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Abstract. We consider convergence of an approximation method for the recovery of a 
rotationally symmetric potential v from the sequence of eigenvalues. In order to permit 
the consideration of ‘rough’ potentials li, (having essentially H-’(O, 1) regularity), we first 
indicate the appropriate interpretation of - A + v (with boundary conditions) as a 
self-adjoint, densely defined operator on X:= L2(S2) and then show a suitable continuous 
dependence on for the relevant eigenvalues. The approach to the inverse problem is by 
the method of ‘generalised interpolation’ and, assuming uniqueness, it is shown that one 
has convergence to the correct potential li, (strongly, for an appropriate norm) for a 
sequence of computationally implementable approximations ( P c , N ) .  

1. Introduction 

The present paper is intended as an extension of the considerations of [l] to higher- 
dimensional contexts. Our concern will be with formal operators 

L = L , :  u++-V-aVu+?#u (1.1) 
in a context of rotational symmetry in Rd, i.e. assuming that 

a(.), ?#(.) depend only on r:= 1x1, 
the domain Q is the unit ball of Rd with d 2 2, 
the boundary conditions are radial, of the form$ 
uu,=yu on aS2 (i.e. at r = l ) .  

We assume a( -) is known and bounded with a uniform ellipticity condition: 

(i) 
(ii) 
(iii) (1.2) 

A >u(r) 2 a > 0 for O S r S  1 (1.3) 
(e.g. e l  giving Lo= - A ) .  

Our concern is with the inuerse eigenvalue problem (EVP): 

suppose a(.) is known and it is known that II, E Y * (some suitable set); if we are given 
eigenvalues of the self-adjoint operator A ,  associated with (1.1) and (1.2) (iii), how 
can we (computationally) recover the potential ?#? 

t Electronic address on BITNET: seidman @ umbc. 
$We could equally well consider Dirichlet conditions (u=O at r =  l), which would require minor 
modification of our presentation, e.g. we would set V:=H;(Q) rather than H’(S2) as here, etc. 
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We do not consider here the deep question of uniqueness: within which sets Y, is q 
uniquely determined by the given eigenvalue information? Rather, this is taken as an 
a priori assumption on the suitability of I#.+ for EVP. 

On the other hand, as in [l], we are very much concerned with another aspect of 
the suitability of Y*: for how ‘rough’ a potential q can we construct a workable 
interpretation of ( - V - aV + q) as a densely defined, self-adjoint operator A ,  on 
L2(Q) with compact resolvent so that discussion of the ‘eigenvalues of . . . A,’ makes 
sense? The approach, as in [l] ,  is closely related to that of chapter 3 of [2 ]  with 
modification to fit the setting under consideration. In [l] it was shown, for the one- 
dimensional case, that A ,  is suitably defined for yl E 9* with 8:= HI( - 1 , l )  and that 
the eigenvalues then depend continuouslya on q. A principal concern here will be to 
obtain comparable results for $J E 8* with 8 much like H’(0, 1)-viewing yl = q ( r )  as 
given for Y E  (0 ,  1), rather than on SZ-but now with 9 defined through a weighted H’ 
norm, controlling the behaviour near Y = 0. We are able to get results quite compar- 
able with the one-dimensional case treated in [ 11 precisely because the radial 
symmetry permits a treatment through separation of variables which reduces this to 
one-dimensional considerations. 

Once we have developed the setting in which EVP is a meaningful problem, our 
concern is to demonstrate convergence for an approximation method of ‘generalised 
interpolation’ type (see, e.g., [ 2 , 3 ] ) .  We assume in EVP that we are given the sequence 
(AI ,  & , . . .) of the eigenvalues of A ,  corresponding to a unique potential E Y * and 
consider the approximation procedure: 

( P ~ )  L e t Y ~ : = { q E Y , : A k ( q ) = ~ k f o r k = l , .  . . , N }  

and select vN E Y, to minimise llqll* over YN for N =  1,2,  . . . , 

The particular norm used for minimisation in (PN) must be appropriately related to the 
continuity of the functionals A,(.) and we then expect strong convergence: 

vIv+ 11, in the sense of 1) - as N+ CQ . (1.4) 

We will demonstrate convergence for a modification of ( P N ) ,  weakened to permit the 
use of computational approximations to the functionals A,( - ) and an approximate 
minimisation for the norm. 

