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Nonconvergence Results for the Application of 
Least-Squares Estimation to llI-Posed Problems 1 

T. I. S E I D M A N  2 

Communicated by D. G. Luenberger 

Abstract. One standard approach to solving f ( x )  = b is the minimiza- 
tion of I I f (x) -bI[  z over x in ~, where ~ corresponds to a parametric 
representation providing sufficiently good approximation to the true 
solution x*. Call the minimizer x = d(.~). Take ~ = 3EN for a sequence 
{3~N} of subspaces becoming dense, and so determine an approximating 
sequence {xN := ,.~/(3~N)}. It is shown, with f linear and one-to-one, that 
one need not have xN ~.x* if f-1 is not continuous. 
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1. Introduction 

Many problems of practical importance involve the solution of equa- 
tions 

f ( x )  = b, (1) 

in which the unknown is an element of some infinite-dimensional space .E 
(e.g., a function or set of functions). For example, one might seek to 
determine a coefficient function in a partial differential equation from 
observational data taken from a solution; here, b denotes the observation 
and x would denote the unknown coefficient function, together with such 
other data as must be adjoined to what is known already to make a 

1 This work was supported by the US A r m y  Research Office under  Grant  No. D A A G - 2 9 - 7 7 -  
G-0061.  The author  is indebted to the late W. C. Chewning for suggesting the topic in 
connection with computing optimal boundary controls for the heat  equation (Ref. 2). 
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well-defined map: x~-->b. For more, related applications, see e.g. Refs. 
1 ,3,6.  

If b is to be given (in practice, only approximately) as an element of a 
certain space ~, then it may happen that f has no continuous inverse. In that 
case, we say that the problem (1) is ill posed. We assume that only the 
continuity o f f  -1 is at issue, i.e., that f is one-to-one and that the given b is in 
the range of [. 

It is clear that one may attempt to solve (1) by minimizing the square of 
the residual.error, replacing (1) by the optimization problem: 

1 minimize ~(x) := =llf(x)-bll  overx in Y. (2) 

Since any feasible computation must be finitary, a standard approach is to 
assume a parametric representation for x, treat ,,~ as a function of the finite 
number of parameters, and use (2) to estimate the parameter values and so 
determine x. Typical representations might be spline approximations or 
truncated power series or Fourier series expansions. 

For simplicity of analysis, we shall assume that the problem is linear, 

f(x) : =  Ax, 

and that. the spaces ~, ~ are Hilbert spaces. The approach described above 
now consists of determining x by solving the finite-dimensional quadratic 
optimization problem: 

1 minimize J(x)  := ~llAx - bll~) over x in ~, (3) 

where ~ is a finite-dimensional subspace of • and/~ is the actual observation, 

/ ~ b *  := Ax*.  

Here, x* denotes the true solution, and b* the corresponding true obser- 
vational data. Note that, even if b* were somehow available exactly, 
computational imprecision and the exigencies of finitary representation 
would introduce such potential perturbation. The approximant determined 
by (3) is denoted by ~/(~). 

As with most computational schemes, one applies (3) but analyzes the 
procedure asymptotically, embedding ~ as one of an increasing family of 
subspaces {3EN} and b as one of an approximating sequence {bN}. Such a 
scheme would be termed convergent if bN --> b* implies that xN --> x*, where 
each xN = ~¢(YN) is the solution of the following problem: 

~m 2 minimize JN(x) := ~t] x -bNIl~ over x in YN. (4) 

If A is one-to-one, then (4) always has a unique solution, and it is easy to see 
that this solution is just A -1 acting on the orthogonal projection of bN on the 
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finite-dimensional subspace 

~N := A~.N C~. 

If A has a continuous inverse, it is clear that the scheme (4) is 
convergent, since the sequence of projections onto {~N} converges strongly 
to the identity. On the other hand, our aim in this paper is to show that this is 
always false if the problem is ill posed, i.e., if A -1 is unbounded. There are 
two principal results in that case. 

