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Abstract
Solutions of the dynamic equations in distributed parameter systems

are usually obtained as fixpoints of suitable maps, as in Picard iteration. In
optimal control of distributed parameter systems, some compactness of the
fixpoint set is then needed to extract a convergent minimizing sequence. Two
results are obtained to show, when the family of maps is equicontractive, that
one can extract such a sequence under suitable hypotheses.
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1 Introduction

How does one show existence of optimal controls for distributed parameter
systems? A typical argument considers a minimizing sequence for the cost
functional J and, assuming some compactness for the control u — e.g., in
the weak topology for some Hilbert space — and lower semicontinuity of
u— [z, J] where z is the controlled state. Sometimes, rather than thinking
of z as a function of the control w, it is convenient to think of 7 as a function
of the pair [u, 2] with the dynamics as a constraint.

Our objective here is to carry this one step further in giving primacy to x
and suppressing the role of u as an independent variable in the optimization.
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Our principal tool for this is a topological result developing an argument
used for the purpose in [2] and abstracted from that in [3]. Note that the
existence of controlled solutions of the dynamics is typically obtained by
a Picard-type argument based on Banach’s Contraction Mapping Principle
(CMP) with u parameterizing the maps F(z,u) involved so compactness of
the corresponding set of fixpoints permits the extraction from the minimizing
sequence of a convergent sequence {z,}. It should be emphasized here that
this avoids any direct need for considering continuity of the dependence of
solutions on controls or even for topologizing the admissible controls at all.
We will present this result and note its relevance to optimal control; we
then consider the interesting case of state-dependent control constraints.

2 Main theorem

Theorem 2.1. Let X be a complete metric space and F an equicontractive
family of selfmaps: X — X, i.e., there is some ¥ < 1 such that

d(f(x), fly)) < dd(z,y) for each =,y € X and each f € F; (2.1)

[By CMP, there is then a unique firpoint 7/ = f(z/) € X for each f € F.]
Suppose F is also pointwise precompact, i.e.,

For each point x € X, F(x)={f(x): f € F} is totally bounded. (2.2)

Then the fixpoint set F, = {z/ : f € F} C X is precompact: every sequence
of such fixpoints in F, has a convergent subsequence.

Remark: The hypothesis (2.2) of this theorem is a weakening of the
corresponding requirement in [2], [3] that F(A) = {f(z) : z € A, f € F}
be totally bounded for each compact A C X, perhaps making verification
somewhat easier. [ |

PROOF: Arbitrarily choose zy € X and recursively define the iteration
sequences xf = f(x! ) with &} = 2o for n = 1,2,... and f € F. By
assumption, Ay = F(xg) = {f(zo) : f € F} is precompact, hence bounded,
so there exists K such that d(z},z]) < K for every f € F.

Define A,, recursively by

Ay = F(Any) = {f(x) 2 € Ay_r, f € Flwith Ay = {z0},  (2.3)
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noting that x{ € A, for each n and each f € F. We claim, by induction on
n, that each A, is totally bounded.

This is certainly true for n = 0,1 and we assume it holds for some n.
With ¢ > 0 given, there is then a finite set S™(¢/2) = {y1,...,ynm} such that
for each y € X there is some y,, such that d(y, y.,) < £/2. Since each F(y,,)
is totally bounded by (2.2), there are finite sets S = {zy1,. .., Tmar}
such that d(Z, z,,,) < €/2 for each & € F(y,,) and some z,, , € St

By the definition, for each z € A,;1 = F(A,) there is some y € A,
and some f € F such that x = f(y) and, as above, there will be some
Ym € S™ such that d(y,y,) < /2. With these f, y, y,, we will then have
d(z, f(ym)) < 9d(y,ym) < Ue/2. Setting & = f(ym) € F(ym), there will be
some ,, € S"T = S"t(e) = U,, St such that d(&,xp,,) < /2. We
thus have d(z, z,,,) < /24 ¢/2 so the finite set of e-balls centered at S
cover A, 1.