2. The operator 

We are concerned in this section to define a self-adjoint (closed, unbounded, densely 
defined) operator 

Aq:X 3 9,- Yt (2.1) 

on X:= L2(Q) with compact resolvent corresponding to the formal operator L,. We 
note three definitionshnterpretations of increasing generality. 

t There appears to be a slight gap in the argument in [1] and it seems necessary to take the strong V”; 
topology for I/J rather than the sequential weak topology as asserted there. See theorem 11 below. 
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(i) For a ,  y ,  U 'smooth enough' one has the classical interpretation of L,, 
computing pointwise in (1.1) and (1.2) (iii). For smooth a ,  y, one still has such a 
pointwise interpretation of (1.1) and, via trace theory, of (1.2) (iii), for u € H 2 ( Q ) ,  so 
we can take 9$):= { U  E H2(B): au, = yu on da}. 

(ii) For a E L" and y in a certain Lq((s2) (see below) we have a 'weak interpretation' 
of (,!,,+A) as a continuous invertible operator:V+Q* with V = H'(Q) .  We can then 
take 9$) to be the pre-image of X CY* for this operator. 

(iii) The radial nature of L, induces (e.g. for smooth a, q) a canonical decompo- 
sition of X by separation of variables into subspaces of the form X p  = %@Up where 
each "U, is finite dimensional? and % is a weighted L2 space of functions on (0, 1). 
Associated with - V - aV - and (1.2) (iii) is an ordinary differential operator M p  and, 
following [4], we can interpret ( M , + y )  as a self-adjoint operator on 2 for each 
relevant p when q is in 8* where, now, 8 is a weighted H' space on (0, 1). These 
interpretations AP,*: Xp=9P,,+2tp can be combined to obtain %,=9$" and the 
interpretation of (2.1). (2.2) 

We will ultimately use the interpretation (iii) but, of course, wish to know that the 
interpretations are consistent with each other. 

For a more unified treatment of the two interpretations (ii), (iii) we proceed, for 
the moment, in a somewhat abstract fashion. For (ii) we take % = X (= L*(Y) with 
Y =  a) ,  9 =Q and observe that Lo induces, in an obvious way, a continuous operator 
M :  Y +Y*. Following [l] we construct the operator A ,  on 2 = X from this operator M 
and the multiplication operator: %+9* induced by q. For (iii) we use the 'separation 
of variables' decomposition 2 = exp to work with spaces of functions of r E Y = (0 ,  
1)-for each p E a(S) we take 2 to be a suitably weighted L2(Y) and 9 to be a suitably 
weighted H'(Y).  Again we will have bounded linear operators M = MP and multiplica- 
tion by q acting: 9-39*. The separate pieces, each obtained by the abstract 
procedure following [l] ,  can then be put together to provide the interpretation (iii) of 

In each case 2 is of the form LE(Y) ( Y =  52 for (ii); Y =  (0, 1) for (iii) with p a 
positive bounded measure on 9) and 9 is also a Hilbert space of functions on Y with a 
pivoting 

A*. 

%r%-9* 

with dense embeddings. In each case we have a linear continuous map M:9-+%* for 
which one has a monotonicity estimate of the form 

with g > 0. We will also have symmetry: 

(The 9-9* dualities of (2.3) and (2.4) are, of course, given by the pivoting through 
the inner product of %.) 
t The elements of "U,, are just the classical 'angular' functions well known from analysis of the Laplacian for 
a ball, i.e. {sin ne, cos ne} for d = 2, spherical harmonics for d = 3, etc. The subspaces {qp} do not depend on 
a, q!~ or the boundary conditions and give an orthogonal direct sum decomposition of L*(aQ). 
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Next, take 9 to be any space containing products xy for x, y E % with a norm such 
that? 