(i) For any {YN} and any b* =Ax*,  there exist sequences bN->b* 
such that ItxNll-, 0o and also such that {xN = SC(YN)} is bounded, but XNr~ X*. 
If {x~} is bounded, one always has weak convergence: xu--> x*. 

(ii) Even if b* would be given exactly (biv = b* = Ax* for each N), for 
almost any such b* there exist {YN} for which {XN = aC(YN)} is unbounded. 

The first of these results is unsurprising; after all, the instability of the 
solution under perturbation of the data is characteristic of ill-posed prob- 
lems. Only its simplicity in use and its usefulness in the well-posed case can 
account for the otherwise inexplicable persistence of this approach in 
engineering practice, despite its obvious shortcomings (even after reduction 
to the parametrized formulation; see the discussion and references in Ref. 
1). It is the second result which is somewhat astonishing; even with exact 
data (and arbitrarily rapid convergence of the eigenfunction expansion of 
the right-hand side), one cannot be confident of convergence or even of 
boundedness of the sequence of computed approximants. 

These results indicate the necessity for extreme caution in dealing with 
ill-posed problems. For a discussion of some convergent computational 
approaches to ill-posed problems, see Ref. 6. Note that, for particular 
classes of applications, such projection-estimation schemes, with {YN} of 
specified form, can be justified (see Refs. 4, 5). It is the necessity of doing this 
which is implied by the present results. 

2. Nonconvergence with Perturbation 

As above, let Y and ~ be infinite-dimensional Hilbert spaces; and let 
Ao: Y ~ ~ be compact, injective, and with dense range (this last hypothesis is 
not significant; otherwise, replace ~ by the closure of the range). Let the 
eigenvalues of A*Ao:Y. ~ Y~, taken with multiplicities, be {0( 1 z, a ~, . . .};  and 
let {al, a2 . . . .  } be the corresponding eigenvectors. The eigenvalues are 
positive (we also take c~ > 0) and converge to zero; assume that they are 
ordered decreasingly so a l  -> 0(  2 . . . .  The eigenvectors may be taken to form 
an orthonormal basis of Y. 
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Now, define U: ~ --> ~ such that 

Uan = a ~lAoan. 

It is easily verified that {Ua,} is orthonormal,  so U is unitary and, as Ao has 
dense range, is surjective. Let  

A := U * A o : ~ - ~ ,  

and observe that A is self-adjoint, with eigenvalues {an} and eigenvectors 
{an}, compact, injective, and has dense range. Note that, for any x ~ ~, 
Y0 ~ 9, one has 

[ IAox  - y0[[~ = I I A x  - YlI~, 

where 

y := U*yo. 

We have thus shown that, with no loss of generality, it is always possible to 
reduce considerations to positive self-adjoint operators, such as A : ~ - ~  ~. 
Henceforth,  we assume that A0 is already in the form of A, and we omit the 
subscript on the norm as only one space is involved. 

Consider an arbitrary increasing sequence of subspaces {~N}, with 
~-]N~N dense in ~. Assume, for simplicity, that 

dim 3EN = N, 

so there is an orthonormal basis {el, e2 . . . .  } of ~ such that 

Let  

and let 

~N = sp{el . . . . .  eN}. 

AN: :EN -~ ~ v  

be the restriction of A. Clearly, AN is invertible, and we set 

" N  :=  IIA;~' l l .  

It can be shown (see e.g. Lemma 4.6 of Ref. 2) that 

t'N ----- 1/O~N, 

SO /-JN '-> (30. 
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Theorem 2.1. Let A,{3~N}, etc., be as above. Let x*~3~ and 
b* := A x * .  Then, there exists a sequence bN --> b* for which the correspond- 
ing sequence {xN = ~(3EN)}, given by (4), has IIx~-x*[[-~ ~ .  

Note that, although we have written just ~ (~N) ,  xN depends on bN as 
well as on the choice of ~N. 