Finally, the standard proof of CMP provides, for each f, the estimate:
" ol < Koy"

d(z’,xf) < md(%;ld -

For any ¢ > 0, we may choose n large enough that 9" < (1 — 9)e/2K and
then let S™ = S™(¢/2) be the set of centers {z7,..., 2%} for a cover of
A, by (¢/2)-balls: i.e., for each z/ € A, there would be some 27 € S"
such that d(zf,2") < 5/2 Thus, for each 2/ € F,, we have d(xf ny <
[K9"/(1 —9)] +¢/2 < € so the fixpoint set F, is covered by the finite set
of e-balls centered at S™. This, for arbitrary € > 0 is totally boundedness so

the completion (closure in X) is sequentially compact, as asserted. |

Remark: This improves somewhat on the result of [3] which, instead of

the pointwise condition (2.2), effectively imposed the stronger requirement
that F(A) = {f(z) : f € F, © € A} should be totally bounded for each
compact subset A C X. [ |

Now, as a generic example, consider an optimal control problem with
state dynamics given by

T = Az + p(t,z,u), z(0) =¢ (2.4)

with A generating a linear semigroup S(+) and ¢ uniformly Lipschitzian in z;
we may assume ¢ is causal, but not necessarily defined pointwise in . We



let X be the solution space of suitable state-valued functions of ¢ — i.e.,
including the admissible controlled trajectories — and assume the objective
functional J is lower semicontinuous on X.

One can, of course, define a set-valued function:

o(t, z) = {p(t, z,u) : u admissible }

so (2.4) becomes a differential inclusion: & — Az € @(t,x); compare [4] for
an existence theory based on [3]. Alternatively, for any given control func-
tion u(-) (or making a selection from the set-valued ¢), one may suppress the
u-dependence, defining the function: ¢(t,z) = (¢, z,u) and then defining a
map f: X — & by

()] =€+ / S(t — ) ¢(r, z) dr. (2.5)

Of course, each such map f depends on the given control, but as u(-) varies
over all admissible controls we obtain by (2.5) a family F of these maps.
For our optimization, the controlled solutions of (2.4) are precisely the
elements of the fixpoint set F,. If we can verify (2.1) and (2.2), then our
Theorem 2.1 ensures convergence of a minimizing sequence ¥ € F, to some
x € X. The assumed lower semicontinuity of J then ensures that x min-
imizes J if it is an “admissible controlled trajectory.” This need not hold
without further hypotheses, but here we will simply accept such mild so-
lutions as admissible; adjoining these points to F, makes it closed and so
compact. [Note that we have here avoided imposing any topology on the
admissible controls so it is impossible to assert convergence u” — u* (even
extracting a subsequence); also, we have imposed no continuity assumption
onu — @ oronut+— ¢ oronut— f. Thus it is left open as to whether
there might be any (admissible) control which actually ‘controls the optimal
trajectory’ x in the original sense; those considerations are not treated here.|

3 State-dependent constraints

An interesting variant of the theory above is the consideration of problems
in which we would be given a set-valued map:

r—F"CF



and would impose an additional constraint: not only do we ask of the
pair [z, f] that = f(x), but also, somewhat symmetrically, that f € F*.
The constrained fixrpoint set is then

Fr={x e X :x= f(x) for some f € F*}. (3.1)

We will impose a rather weak uniform upper semicontinuity requirement on
this set map: = — F*:

For some a < 1 — 9: for each x,y € X and f € F*,

there exists g € F¥ such that d(f(z), g(z)) < ad(z,y). (3:2)

Remark: This condition is somewhat related to fixpoints involving k-set
contractions (cf., e.g., [1]), but we do not pursue this connection here. W

Remark: In the context of (2.4), the requirement that f € F* would
be the imposition of control constraints dependent on the evolving state. In
considering such constrained problems we continue to assume the equiconti-
nuity (2.1) and immediately note that the hypothesis (2.2) of Theorem 2.1
is sufficient to ensure precompactness of F** since this is a subset of the (un-
constrained) fixpoint set F,. We would prefer, however, to require only a
weakened form of (2.2), that

For each point z € X, {f(z): f € F*} is totally bounded, (3.3)

as a condition for this compactness. [

Before asking whether F* is compact, however, we first ask whether it
might be empty and, to avoid this, will impose a closure hypothesis somewhat
reminiscent of our earlier acceptance of ‘mild solutions’

implies: there exists g € F7 such that §(z) = ¥. (3.4)

We then have the following.

