however the existence and regularity
results will vary due to the elastic potential energy included in the energy functional



of the elastic rods that is not present in knot energies.

In this paper, as noted above, we focus on developing a general soft contact
model involving a pairwise repulsive energy that imposes an increasingly large energy
barrier when two non-adjacent points along the rod become closer to each other in
space. Our approach may be viewed as a penalty function approach to the hard
contact problem, yet also can closely reflect the physics of the problem by choice of
the energy penalty. Several physically motivated potential functions are plausible
choices, such as Coulomb electrostatic repulsion, a Lennard-Jones potential, or the
Debye-Huckle potential, but we will not make any specific selection.

The article is organized as follows. Section 2 contains a brief review of some
geometric aspects of the theory of elastic rods, discusses geometric estimates for
self-contact and defines rod homotopy. Section 3 contains the energy formulation in
terms of the internal and external potentials, but also further classifies the internal
energy as either local (classical) or non-local. Assumptions required for the existence
theorem are presented and discussed in section 3. Well-posedness of the problem
is discussed in section 4 for the total energy developed in section 3: an existence
theorem is formulated and proved and continuous dependence on data is discussed.
Section 5 derives the first-order necessary conditions. Section 6 considers existence
in a setting, corresponding to coupling with temperature dependent material prop-
erties, in which the local internal energy function is not convex when expressed in
terms of the strains and section 7 concludes with a discussion of the results obtained
and some further considerations.

2 Problem Formulation: Geometry

This section considers only the geometry of the rod and is independent of the physics.
The physical properties of the rod model enter only in connection with the energy
functional and its constitutive functions and we defer our discussion of those issues to
the next section. We have chosen to include here not only a geometric description
of elastic rod theory, but also other topics which rely only on the geometry of
the problem and not on the underlying physics. Examples include the idea of rod
homotopies and a nonlocality inequality.

2.1 The Cosserat Rod Description

We wish to consider a (possibly) nonlinear elastic rod model that is geometrically
exact for large deformations of inextensible and unshearable elastic rods. This is a
special case of the special Cosserat theory of rods. A comprehensive discussion of



the Cosserat theory can be found in [5] and we present here only a brief description
of the geometrical ideas designed to set notation.

The configuration of a rod is here described by a centerline s — r(s) (which we
write as a function of arc length s along the rod, assuming units chosen so 0 < s < 1)
and a set q(s) = {di(s),dz(s),ds(s)} of directors forming an orthonormal frame
describing the orientation of the cross-section of the rod. [At this point we might
introduce a tubular radius p > 0 for the rod, but this plays no role in the Cosserat
description so the idealization p = 0 is admissible for our theory.] We take di,ds
as attached to the cross-section with d3 = d; x ds so each q(s) is a 3 X 3 matrix in
SO(3). Without loss of generality we may assume our coordinate system has been
chosen so

q(0) =1 r(0) = 0. (2.1)

For convenience we restrict our attention to inextensible and unshearable rods
for which the third director d3 coincides with the tangent vector to the centerline:

ds(s) = r'(s). (2.2)

[Our results could be extended to include both shearable and extensible rods, but the
assumption (2.2) substantially simplifies some of the arguments. This assumption
further restricts the special Cosserat rod theory.]

The assumed orthonormality of the directors {d;(s)} implies the existence of a
(Darboux) vector u(s), definable by the relation

di(s) = u(s) x d;(s) (i=1,2,3) (2.3)
and we then express u(s) in the local rod frame with coefficients u; so

u;(s) = u(s) - d;(s) giving u = 3;u;d; = qU (2.4)
with U = wyi + Ugj + usk = (Ul, Ug,Ug)T € R3. ‘

These u; are the strains in the model and we have the descriptive construction:
configuration — strains: (q,r) — U.

One advantage of the Cosserat theory is that this descriptor U(s) of the strains
automatically has the appropriate frame indifference.
Now introduce S : U — [Ux] as a skew matrix so

(75} 0 —UuUs U9
SR > M=M>3 | uy | ug 0 —uyg . (2.5)
us — U2 U1 0



With U(+) given, the definition (2.3) of u then becomes the linear differential equation

q =qUxqg=qS().

The map: configuration —— strains described above can be inverted by solving
the pair of differential equations (2.2) and (2.3) along the rod:

q =qS(U) r =d; =qk for 0 <s<1 (2.6)
with the initial conditions (2.1). We define the maps

Q:U() = a(): L*[0,1] = R®) — H'([0,1] — M) 2.7)

R:q()—r(): HY([0,1] — &) — H*([0,1] — R°), '
by adjoining (2.1) to (2.6). The next section 2.2 contains a proof of the continuity
and differentiability properties of these maps.

We conclude this subsection with the remark that equation (2.1) specifies the
boundary conditions at the s = 0 end of the rod, but boundary conditions at the
s = 1 end of the rod may further be imposed to complete the formulation and any
such conditions on q,r at s = 1 (or elsewhere) remain as constraints on U(-). There
are numerous relevant possibilities at s = 1 — for example:

e a free end with no further conditions imposed

e specification r(1) = r; with r; # 0 (either imposing conditions q(1) = ¢4, or
leaving the rotation at s = 1 free)

e periodicity conditions (so r(1) = 0,q(1) = I) — in which case we use a mod 1
interpretation of A = s — 0.

Except for details of the proof of Theorem 2, our analysis remains independent of
any particular choice of boundary conditions at s = 1, but these seem the most
plausible alternatives.

2.2 Properties of Q and R

In order to prove existence, and to develop conditions for optimality and regularity
of the solutions, we establish properties of the maps Q and R. Not commonly used
in the theory of elastic rods, but convenient in this setting, is the Frobenius inner
product and adjoints, which is described here.



For matrices in the space M = M?3*3 of 3 x 3 matrices we will use the Frobenius
inner product [M : N|p =tr( MTN) and the induced Frobenius norm (Euclidean
norm on R? ~ M3*3). Tt is not difficult to see from (2.5) that

[aS(U)|r* = [S(U)|r" = [u x qlr” = 2[ul” = 2|UJ". (2.8)

Thus, S/v/2 and U — qS(U)/v/2 are isometries and each U — q(s)S(U), which
we may think of as a 3 x 9 matrix, is invertible from its range: the 3-dimensional
tangent space at q(s) to SO(3) C M3*3.