Proof. 

such that 

i.e., 

with 

There exists vN in ~N, with 

IIv~ll = , , ~ / ~ ,  

vN = AuN,  

uN := A ) I  vN ~ .:~N, 

1/2 
Ilu~l[ = ~ • 

Let b~ be the orthogonal projection of b* on ~N and 

XN := ANlbN; 
£N is what one would obtain from (4) using bN = b*. One of I[xN + u~ll is 
greater than IluNII, and, with that choice of sign, take 

bN := b*~VN.  

Then, 

SO 

whence 

while 

since 

xN = A ~ ( b N  + v~) = £N + UN, 

I I x N l l - > l l u N l l - ~ ,  

IIxN - x * l l - ,  ~ ,  

[[b~ - b*ll ~ IIb~ - g~ll  + Ilg~ - b*l l -~  0 ,  

and the projections on ~N go strongly to the identity as A has dense range 
and I,_]N~N is dense. [] 
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To construct bN -'~ b*, with {xN} bounded but not converging to x*, let 
£N be the orthogonal projection of x* on ,:~N, and then set 

where 

has 

i.e., 

Since £N ~ YN, we have 

Since £ N ~ x * ,  we have 

SO XnC'X*. Also, 

bN := A.fN + ~,,r, 

~N =A~N E~N 

{{aN{{ = 1, {t~NI{ = 1/~'N, 

~N ~ pN1/2VN • 

xN = £N + an .  

ItxN - x*ll-  1 --  IlUNtl, 

A £ N ~ A x * = b *  and t~N~0, 

SO bN -~ b*. [] 
For any bN one has 

A X N  = bl~ 

the projection of bN on ~N, so bN ~ b* implies 

f)N = A xN ~ b *. 

If any subsequence of {XN} were bounded, then any further subsequence 
would contain a weakly convergent subsequence, XN(e)--"X,. Since AXN(k) 
b* and the graph of A is closed in the weak topology of ~ x ~, one has 

A x ,  = b *, 

so x ,  = x*. Thus, the original subsequence converges to x* weakly, although 
as shown, not necessarily strongly. []  

3. Nonconvergence with Exact Data 

We first show by an example that, even using the unperturbed data b*, 
one may encounter  the behavior noted above. Let  {YN = sp{el . . . . .  eN}} be 
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any increasing sequence of subspaces as above, {e.} an orthonormal basis of 
the Hilbert space 3~. We wish to construct 

Ao:.~-->~ and b*=A0x*  

(recalling the beginning of Section 2, we write A0, since it is convenient here 
not to assume a reduction to the self-adjoint case) for which {xN = M(3EN)}, 
as computed by (4) using the exact right-hand side bN = b* for each N, has 
IIxN - x * l l - '  ~ .  

E x a m p l e  3 . 1 .  

with 

We take A0 to be given in the form 

Ao: ~ ~:,~e.~-~ ~ (a.~:~ +fl.~:x)e~, 
n = l  n = l  

(s) 

a l = l ,  /31 =0 ,  ~ #2 <oc, 0 # a , ~ 0 .  

This defines a compact, injective linear operator Ao:3~-->~ with dense 
range. Writing 

X* * A, ~nen, - -  ~ n  en ,  X = 
1 1 

we have 

~(x)=lllAo(x_x,)l#=½ ~ [ ~ . ( ~ _ ¢ , ) + # . ( ~  , 2 - ~:, )] 
n = l  

in (4). 
Taking x = M(~N), one has 

0 = 0J/0$. = a~ [a .  (~:. - ~:*) +/3. (~:1 - ~q*)], fo rn  = 2  . . . .  , N ;  (6) 

and, using (6), and noting that ~:,~ = 0 for n > N, 

n = N + I  

S O  

~:a - t :*  = 1 + /3 . ( 7 )  
1 N + I  

Thus, using (6) and (7), 

IIx~-x*ll2=~.(~:.-~:*)~+ Y. ~:*~ 
1 N + I  

[ ]/[ = l + Z ( f l . / a . )  2 Z a .# ,~*  1+ f12 + ~:,2. (8) 
2 J L N + I  N + I  N + I  
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co :g oo 
Suppose, now, that {/3,}2 and {~:n }1 have been given arbitrarily, but 

with 

2/32<oo, 2~. '2<~,  
tl  n 

and all terms nonzero. We wish to construct {a,}~, so 

0 ~ a . ,  an -" 0,  IIxN - x*lt-~ oo. 