IXY I9 s ClX/%,/Y/% for x, y E 9. (2.5) 

Lemma 1. Let I/I be a function on 9 which is in 9* in the sense of the 9-P* duality 
induced by the % inner product. Then the multiplication operator 

qJ:  x - v x :  %-+%* 

is well defined and continuous with 

Iv&* s ~ I v l ~ * I X I . u  so 11v11 s Q49* 

Proof. From (2.5) we have 

Kvx, r>l= I(@> XY>l s IIJJI9*Ixrl9s ~ 9 v l s * l x l ~ ~ l Y l %  
for arbitrary x ,  y E 9. By the definition of the %* norm as sup{/(vx, y)I:ly19s l}, this 
gives (2.6). 

Note that for such functions v ,  v, we have qav precisely when ((IJJ-v,)y, y) 
=(q-v,, y2)s0  for Y E %  and we take this as inducing the order for P*. We also 
wish to consider v, EP* (so that (p:%+?J* is defined) such that for each E > O  one has 
C, such that 

I(qx, x) ls  EIXI i  + C,lxli for x E 9 c 2. (2.7) 

Lemma 2. Let 2,  9, 9 be as above. Let M:%+%*,  as above, satisfy (2.3), (2.4) and 
let t+b E P* with @ a v, for v, satisfying (2.7). Then (M + v )  induces a densely defined, 
self-adjoint operator M,:% 3 '3,- 2,  If the embedding %%E induced by the pivoting 
is compact, then M ,  has compact resolvent. 

Proof. For any real I we have ( M + v  +I ) :%+%* continuous with 

( ( M +  v +A)x, x> = ( M x ,  x> +(A + v,b ,  x> + (11, - q,  x2> 

2 [glxli - PIXI&] + Ilxl; + (9x7 x) 
using (2.3) and noting t+ba q.  Using an inequality lXlpSC&/mJ and (2.7) with E : = ~ / ~ c O ,  
we obtain the fundamental estimate 

( ( M + ~ + A ) x ,  X ) ~ ( ~ / ~ ) I X I ; +  (A-p-coC,)I~l&. (2.8) 

'3b,:=%((M+II,+I)-'I,)  

Considering I a/3 + cOCE =:Ap, this makes ( M  + t+b +A) : 9- %* strictly monotonic and 
hence invertible. We set 

= {x E 9 : (M + ly + A)x =:z E %} c % (2.9) 
M p x : =  z -Ax for x E Qq with z:= ( M +  q~ +I)x E 2. 

t We remark that if there is any 9 norm giving ( 2 . 5 ) ,  then 

is a norm on sp{xy: x ,  y E %} and canonically defines the (essentially unique) strongest norm topology giving 
( 2 . 5 ) .  
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The continuity of ( M +  11, +A)-':%-9*+9 ensures that A ,  is a closed operator. 
Clearly, this definition is independent of the particular choice of (large enough) A. 
Note that & depends on 11, only through the lower bound v, but (2.9) does not depend 
on the particular choice of v,. Fixing v, and taking AaJ, (2.8) gives 

uniformly on (11, E S*:  11, 2 v,} with M = 2/& where C:= [norm of the embedding: 
%-+%I. Note that if 9+% is compact then (2.10) makes {(M,+A)-': A S A P ,  11,2v,, 
11, E S*} collectively compact for any v, satisfying (2.7). 

To see that 9,,, is dense in %, i.e. that ( M + 1 1 , + d ) - ' : 2 + 2  has dense range, we 
proceed by contradiction. Were %v not dense there would exist R E 2 orthogonal to 9, 
with f ZO. We could then find i E 9 with (M + 11, + A)Z = f so, using (2.4) 

( 2 , z )  = ( ( M  + 11, + A)2, (M + 11, + A)-'z) 

= (2, (M + 11, + A)-'z) = 0 since (M + + + A)-'z E Qv 

for any z E 2. Hence i = 0 so f = &a contradiction. 
Finally, the assumed symmetry of M makes M ,  formally self-adjoint but we must 

verify that the domain of (M,)* is precisely 9,, i.e. that %-continuity (on the dense set 
9JV) of the functional y 4  (M,y, x) implies x E 9, (noting that the inverse implication is 
clear). This continuity implies existence of z E % such that (M,y, x) = ( y ,  z )  for each 
y €9,; set 