We will also need two Frobenius adjoints. For a map A : M — M we have
the usual adjoint A*F so [A*F(L) : M]r = [L : AM]p; in particular, for right
multiplication by X € M (ie., R(X) : M — MX) the adjoint [R(X)]*! is the
unique map: M — M such that

[[RXO]F(L) : M]p = [L: MX]p.

[It seems inconveniently messy to work this out explicitly, e.g., as a matrix; for left
multiplication, on the other hand, if A : M — XM, then [A(X)]* : L — XTL]
Second, for the linear map S : R* — M we write S*F for the unique map: M — R?
such that

S*E(M) -2 =[M:S(x)]r (2.9)

Theorem 1. The map Q : U(:) — q(-) defined by (2.6) with boundary conditions
(2.1) is continuous as in (2.7). We have |q'(s)|r = V2 |U(s)| as in (2.8) and the map
Q is continuously invertible from H'([0,1] — SO(3)) to L*([0,1] — R?). Further,
Q is Fréchet differentiable with

Q'(U) =dQ/dU : L*([0,1] — R*) — H*([0,1] — M) :u+ q (2.10)
where ¢ = Q'(U) u is the solution on [0, 1] of the linearized equation
q' =qS(U) +aS(w), q(0) = 0. (2.11)

Finally, Q is continuous (and so mecessarily compact) from the weak topology of
L*([0,1] — R?) to C([0,1] — M).

Proof. We begin with (2.8) so Q is as in (2.7). The continuity and differentiability
of Q are standard for these spaces, using the Gronwall inequality for differences,
etc., noting that q(s) € SO(3) is uniformly bounded. [We may observe in passing
that q(s) is necessarily in the tangent space to SO(3) at q(s) and thus will have the



form q(s) = q(s) S(3(s)).] Invertibility follows from the invertibility of S from its
range and the uniform invertibility of q(s).

The continuity from the weak topology is more interesting. Suppose Up — U in
L%([0,1] — R®) and let the functions q, = Q(Uy) be obtained from Uy, by (2.6) with
(2.1); similarly, let q = Q(U). Since {||Ui||} is bounded, so is {||d,| = v2||Uk||},
whence we may extract a subsequence such that q, — q in C([0,1] — M?3*3) for
some q. For each s and any M € M3*3, the differential equation, integrated, gives

M quls) —Tp = / M - 4 S(Ug(0)) |7 do

- /0 10(0), Up(0)) do using (2.9)
= <MZ> Uk:>
where (o) = x0.s(0)S"F (ar(0)"M) € R

Similarly, we set ji°(0) = x0.s(0)S*(q(c)T M) and note that, since q; — q uni-
formly on [0, 1], we have uj — f° uniformly whence

(M qi(s) = 1Jp = (i, Ur) — (p°,U) =[M :q(s) —I]F.

Since this holds for each M and for each s, we see that q satisfies pointwise

d(s) =T+ / (o) S(U(0)) do

so q is the unique solution q of the initial value problem of (2.6), (2.1). The
uniqueness also ensures irrelevance of the possible subsequence extraction above so
Ur — U implies qx = Q(Ux) — Q(U) in the indicated sense. O

Corollary 1. The linear map R is clearly continuous from L*([0,1] — M) to
H'([0,1] — R?); noting that (2.3) and (2.2) give " = dj, it is also continuous from
HY([0,1] — M) to H*([0,1] — R?®). The composed map R o Q : U(-) — r(-) is
continuous and compact to C*([0,1] — M) from the weak topology of L*([0,1] —
R?).

We write L = d[R o Q]/dU = RQ/, evaluated at some arbitrary U € R® and
proceed to compute the adjoint maps R* and [Q']* to obtain L* = [Q']*R*. For
v = Lu = Rq, we have dr(s)/ds = q(s)k with q satisfying (2.11) and we have
v = [qS(U)]k € L?*([0,1] — R%*) so Lu = v € H?*([0,1] — R?). By duality we



immediately get L*v in L%([0,1] — R?) for any v in H~2([0,1] — R?) but we will
want to consider v € L?([0,1] — R*). One easily verifies that

(v:1) = /Olv'q/dsz/olw'q“:/ol[wzq]FdS (212)

1
where w(s)= [ v w = (0,0,w).

We then have the following.

Lemma 1. The adjoint operator L* is given by
[L*v](s) = S [a" (s)O(s)] (2.13)
where the M-valued function © is obtained from v, using (2.12), as the solution of
—0' = [R(S(U(s))]*'O + w(s) O(1) =0. (2.14)
Forv e H7'([0,1] — R?), we then have L*v € H'([0,1] — R?*) C C([0,1] — R?).
Proof. We have
1
(v,LU) :/ (w :q|pds
0
1
= / [0 — (AS(U)*FO : q]pds
01 1
:/ ©:q]rds —/ [(AS(U))*F'O : q|rds
01 0 1
= / ©:qS(U) +qS(u)]rds —/ [(AS(U))*'O : q|pds
0, ) 0
:/ ('O : S(u)]rds :/ S*(q"O) - u ds,
0 0
which gives (2.13). For v € H7'([0,1] — R?), we have w € L*([0,1] — M); since
we know U € L*([0,1] — R?), we also have [R(S(U))]*" € L?*([0,1] — L(M))
whence the solution © of (2.14) is in H'([0,1] — M). Since we also know that

q = Q) € H! for U € L2 it follows that the product q'© is in H! whence
S*F(q'O) = L*v is in H! as asserted. O



2.3 A Nonlocality Inequality

Crucial to our approach will be an ability to distinguish effectively between para-
metric distances A (along the rod) and physical distances D between elements:

A=ls—al, D= D(s,0) = [r(s) —r(0)]
(necessarily with D < A since we have required inextensibility so |r'| = 1).