For example,  take a ,  = 1/n for n even; and, for n odd, take c~, <- 1/n and so 
small that 

I ] (/3n/Oln)(Oln+3l~n+3~n+3) ~- (Fl .4:- 1) 2 1 + 2  / 32 • (9) 
t- 2 

Clearly, the use of (9) in (8) for N = n, n + 1 gives 

Ilx,~ -x*ll~N, 

SO 

IIxN- x*ll-~ oo, 

as desired for this operator  Ao. It is somewhat  more delicate to arrange that 

IIxN -x*ll-~ c ~0, co, 

but this can also be done. [] 
We now return to the notation of the self-adjoint case. Thus, A is now 

assumed to have an or thonormal  basis {a,}~ of eigenvectors with positive 
eigenvalues {an}. 

Theorem 3.1. Let  A be a compact,  injective linear opera tor  with 
dense range. Let  b* := Ax* be given, with x* not a finite linear combination 
of eigenvectors. Then, there is an or thonormal  basis {en} of 3~ such that the 
sequence xN = J(3~N), determined using (4) with 

3~N := sp{el . . . . . .  eN} and bN =b* 

for each N, is unbounded.  

ProoL The construction presented here gives 

Nx2,-lll-" ~ ,  

but x2] -~ x*, under the simplifying assumption that 

x* = E /3nan, 
1 
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with Bin # 0 for every n. It is not too difficult to modify the construction to 
admit having infinitely many fin = 0, provided also that infinitely many 
fin # 0 .  

The eigenvalues and eigenvectors are given with some ordering, and 
we start by reordering them recursively to suit our purposes. At each step, 
let Sm be the set of indices as yet not chosen when one comes to select the 
ruth in the new ordering; we proceed to choose in the order: m = 2, 1, 4, 
3, 6, 5 . . . . .  2], 2 / ' -  1 , . . . .  For m = 2], let n(2/.) be simply the least n in S2i. 
For m = 2/"- 1, let n ( 2 / -  1) be the least n in $21-1 := Szi\{n (2j)} for which an 
is smail enough that 

Pi := [an/a.~2j)] < min{tfl*~2j)t/J, 1/42}. (10-1) 

For simplicity of notation, we now simply write a,., d~,/q* for an~m), 
* 

an<,.~, fl.o,,), assuming the new ordering. Thus, 

0<p  := 1 - p  2 - 1/2, (10-2) 

for/. = 1, 2 , . . . .  Now, set 

s~=+&, ci ~/(1-p~) with s a *  a .  = m2i-~n2i > 0, (11) 

and then define a new basis {e.} in terms of {d~} by 

e2i-1 :=  c ja2 i -1 - - s i a2  j, e2i :=  sjd2i-1 +cja'). (12) 

Note that, since 
2 2 

c i + s i = 1 for each j, 

{en}~ is again an orthonormal basis. We will take 

.qfN := sp{et . . . . .  eN} and xN = M(~N). 