Lemma 3.1. Let X be a complete metric space and F a family of selfmaps:
X — X. If v — F* C F satisfies the closure condition (3.4), then the
constrained fixpoint set F* of (3.1) is closed. If, in addition, F satisfies the
equicontractivity condition (2.1) and x — F(x) satisfies the upper semicon-
tinuity requirement (3.2), then F* is nonempty.
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PROOF: Suppose we are given a sequence {x,} in F* so each z,, = f(z,)
for some f, € F* and, further, are given that this sequence is convergent
in X: z, — z. Setting y, = x, S0 y, — ¢y = &, (3.4) gives T = g(z) with
g e F* ie., T e F* Thus, F* is closed, as asserted.

Fixing zo € X arbitrarily, we will construct F**(zo) C F* such that
F**(xg) # (0. We begin by choosing fy € F(x() and then, recursively, will set
Ty = fno1(zp_1) and use (3.2) with © = z,,_1, y = x,, f = fn_1 to choose
fn=g9 € FY=F*. Then, by (2.1) and this use of (3.2), we have

d(l’n, xn—H) = d(fn—1($n—1)7 fn(mn))
S d(fnfl(xnfl)a fn(xn71)> + d(fn(mnfl% fn(xn»
<ad(zy,Tn1)+0d(Tn, h1)

By induction, we then have d(z,, z,11) < (o + 9)"d(xo, 1) so, noting that
(a+1) < 1, we see that {x,} is a Cauchy sequence; thus, z,, — Z in X with
Yn = fn(Tn) = Tpy1 — T. We let F™ () be the set of all points obtained as
Z here by making all possible sequences of choices for f,, in this construction;
clearly F**(xo) # 0. For T obtained as above, the assumption (3.4) then
gives T = y = g(x) with g € F* — i.e., we have T € F* so F**(xg) C F*
whence F* # (). |

Theorem 3.2. Let X be a complete metric space and F an equicontrac-
tive family of selfmaps: X — X satisfying (2.1); let v — F* C F satisfy
(3.4) and (3.2) and consider the constrained fizpoint set F* as in (3.1). We
suppose there is some Ag C X such that

Ay is totally bounded and U F*(x) =F" (3.5)

zE€Ap

with F**(x) defined as in the proof of Lemma 3.1. Finally, we assume (3.3).
Then F* is compact.

Remark: We have already noted that the hypothesis (3.3) of this theo-
rem is a weakening of the corresponding requirement (2.2) for Theorem 2.1.
The greater difficulty lies with (3.5): on the one hand, this hypothesis is
clearly necessary, since one can certainly take Ay = F* if the conclusion is
known to hold; on the other hand, it is far from clear how one might usefully
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verify (3.5) when the conclusion — or the stronger hypothesis (2.2) — is not
already known. [ |

PROOF: We begin with sequences {[z,, f.|} (such that f, € F* ) recur-
sively constructed as in the proof of Lemma 3.1, in each case starting with
some xg € Agp. As in the proof of Lemma 3.1, these sequences always con-
verge: x, — T and, by (3.5), every point of the constrained fixpoint set F* is
obtained as the limit z of such a sequence. We then set A, = {z,, ranging as
above }. We claim that each of the sets 4, is totally bounded: the inductive
argument is essentially identical to that in the proof of Theorem 2.1 and need
not be repeated here. Note that both Ay and A, are totally bounded, hence
bounded, so there is a uniform bound K on d(xg, x1). Again, the argument
that the set of limits (here F*) is totally bounded is essentially identical to
that in the proof of Theorem 2.1 (for F,) and need not be repeated here.
As in the proof of Lemma 3.1, the hypothesis (3.4) ensures that F* is also
closed, hence is compact as asserted. [
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