Lemma 2. For any s,o € [0, 1] we have

A > |r(o) — r(s)| > (1 VA3 Hr”H) A. (2.15)

Proof. Without loss of generality, we assume o > s s0 A = o0 —s > 0. To see (2.15),
one need only note that A > D by inextensibility and

r(o) —[r(s) + Ar'(s)] = /0 (A—3)r"(5)ds  with

A 1/2
s[/ (A—é)?dé] Il = /A3 )

A (2.16)
/0 (A —38)r"(8)ds

so [D| > |Ar| — ‘fOA(A —8)%r”

, giving (2.15). O

With U bounded in L?([0,1] — R?), this means that there is a well-defined gap
between the case in which elements are physically close (D < 1) just because they
are very close along the rod (local propinquity) and those possible cases in which
elements might be physically close in space despite having a significant parametric
separation. With a somewhat arbitrary choice of 0 < ¥ < 1, we define this nonlocal
propinquity more precisely by

D < 9A (2.17)

and then note, as a consequence of Lemma 2, that (2.17) is only possible subject to
a lower bound A; > 0 on the parametric distance:

3(1 —9)?
It is then possible to define, as a functional on U(-),
D, =min{D(s,0) : D < YA}, (2.19)



somewhat arbitrarily setting D, = 1 if, as in the classical setting, there is no nonlocal
interaction and this set is empty; otherwise, note that {(s,o) € [0,1]* : |s—0a| > Ay}
is compact so the minimum in (2.19) is attained.

For expository simplicity, we will be idealizing the cross-sectional radius as p =0
so D, = 0 means self-intersection/interpenetration. We refer to D, as the margin
of separation or clearance, when this is positive.

At this point, we can define an admissible triple.

Definition 1. An admissible triple [U, q,r] satisfies

a. U e L*([0,1] — R®) with g = Q(U), r = R(q) so q € H([0,1] — M?>*?) and
r € H*([0,1] — R?)

b. any specified boundary conditions at s = 1 are satisfied
c. D, >0 sor has no self-intersection.
We also define convergence of a sequence of admissible triples.

Definition 2. A sequence of admissible triples converges [Ug, qr, Tr] — [Uso, Qoos Foo)
provided

a. Uy — Uy, 50 Qi — Qoo uniformly and vy — ro in C1([0,1] — R?)

b. there is a uniform positive lower bound on the margins of separation.
Note that this definition implies admissibility of the limit triple.

2.4 Rod Homotopy

In this subsection, we develop the idea of a rod homotopy, noting that the classical
definition of a homotopy from one curve, for instance the centerline r of an elastic
rod, to another is not adequate to define a homotopy between two elastic rod config-
urations because for rods we also want the directors and the strains to be considered.
Thus, emphasizing (2.6), we define a rod homotopy as follows:

Definition 3. A rod homotopy joining [U,q,¥] to [U,q, r] is a map: t — q(-, 1)
inducing a map: t — [U(-,t),q(-,t),r(-,t)] such that:

a. each [U(-,t),q(+,t),r(-,t)] is an admissible triple, as in Definition 1

b. the map t — q(-,t) is continuous from [0, 1] to C([0,1] — SO(3))

10



C. CI('v O) = EI() and q('? 1) = (Al()

d. q(-,t) is bounded (uniformly in t) in H'([0,1] — SO(3)); equivalently, U(-,t)
is uniformly bounded in L*([0,1] — R?)

e. we require that D, > 0 through the homotopy (uniformly int) so r(-,t) has no
self-intersections and there is a uniform lower bound on the clearance.

With this definition, we can state the following theorem.

Theorem 2. Let [U,q,T] be a specified admissible triple. Then there is a neigh-
borhood N of q(-) in C([0,1] — SO(3)) such that any [U,q,t] with q € N is rod
homotopic to [U,q,T].

Proof. Due to the separate treatment of various boundary conditions which might
be imposed at s = 1, the proof is long so we defer it to §8.1. [

Corollary 2. Fach rod homotopy class of admissible triples is closed with respect
to the topology of Definition 3.

Proof. Suppose [Ug, qx, rx] — [U,q, 1| with each [Ug, qx, rx] an admissible triple in
the same rod homotopy class. Convergence ensures, for each large enough £, that qi
will be in the neighborhood N of q given by Theorem 2. The theorem then applies
with [U, ,] = [Ug, qx, ri] to show that the limit is also in the class. O

3 Problem Formulation: Energy

As in classical continuum mechanics, we consider only short-range interactions acting
over short distances, say, comparable to the length scale of the rod cross section.
Unlike the classical formulation, which only takes into account interactions involving
pairs of elements with s, o close to each other along the rod, we now include also
any short-range nonlocal interactions involving pairs of elements with s, o far apart
along the rod, but with r(s), r(o) close to each other physically. [In this formulation,
as is consistent with the Cosserat rod model, we are requiring that these elements
remain attached to their relative positions along the rod — excluding, for example,
the direct consideration of a conductive rod in which binary interactions involve
charges that are then forced to re-adjust their distribution along the rod.]

Fairly standard hypotheses on the classical component of the internal energy will
provide a bound on [[r”|| and then Lemma 2 shows that we need not consider any
intermediate scales.

11



Our approach to these distinct situations will be to use the integral formulation:

/01 /01 a(s,0,1(s), (o)) ds do, (3.1)

integrating the contributions of binary interactions between pairs of differential el-
ements of the rod, ds with do, in treating nonlocal interactions.

The local internal potential energy contribution should be the part of the energy
cost due to local deformation of the rod when one would deform to U from an
unstressed reference configuration specified by U(s) [For a naturally straight rod,
the unstressed configuration function would be U = 0. Our formulation is general
enough to include U(s) = (0 as well as naturally anisotropic and non-uniform elastic
rods.]

For very small |s — o| it is convenient to expess the deformation in terms of the
difference quotient [r(s) — r(o))]/[s — o] and go to the limit as an approximation
so g(s,0,r(s),r(0)) becomes written in terms of r'. Phenomenologically, this local
internal potential energy contribution W will be the standard elastic energy, given
as usual by integrating a (material-dependent) strain energy density function:

W:/o W(s,U(s)) ds. (3.2)

Note that W (s, -) at each point along the rod is here a function only of the strain U,
although perhaps depending on the material properties associated with that point.
[Later, in subsection 6, we will consider a possibly interesting generalization of this.]
Thus, we view the internal energy of the rod as the sum of two distinct pieces: the
classical local potential energy VW and a specifically nonlocal potential energy G.

Since the forces are short-range, there can be a nonlocal contribution to the
total internal potential energy only when distinct segments of the elastic rod have
sufficiently small separation that the rod almost intersects itself. In this case, the
classical interpretation of the internal forces as an appropriate derivative of the
energy function is no longer valid (since s > ¢). When the margin of separation of
the rod is large as in the classical analysis, the contribution of the nonlocal portion
of the internal potential energy becomes negligible and the total internal potential
energy then properly given entirely by the classical formulation.