Expansions with respect to the bases {din}, {en} are given by 

x =Zf lmd. ,  = Z  y,,en, 
t n  n 

with 

Since we take 

~/zj-1 = cjflzi-~ - sjBzi, 

~ 2 i - 1  "7- CjT2i-1 + SjT2I, 

~2j ~-" Sj•2j-1 q- CjB2 j, 

~2j = --Sf'~2]-I + C1]12]. 

b* = A x * ,  

(13) 

SO 

A x - b *  = A ( x  - x * ) ,  
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we have for consideration in (4): 

: - - ' a  x* ll  = 

=½ ~ 11(Tzj-l-3 '~-,)Ae2i- ,+(y2,-3 '2p 2ill * ~ A e  2 
j = l  

oo 

= ~ 2 [ ( c ~ [ r = j - ,  - r ~ - i  ] + s j [ r 2 j  - r2;J)* 1,~ , ,2 ; - ,"  2 
1 

+ (-s~[r2j-1- r* i -~]+c j [ r2 j -  v2j])* 2.2.2~]. 

For minimizing ~, we consider a J / ay , .  With some manipulation, 

a J / a ~ / 2 ~ _ l  ~ 2 , ,2  2, ,2  , . 2  . 2  = t c i  o~ 2~-~ + s,- a 2i](3'2j-~ - ~/2j-~ ) + I a  2j-~ - o~ 2 j ] s ~ c j ( 3 , 2 j  - 3"*J) ,  
(14) 

a j / a ~ 2 ~ = [ o ~ _ , - a ~ ] s j c A ~ 2 ~ _ ~ - ~ , ~ _ ~ )  - ~  2,,2 ~,,2 _ ~ t s i a 2 i - ~  +c~c~2i](T2i T2*~)- 
If both of these expressions vanish [e.g., for x = x~ = M ( ~ )  with N z 2]], 
then 

%'2i-1 = T ~ i - 1  and T2i  = 2/~i, 

since the determinant of the system is 

,,2 ,~2 

For N = 2Y, this makes x2~ the projection of x* on 3~2~, so the subsequence 
{x2z} will converge to x*. 

Suppose, now, that 

on the other hand. One has 

but, for 

N = 2 J -  1, 

for n < 2J  - 1 = N ;  

n = 2 J -  1, 

one has 

a~/av2j-1 = 0 

in (14), with j =J ,  but must have y2J = 0 as y,  = 0 for n > N .  Thus, 
^2 A2 1 

OL 2 J - I  - -  O~ 2J  JSJCJ , 
" ~ 2 J - l - - ~ 2 * J - 1  - - - ' - 2 ~ 2  1 2 ~ 2  T 2 J  

C jOf  2J - -  I "t" S jOg 2 j  

" - -  [ s , d * , -~  + c A * , ? ,  - [ p  _ j (15) 
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and so 

(y2j_1_y,j_1)2= [ P ~ - I ] 2 p ~ ( I - P ~ )  ~, 2 ~, 2 
([02 - 1](i -03)+  112 [+pJ/32"-I +4(1 -pjl/32y] 
~,2 2 > ~21/64pj  > J2/64, 

using (10-2), (11), (13). Thus, 

and the sequence {XN} is unbounded (llx2~-,ll~ oo). [] 
It is easy to see from (15) that replacing (11) by a different choice of 

(&, o ) ,  still subject to 

permits construction of a new basis {en} giving to ]y2j-1 - ~/*J-1 ] an arbitrary 
value in the interval [0, J/8] without affecting the results of any other 
computations, i.e., results for xN with N other than 2 J -  1. Thus, one can 
also arrange that tlx=,-1-x*ll- c for any choice of c in [0, ~ ] ;  so, in 
particular, one can have {xN} bounded with xN-/; x*. 

It is clear that the construction above requires/~* # 0 for infinitely 
many n for (10-2) to be possible. If x* ~ 0, then it seems likely that a suitable 
orthonormal basis {en}, not of the form (12) or indeed block-related to {ak} 
at all, could be found, say of the form 

=E , e ,  cn j a j  
1 

with c~,n ~ 0 and {an} a suitable reordering of {ak}, for which the expan- 
sion coefficients {(x*, en)} decay slowly enough and (4) gives {llxN-x*ll} 
unbounded or even, more strongly, [txN- x*[I + oo. We have preferred here 
to present Theorem 3.1, rather than to cope with the computational 
complexities of this more general form. 