The idea of including nonlocal binary interactions in the potential energy of a
continuum model is not new and has been investigated in solid mechanics [23, 27].
Our formulation is similar in spirit to the peridynamic formulation proposed by
Silling [32], which includes nonlocal binary terms over a length scale called a horizon.
In contrast to the peridynamic formulation which includes long-range forces, the

12



binary interactions in our model involve only short-range forces. It has been shown
in the peridynamic literature that in the limit as the horizon goes to zero (i.e., in
the limit of short-range local interactions), the peridynamic model converges to the
classical continuum elastic model [13, 25]; We take this as justifying our use of the
classical elastic potential for purely local interaction.

3.1 Nonlocal Internal Potential Energy

We assume, for simplicity, that the nonlocal contribution to the internal potential
energy depends only on the physical distance D = D(s,0) = |r(s) — r(o)| between
pairs of non-adjacent points along the elastic rod. In some sense, the integral in
(3.2) is replacing the integration in (3.1) near the diagonal of [0,1] x [0, 1] without
requiring us to model truly local interactions in that binary form; compare [13, 25].
Thus the nonlocal internal energy takes the form:

G = // (s,0,D(s,0)) ds do, (3.3)

where the constitutive function G : xRy — [—Bq, 00] is lower semi-continuous
with respect to D. Note that we are allowmg negative values (bounded below by
—0B¢ < 0) for the constitutive function G since we do not wish to exclude consid-
eration of, e.g., the Lennard-Jones potential. We are also allowing the value +oo
for GG, see subsection 3.2.

3.2 Soft Contact and a Clearance Inequality

For G to be a realistic physical model which prohibits self-penetration of the elastic
rod, we must ensure that with finite energy the rod cannot self-intersect. [For a
homotopy or a dynamic model we similarly want it unable to pass through itself;
compare Definition 4.] Thus, G should provide an infinite energy barrier as D — 0+.
We are primarily concerned with soft contact models, characterized by the imposition
of a condition on the constitutive function G under which an upper bound on the
energy implies a positive lower bound on the margin of clearance for the physical
separation: very near contact requires very large energy. To this end, we introduce
the nonincreasing function

v(r) =~(r;G) =inf {G(s,0,D) : 0< D <r, |s—0c|>D/o} (3.4)
and ask, as a condition on G, that v(-; G) satisfies

/Oa ry(r)dr = +o0. (3.5)

+
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Lemma 3. Let G be such that (3.5) holds. Then there is a positive function 0, such
that G < ¢ implies D, > 6,(c) > 0, i.e., for all nonlocal pairs (s,o) one would have
a positive clearance: |r(s) —r(o)| > d.(c) > 0.

We actually work with the inverse function 0 +— ¢.(J), showing that if nonlocal
segments of the rod were to approach each other to give D < ¢, then we must have
G > ¢.(d) with ¢.(d) — o0 as § — 0+ so a bound G < ¢ provides a positive lower
bound d(c) on the clearance between the rod segments.

Proof. Suppose 0 < D, = |r(a) — r(8)| < § with (o, 3) nonlocal. We assume, for
convenience, that (a+ s, 34 o) is also nonlocal for r = v/s2 + 02 < a and note that
r(a+5) — r(@)] < Js|, [e(3+0) — x(8)| < |o] s0 D(a+s,3+0) < (5+V2r) and
G(a+s,8+0,D)>~(0+v2r). Hence,

g 2// Gla+s,+0,D)dsdo
0<r<a
a/V2

2 a
z/ /7(6+\/§r>7*d7*d0:77/ (6 4 7) 7 dF.
0 0 0

+

Now the condition (3.5) implies that this last integral goes monotonically to 400 as
0 — 0+, which is exactly sufficient to obtain the desired conclusion. O]

Somewhat complementarily to (3.5), we will also ask that
G(s,0,D)=0 for D> Dy>0 (3.6)

to emphasize that we are concerned only with short-range forces here, where, as
with 0, the cutoff Dy < 1 is selected somewhat arbitrarily. With a concern for
Lemma 2, (3.6) serves to make a convenient separation between our treatments
of local and nonlocal interactions. The precise nature of this cutoff is not really
significant for our model, but of course any specific choice of Dy means a possible
neglect of some real interaction so the model may lose contact with reality at very
high energy levels.

Note that the condition (3.5) holds for each of the potentials we have mentioned
— Coulomb, Lennard-Jones, and Debye-Huckle. The complementary condition (3.6)
does not hold automatically for these empirical potentials, but they already become
quite small when not very far from their singularity so this makes only a minor
change and we can easily enforce it, e.g., multiplying by a smooth cutoff function
which is identically 1 for very small D, decreasing to be 0 for D > D,.
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We remark that one might characterize a hard contact model from this perspective
as requiring

=400 for D < p,
p >0, G(s,o,D){ <C<oo forD>p. (3.7)

3.3 Total Energy

The total energy functional consists of the internal potential energy (which we have
split into a sum of local and nonlocal terms) and any external potential energy in
the system — here assumed to have the form

Flr] :/0 F(s,r(s)) ds (3.8)

where, for convenience, we have implicitly assumed some symmetry of the rod about
its centerline in taking each F(s,-) to depend only on r(s) and not also on q(s).

As noted earlier, the local internal potential energy contribution is given by (3.2),
integrating a (material-dependent) strain energy density function W. At this point,
our only hypothesis regarding the constitutive function W is a coercivity condition:
|U| =00 = W — o0 so abound on W then bounds |[r”||. Sufficient for this
coercivity condition would be a requirement that

W(s,U) > alU] — b (3.9)

for some positive constants a, b.
Combining the local, nonlocal and external contributions, the total energy & of
the elastic rod is

Wh  + Glr] + Fli]

E= L .
/0 {W(S,U(S)) +/0 G(s,0,|r(c) —r(s))do + F(S,r(s))] ds.

(3.10)

One may, of course, write &€ = £[U] since r = RQ(U). The form (3.10) differs from
the standard form precisely by its inclusion of the nonlocal term G.
We impose the following assumptions on the constitutive functions W, F, G.
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Q

. Each of the functions W, G, F' is lower semicontinuous.

b. W:[0,1] x R* — [, 00] is convex in its second vari-
(H) able and satisfies the coercivity condition (3.9)

c. G:[0,1)> x Ry — [—fg, oo] satisfies (3.5) and (3.6).

d. F:[0,1] x R® — R is bounded below on bounded sets.

Lemma 4. If the constitutive functions W, F, G satisfy the hypotheses (H), then the
energy functionals W, F,G satisfy

a. W: L*([0,1] — R*) — [~Bw, 0] is coercive and is lower
semicontinuous from the weak topology

(H) b. G:C([0,1] — R*) — [~fq, 0] is lower semicontinuous.

c. F:0([0,1] — R?) — [B, 00| is lower semicontinuous.

Proof. 1t is standard that the properties (a,b,c) in (H) follow from the lower semi-
continuity and, respectively, the corresponding properties (b,c,d) in (H) for each of
the constitutive functions. O]

If we strengthen these hypotheses slightly, additionally requiring that

a. W[U] is bounded if ||U]| is bounded in L?([0,1] — R?)
(H') | b. G is continuous near each r where G[r] < oo

c. F is continuous

then we can introduce a somewhat stronger homotopy notion:

Definition 4. A strong rod homotopy is a rod homotopy: t — [U(-,t),q(-,t),r(-, )]
for which the condition (d.) of Definition 3 is replaced by the requirement that the
total energy E[U(+,t)] should be bounded uniformly in t € [0, 1].

Theorem 3. Assume (H), (H') and let [U,
there is a neighborhood N of q(-) in C([0,
q € N is strongly rod homotopic to [U,q,T].

| be a specified admissible triple. Then

q, 7
1] — SO(3)) such that any [U, q, ] with
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Proof. The proof of Theorem 2 guarantees that q € H'([0,1] — SO(3)), which
implies that q', and hence U is bounded in L?([0, 1] — R?) (cf. Theorem 1 and (2.8)).
Hypothesis (a.) in (H') guarantees that WW[U] is uniformly bounded. Condition (e.)

in Definition 3, which was verified in the proof of Theorem 2, guarantees that G is
bounded in C([0, 1] — R?). Finally, F', and hence , is bounded by hypothesis. [

4 Well-Posedness

Stable mechanical equilibria are obtained as (local) minimizers of the total energy &,
viewed as a functional defined on an appropriate set of admissible functions. In this
section, we show that minimization of the energy functional £ given by (3.10) is
well-posed, that is: an energy minimizer exists for each rod homotopy class and one
has an appropriate continuous dependence on data. We treat these two aspects of
well-posedness separately.

Theorem 4. Let the conditions (H) of Lemma 4 hold along with (3.5) and (3.6);
suppose some admissible triple [Ug, qo, o] is specified with finite energy. Then &
attains its minimum over the class of admissible triples rod homotopic to [Ug, qo, ro).

Proof. Let [Ug, qx,ri] be a minimizing sequence for £ in this class of admissible
triples, hence bounded in total energy and rod homotopic to each other. As a bound
on & implies a bound on the L*-norms ||Ug||, we can extract a weakly convergent
subsequence U, — U; using Lemma 2 we see that this bound on ||Uy|| also implies a
uniform positive lower bound on the margins of separation so we have [Uy, qx, r] —
[U,q,1]. By Corollary 2 to Theorem 2, the limit [U, q, ] is admissible and in the same
homotopy class — indeed, in the same strong rod homotopy class if (H') is assumed.
The lower semicontinuity assumed in (H) ensures that the energy minimum is then
attained there. O]

There is no reason to expect, in general, that the minimizer for each rod homotopy
class is unique, so we cannot expect continuous dependence on the constitutive
functions. What is appropriate here is that, given W, F,G], each of these sets of
minimizers is closed and the set is upper semicontinuous in its dependence on the
functional £ of (3.10). To consider this dependence, we define convergence of a
sequence of energy functionals &[] as follows:

Definition 5. A sequence of energy functionals &, converges to E, if

a. the coercivity condition (3.9) on Wy, is uniform in k
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b. for each fized U such that £,[U] < oo, we have Ex[U] — E[U] in R

c. for each M there is a sequence et — 0 such that Ex,[U] < E[U]+eM whenever
ExlVU] < M.

Theorem 5. Suppose we are given Uy with E[Up] finite and a sequence of energy
functionals &, converging to s as in Definition 5 above and let Uy be minimizers
of & over the rod homotopy class of Uy. Then (for a subsequence) one has Up — Uy,
and this Uy, minimizes Eo, over the same rod homotopy class.

Proof. Since &;[Ug] — Ex[Uo] < 00, we have each &[Uo] finite (for large enough k)
so, by Theorem 4, the minimizers Uy exist. Further, we have {&[Uq]} bounded so,
by the assumed uniform coercivity of Wy, we have {||Ux||} bounded whence (for
a subsequence) we have U, — Uy, for some U,. As each Uy is admissible and in
the rod homotopy class of Uy, so is U, by Corollary 2. Further, Theorem 4 gives
existence of such a minimizer U for €. We need only show that the limit Uy is
itself such a minimizer, i.e., that £ [Us] = Ex[U] = min{€.}.

Note that lower semicontinuity of £ gives Ex[Us] < Exo[Uk| + & with & — 0.
Thus, we have E,[Ux] < E[Ux] + e so min{€.} < E4[Us] < liminfy, min{&}.
On the other hand, we have min{&,} < &,[U]} for each k and &,[U]} — &,[U] so

lim infy min{&} < E[U] = min{&,}. O

5 Optimality Conditions and Regularity

At a local minimum, [U,q = Q(U),r = R(q)] is certainly an admissible triple with
the inherent regularity given by Definition 1. In view of the clearance inequality
implied by Lemma 3, this is interior to the admissible triples. Thus, assuming some
differentiability, we expect £'[U] = 0 at the minimum as a necessary condition for
optimality. Given suitable smoothness (H”) of the constitutive functions, we can
then interpret this necessary condition as an “Euler equation” for the optimizer and
use that to show additional regularity for U(-).
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a. The constitutive function W : [0, 1] x R® — [~ Sy, o0) is

convex and satisfies
alUl —b < W(s,U) <alUl+b (a,a > 0).

b. W is differentiable in U with Wy injective in U for each s;
(H") Wy : [0,1] x R* — R? is continuous.

c. Where finite, G : [0, 1> xR, — [—/¢, o0] is differentiable
in D with Gp continuous in (s, 0, D).

d. F:[0,1] x R* — R is differentiable in r with F, contin-
uous in (s, r).