4. Discussion 

The use of computations based on an assumed (approximate) 
parametric representation for an unknown function to be estimated is 
pervasive in engineering practice and system theory. Indeed, the very term 
lumped parameter indicates such an approach to system structure. The use of 
minimization o[the residual is then a standard approach to estimation of the 
parameter values. 



546 JOTA: VOL. 30, NO. 4, APRIL 1980 

The results above show that, for ill-posed problems, this is an unac- 
ceptable procedure in the absence of detailed justificatory analysis of { A )  1} 
and, for the particular b* involved, of the convergence to b* of the 
projections/~N on ~N := A3~N. The analysis presented was only for l inear 

problems (whereas, e.g., system identification problems are nonlinear even 
in the case of linear dynamics). However  assuming, as is typically done, t h a t f  
in (1) is smoothly Fr6chet differentiable near  the desired solution x*, 
convergence to x* of the approximating sequence {xN} would suggest 
applicability of the linearized model, and so would suggest the relevance of 
the results above. At  present,  no rigorous realization of this argument  is 
available, even for Theorem 2.1 under strong smoothness and uniformity 
hypotheses on the Fr6chet derivative. It is equally true, of course, that the 
present results preclude the possibility of any justification via linearization 
of the convergence of the algorithm: 

minimize i n ( A ) : =  ½11f(x,,(A))-bNH z over• cAN, (16) 

where {AN} is a sequence of paramete r  spaces and {A ~-~xN(A)} are the 
corresponding parametrizat ions;  now, 

YN := {XN(A): A EAN} 

need no longer be a linear subspace but is locally diffeomorphic to AN. 
It  should be emphasized that it is not the method of least squares per  se 

which is causing the problem. 3 The real difficulty 4 lies with the use of 
approximating subspaces which may be poorly related to the opera tor  A. 
The constructions of Example  3.1 and Theorem 3.1 are, of course, quite 
artificial and one might expect (and would hope) that natura l  choices of 
subspaces would (as e.g. in Ref. 5) lead to convergent approximation 
sequences. On the other hand, the existence of even such artificial con- 
structions makes  that expectation and hope less confident and emphasizes 
the need for careful examination of the procedure.  

In particular, for ill-posed problems, it is inadequate to verify that 
particular computat ional  procedures apply to effective t rea tment  of (1) or  

s Another popular approximation method (for A positive) selects. XN in ~n to make the 
residual AxN - b  orthogonal to ~N and an essentially identical construction can be used to 
demonstrate the possibility of nonconvergence for that method. On the other hand, if 3~n 
were in the range of A*, one could select xN in 3[N to make AxN -- b orthogonal to ~N, where 
3~N = A*~N and the xN so selected will be the best approximation in 2EN to the true solution. 

4 The instability under perturbation exhibited in Theorem 2.1 is inherent in the ill-posedness of 
the problem, but is not the real difficulty. If the difficulty exhibited in Example 3.1 and 
Theorem 3.1 were not to occur, then these perturbations could be controlled by requiring that 
b ~ b *  rapidly enoug h, llbN--b*It=o(1/uN), i.e., if the accuracy of measurement and 
calculation are suitably improved as the approximation is expected to improve. 
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(2) after the introduction of an approximating parametric form. In the 
language of statistical practice, such procedures are not robust enough. As is 
well known, the results are overwhelmingly sensitive to noise in the modes 
(discarded by the parametrization) associated with eigenvectors of A A *  [for 
this, take A =f ' (x*)  in the nonlinear case] corresponding to very small 
eigenvalues. Some desensitization of the computation and the possibility of 
making use of a priori knowledge of special properties of the solution x* 
(e.g., extra smoothness beyond membership in Y) can be obtained by the use 
of approximation procedures specifically addressed to the difficulties asso- 
ciated with ill-posed problems (see e.g. Refs. 6 and 7). 
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