Lemma 5. Assume the strengthened hypotheses (H”) and let U, q,r| be any triple
for which E]U] is finite with r = R(q), q = Q(U). Then W|U], G[r], F[r| and E[V]
are Fréchet differentiable there with

dwllj,
—u (8) = Wuls, U(s)), (5.1)
dGlr] _ (" Gp(s,0,D)+ Gp(o,s,D)
o )T /0 D(s,0) r(o) do (5.2)
with D = D(s,0) = |r(s) — r(o)|,
dﬁ"] (s) = Fu(s, r(s)). (5.3)
and
ddEL[JU] (s) = Wyl(s,U(s)) + S*[q"(5)O(s)] where

0" = [R(S(U(s))]*FO + (o,o, / 1v(§) d§) O(1)=0 (5.4)
v(s) = [dG]r]|/dr](s) + [d F[r]/dr](s) using (5.2), (5.3).

Proof. Given any u € L?([0,1] — R?®) we have W[U + 7u] < oo for each 7 by a.
of (H”) and convexity of W gives convexity of 7 — W (s, U(s) + Tu(s)) for each s.
Thus, for 0 < 7 < 1 one has

WU+ tu] — WU

T

WU —u —W[U] < < WU +u] - WU
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pointwise in s. We then apply Lebesgue’s Dominated Convergence Theorem to get

lim WIU + 1u] — W[U] _ /1 lim W (s, U(s) + Tu(s)) — W(s, U(s))

ds

T—0+ T T—0+ T

—/0 Wols,U(s)) -u(s)ds = (W, .

Since this holds for each u, we have Gateaux differntiability in every direction
and (5.1); since U(+) — W'[U] = Wy(-,U()) is continuous from L%([0,1] — R?)
to itself by Krasnosel’skii’s theorem on Nemytskii operators, it follows that this is
actually a Fréchet derivative.

The arguments for (5.2), (5.3) are even simpler since r is continuous, hence with
compact range, and similarly the directions v are continuous. The formula (5.3) is
immediate; note that, since r is continuous, vy = F'[r] given by (5.3) is continuous.
For G' we similarly get

limg[—H-t //GDsaD ()D<)dsda

T—0+

which, with a bit of manipulation, becomes (5.2); again we see from (5.2) that the
function vg = G'[r] is continuous. [We have an apparent possibility of singularity in
having D in the denominator, but recall Lemma 3.] By continuity, these are actually
Fréchet derivatives.

Since, for each u, we have (£, u) = W', u) + (G’ + F’', ) with v = Lu, application
of Lemma 1 gives the system (5.4). O

Theorem 6. Assume the hypotheses (H") and let U be a local minimizer of the
energy €. Then U(+) is a continuous solution of the optimality system:

Wy(s,U(s)) = w(s) (5.5)

with
w(s) = —S*[q"(5)0(s)] where

1
o —rswEre (00 [ ea)  em=0
v(s) = [dG]r]/dr](s) + [d F[r]/dr](s) using (5.2), (5.3).
One can obtain still further reqularity of U(+) to a level limited only by the assumed
reqularity of the constitutive functions if Wyy is an invertible matrix at each point:

Fork=1,...,if Gp, F, are in C*=2 and Wy is in C* in a neighborhood of the rod,
then one has U(-),q(-), r(-) in C*, C*L C* 2 respectively.
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Proof. Local optimality of U requires (£’,u) > 0 for feasible directions u. Since we
are considering only soft contact, it follows from Lemma 5 that all directions are
feasible; in particular, positivity both with u and —u gives (£’,u) = 0 which means
(5.5), (5.6) using (5.4) from Lemma 5. [Even when W is not differentiable, convexity
would give
—L* (G'[r] + F'[r]) € OW|U]

where the subgradient OW/[U] is given by the set of support functionals at (U, W[U])
to the convex epigraph.]

Now look at the identity (5.5) on [0, 1]. We know that v = G'[r] + F'[r] is at least
in L? so (5.6) gives ©, hence also w, in H' and so continuous. [The right hand side
of the differential equation for © would be at least in H!, giving © in H?, if U were
in H!, but we do not know that at this time.]

Continuity of w(-) on [0, 1] implies a uniform bound on w(s) whence, by (a) of
(H”), a bound §3 such that U(s) € Bs = {v € R*: |v| < B8}. Noting that [0,1] x Bg
is compact, we consider the function

U (s,v) — (s, Wy(s,v)): [0,1] x By — [0,1] x R?

By a. of (H”), this is injective, hence a bijection to its (necessarily compact) range
and so has a continuous inverse. Composing W~! with the continuous function w(-)
then shows that s — U(s) is continuous, as asserted.

Now suppose each Wyy is invertible. Then, by the Implicit Function Theorem, if
Wy(-,+) has C* regularity, then w(-) in (5.5) and U(-) will each have the same regu-
larity up to that level. We can bootstrap this regularity, proceeding by induction.

Suppose, then, that we know U(+) is in C*~1 so the coefficient [R(S(U(+)))]*¥" of
(5.4) is in C*! so (2.6) gives g = Q(U) in C* and then r = R(q) in C**1. For
Gp, F, in C*72, this certainly gives v(-) in C*72 by (5.2) and (5.3) and (0,0, [v) in
C*=1. The right hand side of the © equation in (5.6) will then be in C*~! giving ©
as well as q in C*. Hence w and U are then in C*. O

6 Further Coupling

Our existence proof depended heavily on the assumption that WV is convex, but in
some situations it is of interest to modify that. The dependence on s of the constitu-
tive function W (s, -) was intended to allow for variation of material properties along
the rod. We have been taking these as intrinsic, but one might imagine temperature-
dependent properties — W = W (s, T(s),U(s)) — with the temperature T'(s) given,
e.g., by

—(a(s)Ty), = (T, 1), 7,(0) = 0 = T3(1). (6.1)
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It is natural for the source term 1 to depend on the position r(s). One may still think
of W= [W as a functional W[U], since T(-) depends on U, but, unfortunately, we
cannot now expect this new functional to be convex so we write the functional as
W[U,T], separating the dependences. Nevertheless, it remains plausible to retain
convexity for the dependence of W on U(s) € R® and the argument for an existence
theorem in this setting will then be a cross between those for Theorems 4 and 5.

We now impose the following assumptions on the constitutive functions W, F', G.

a. Each of the constitutive functions G, F' is lower semicon-
tinuous in its variables; W is lower semicontinuous in s, U
and Lipschitzian in 7"

W (s,T,U) = W(s,T,U)| < L|T —T|
with L = L(U) < C(1+ |U]?).

A b. W :[0,1] x R x R® — [y, 0] is convex in its third
(H) variable and satisfies (3.9) uniformly in s,7".

c. G:[0,1]? x R, — [—fg, oo satisfies (3.5) and (3.6).
d. F:[0,1] x R®> — R is bounded below on bounded sets.

e. a(-) > 0 and 9 satisfy conditions ensuring that (6.1) de-
fines a continuous map: r(-) — T(-) € C([0, 1]).

Theorem 7. Let the functional E[U] be given as in (3.10) except that one now has
W = W(s,T(s),U(s)) in the integrand defining the local internal energy W. We
write

~

E[U] = WU, T] + G[r] + F[r] W[U,T]:/O W(s,T(s),U(s))ds  (62)

and the minimization over U is to be coupled with (6.1) as a constraint. Assume
the conditions (H) and suppose some admissible triple Uy, qo, o] is specified with
finite energy. Then & attains its minimum over the class of admissible triples rod
homotopic to [Ug, qo, o).

Proof. As usual, we begin by letting [Ug, q,rx] be a minimizing sequence for £ in
this class of admissible triples, hence rod homotopic to each other and bounded in
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total energy; by the assumed uniform coercivity we may take {Uy} weakly conver-
gent: Uy, — Uy. By Theorem 1 we then have qx = Q(Ux) — goo = Q(Us) and
similarly ry — ro. The rod homotopy follows from Theorem 2.

Using e. of (H), we also have uniform convergence T, — T,. For k =1,..., 00,
we define

~

E[U] = WIU] + G[r] + Fr] with Wi[U] = W[U, T]
— noting that £, (Us) = £[U] and that W, is convex so

lim inf £xc[Uy] > ExclUsc] = E[Unc] 2 inf € = m & [Uy] (6.3)

A

Now, using a. of (H), we have

~

EclUd) = EURll = [WVIUL T = WU T
< / L(UK($)) [T (5) — Tu(s)] ds
< / C(L+ |Ux()) ds ||Too — Tilloc

Since {U}.} is L2-bounded and || T, — T||cc — 0, the difference vanishes in the limit.
Thus we must have equalities in (6.3) and Uy, is the desired minimizer. O

[The same approach would apply for more general situations in which W depends
also on (q,r), whether or not this dependence occurs through additional coupling.]

7 Discussion

The focus of this work has been to develop a framework for elastic rods with a
pairwise repulsive potential which prevents non-adjacent points along the rod from
occupying the same physical space. As in the classical Cosserat rod formulation,
we assume only short range forces, but distinguish between local and nonlocal in-
teractions. Within this framework, we have shown existence of an energy minimizer
within each homotopy class, where the standard definition of homotopy has been
suitably extended to include the frame of directors as well as the centerline of the
rod. Under additional hypotheses, first-order necessary conditions were derived and
used to obtain regularity.

The existence proof presented in section 4 is not constructive in the sense of de-
termining the shape of the minimizing configuration of the elastic rod, beyond the
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regularity results discussed in section 5. For most elastic rod problems, including the
ones presented here, analytic solutions are not attainable and numerical methods
need to be developed to identify the minimal configurations. One method that has
appeared in the literature is the use of Monte Carlo techniques to locate global min-
ima, (see [38], for example). Another approach is to find families of critical points,
using second-order information to identify which of these critical points correspond
to minima, (see [12, 20], for example). Neither of these methods guarantees the
existence of the minimizer, but each complements the present work by providing
numerical approximations of the minimal configurations.

The formulation of the elastic rod energy presented here included only elastic
potential energy, repulsive potential energy and external potential energy, but does
not include, for instance, time dynamics and kinetic energy. Strict local minima
of the static problem considered here correspond to stable stationary points of the
dynamic equations. Our hypotheses, however, do not ensure uniqueness within
each rod homotopy class or isolation of the minimizers, which is necessary for a
stationary point to be stable for the time dependent dynamics. The second variation
formulation presented in [20] may be used to identify minimizers with this property.
In fact, the study of time-dependent stable stationary points has been addressed in
the context of a bio-elastic filaments [22] and the binding of LacR protein by DNA
and looping [17, 18].

We remark that the existence results presented here can be extended to include
spatial obstacles, that is, regions R which the rod should not penetrate. Consid-
erations essentially similar to Lemma 3 would apply to the external potential term
F in this situation. When preventing self-intersection, we let F'(s,r) be such that
F(s,r) = oo if r € R and, to ensure a positive margin for soft contact with the
obstacle, we impose, as a condition on F, that 7(+; F') satisfies

/oj F(r) dr = +o00 (7.1)

where imitating (3.4),
A(r) = inf {F(s,dist(r,R)) : dist(r, R) < r}. (7.2)

An argument similar to the proof of Lemma 3 provides a clearance inequality pre-
venting any contact with the obstacle: a bound on the external energy potential
F|r] implies a strictly positive lower bound on the clearance [dist (r, R)]. In view
of this, we continue to have the results of Theorem 3 even though we have dropped
the requirement that F' should be bounded.
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8 Appendix

8.1 Proof of Theorem 2

Proof. The details of the proof are complicated somewhat by the variety of alter-
native boundary conditions which might be imposed at s = 1, each requiring a
somewhat different treatment.

We begin by considering the special case in which r(1) = k is specified. Since we
have assumed an inextensible elastic rod, this boundary condition r(1) = k implies
ds(s) =k, and that d;, d lie in the x — y plane, and hence have the form

di(s) = cos(d(s))i+sin(d(s))j, da(s) = —sin(d(s))i+ cos(d(s))k, (8.1)

with similar expressions for &1, d, replacing § by 5. Since these triples are admissible,
we have 6,6 € H'(0,1) and define U(s) = §(s) — 6(s). As q(0) = I = q(0) we may
assume 6(0) = 0 = §(0) so ¥(0) = 0 and ¥ will remain uniformly small for ¢ close
to q. We define the rod homotopy by

cos(d + tW)i + sin(6 + tW)j]
q(s,t) = | —sin(0 + tW)i+ cos(d + tW)j] | . (8.2)
k

Since 8,6 € H'(0,1), it follows that q(-,¢) is bounded in H'([0,1] — SO(3)) and
condition (d) is satisfied. The boundary conditions (¢) and the continuity (b) with
respect to t are certainly satisfied by this construction. Since D, depends contin-
uously on r and r(-,t) stays close to T since ¥ stays small, we have D,(t) close to
D.(0) > 0, we have (e) for a small enough neighborhood N. Finally, to verify (a)
we note that Theorem 1 ensures existence of a suitable U(-,¢) and for admissibility
it only remains to check the condition q(1) = q, if this is imposed. Since W is small
we can have q(1) = q. = q only if ¥(1) = 0, which then gives q(1,t) = q. for
each t.

For the remaining cases, in which either no condition is imposed on r(1) or we
are imposing r(1) = r, with r, # k, we will use a somewhat different construction
of the rod homotopy. We begin by noting that SO(3) is a Lie group so there is
a C* diffeomorphism ¢ from the open unit ball B of R? to SO(3) with ¢(0) = I,
the 3 x 3 identity matrix. Thus U = ¢(B) is a neighborhood of I in SO(3) and,
as a first requirement on the neighborhood N, we ask that q € N should imply
[a(s)~'q(s)] € U for each s € [0,1] so we can define w(-) : [0,1] — B giving

dw(s)) = a ' (s)a(s)).
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Note that admissibility of q,q gives @(-) € H*([0,1] — B) and that taking N small
will ensure that w is uniformly small. Our rod homotopy is to have the form

q(s, ) = q(s) ¢(tw(s) + M(s)a(t)) (8.3)

with M : [0,1] — M and a : [0,1] — R® yet to be specified in such a way as
to ensure the homotopy conditions. Note that the definition of ¢ ensures that (8.3)
gives q(s,t) € SO(3).

We note that when no condition is imposed on r(1) we may take M = 0 (so a is
irrelevant) and are then already assured of the desired conclusion. To see this, note
that (8.3) then immediately gives (), (c), and (d) by the smoothness of ¢ and ¢~*
along with the given H' regularity of q,q. For small N' we have q(-, ) always close
to q which, as earlier, is sufficient to ensure (e) so again it only remains to check the
condition q(1) = q. if this is imposed. If so, then we have q(1) = q(1) so w(1) =0
and the boundary condition for q is verified for all ¢.

For the final cases in which we are imposing r(1) = r, with r, # k, we will
cleverly construct a smooth matrix-valued function M, depending only on the given
q. The form (8.3) then defines q(-,¢) in H'([0, 1] — SO(3) with a uniform bound so
long as a remains bounded and small enough to keep [tw(s) + M (s)a(t) in U then
(b) is satisfied and we can obtain U, r as above so (d) will be satisfied. If a is kept
smaller, then q(-,t) stays close enough to q that (e) is satisfied. If we will have
a(0) = a(l) = 0, then (c) is satisfied. If we require M (1) = 0, then, as above, any
boundary condition q(1) = q. would be maintained. It is only necessary to show
that the imposed condition r(1) = r, is maintained to verify (a) and our construction
of M(-) is directed to this end, enabling us to obtain a(t) so as to ensure

P, (tw,a(t)) =0

1 8.4
where  @.(&,a) = /0 A(s) S(o(s) + M(s)a)], di — . (84)

Here [-|3 indicates extracting the third column of the matrix, which will just be
ds(s,t) so @, (tw,a(t)) = [R(q(+,?))](1) — r. = r(1,t) — r.. Note that ¢,(0,0) =0
since ¢(0) = I and r satisfies the boundary condition at s = 1. It is not hard to
verify differentiability of &, with

8;: (0,0)a = /o [a(s)¢'(0)M(s)a], ds (8.5)

If we can construct M so the 3 x 3 matrix 0®,/0a(0,0) is invertible, then the
Implicit Function Theorem (IFT) will ensure existence of a neighborhood N’ of 0 in
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C([0,1] — R?) and a unique continuous function A : & + a giving ®,(&, A(®)) = 0.
Thus, for small enough A, we will have each tw in N7 and a(t) = A(tw) remaining
small enough. The IFT gives A(0) = 0 so a(0) = 0; for ¢t = 1 we have r(1) = r,
by assumption so @, (w,0) = 0 whence, by uniqueness, A(w) = 0 so a(1) = 0. With
M (1) = 0, that will complete our verification of (@) and so complete the proof.

Our construction of M (-) begins with the observation that with r(1) = r, # k
we cannot have both d;(s) -k = 0 and also dy(s) - k = 0. Hence we can assume,
without loss of generality, that there is some s, € (0,1) such that d;(s,) -k # 0.
Thus, we have

Next we note that the range of ¢'(0) : R® — M3*3 is the tangent space at I = ¢(0)
to SO(3), which is precisely the space of skew-symmetric 3 x 3 matrices, so there
are u, v such that

[ (O)ufk =i [¢'(0)v]k =
Taking m;(s) = u;j(s)u + v;(s)v as the columns of M, we note that the integrand
in (8.5) becomes

@) O M(s)alk =3 ase;(s) 87)
Wit ¢(s) = a(s) [6/(0)my ()] k = 1 (5)d (5) + v,(5)da(s)

To have invertibility of 09, /0a (0,0) we need { [ c;(s)ds} independent; to ensure
that, we find w;(s), v;(s) so these integrals are approximately i,j,k for j = 1,2, 3.
Recalling (8.6) and the continuity of q(-), we see that this is possible by taking

i:  wu(-) to be a unit spike near s ~ 0 with v; =0
ji we(+) to be a unit spike near s ~ 0 with uy =0
k:  wus(+) to be [(a unit spike near s & s,) — d; uy(+)]/03 with vs(-) = —(d2/03)va(")
where by a ‘unit spike’ we mean a smooth function with narrow support and inte-
gral 1, vanishing at s = 1.

As indicated earlier, this completes the proof. O
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