2:= (M + 11, + A) -'[z + ax] E !2Jv* 

We then have, by the symmetry, 

= ( y ,  ( M +  11, +A)@ - ( y ,  z + A x )  

Since (M + 11, + A)y ranges over 2 as y ranges over BV, this shows R = x so x E aV. 
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For the interpretation (2.2) (ii) of L,, we takel 9 =V:= H'(Q)  and 2 = X:= L2(Q). 
The standard weak formulation of A:= - V - aV * with (1.2) (iii) is given by 

(Au, U ) =  ( -  V * ~ V U ) U  1. 
= I" avu * vu - y J,,, U U .  

Since [5]  the Dirichlet trace is compact: 9+-LL2(8Q), we have 

1 / , , .U  j 4 4 v I U l v  + c,lul x /VI x for U ,  U E V  

by a 'standard' functional analysis result$. Hence, taking 

(2.11) 

(2.12) 

(2.13) 

we obtain (2.3) for M = A  with 2 arbitrarily close to the a in (1.3) and a correspond- 
ingly determined @. We now take§ q:= 2d/(d + 2) > 1 SO that (with l/q + 1/p = 1) 
standard results [5]  give continuous embedding: V+ L2p(Q) whence 

(2.14) 

This means that we can take 9 = Lp(Q)  and v E 9* = Lq(Q). For q > 4 (or q = q when 
d = 2) the embedding: "Ir+ L2p(Q) (with llq + l /p = 1) is compact so we have (2.7), for 
q E Lq(Q). We have thus shown the following. 

For any y E LQ(Q), i.e. Jrd-llv(r))qdr< C O ,  bounded below by cp E Lq(Q), the construc- 
struction (2.2) (ii) via (2.9) defines A,, corresponding to L,  in ( l . l ) ,  as a densely 
defined, self-adjoint operator on L2(Q) with compact resolvent. 

When a and I) are smooth it is a standard regularity result that U E H ' ( Q )  for 
L , U E L ~ ( Q )  so the definitions (2.2) (i), (ii) are then equivalent. 

We proceed now to develop (2.2) (iii). A formal calculationl), imposing the ansatz 

u(x)  = R(r)U(w)  forx= rw E Q (2.15) 

with r e  (0, 1) and w e S d - ' =  82, gives 

a 
- v * avu = (M$)U+ 7 R(SU)  (2.16) 

r 
t As noted earlier, we have Y-:= HA(B) in the case of Dirichlet boundary conditions. 
$ Theorem. Let %, V", W be Banach spaces with V" reflexive and suppose A: V+% and B :  V'+W are 
continuous linear maps with A compact and X ( B ) c X ( A )  (i.e. Bu=O+Au=O). Then for each s>O there 
exists C=C,  such that ~ A U ~ ~ ~ E ~ U ~ ~ + C ~ ~ B U ~ ~  for U E V .  
Proof. Suppose not. Then there would exist E,>O and { U &  in Y- with Iuk./ - , ,=l ,  I A u , ~ , ~ E * I u ~ ~ - , , + ~ I B u ~ I ~ - .  
Extract a subsequence so Uk-u* (whence BUk--BU*) and Auk-+Av,, using the reflexivity of V" and the 
compactness o f A .  One has IBuklwCk-'IAukla+O soBuk+O. ThenBo, = 0 whence also Ao, = 0, contradict- 

0 This is for d >2.  For d = 1 we could take 9 = 9 as in [4] while for d = 2 we take any q > 1 and continue. 
1 1  This is valid pointwise for a ,  R ,  U smooth. 

ing O < E ,  = & * I U & s  /AUkl~+jAU*lp. 
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where MO is the ordinary differential operator given formally on (0, 1) by 

d-1  M , : f -  - ( a y ) ' - y a f '  (2.17) 

and S is a second-order elliptic operator, acting as a densely defined, self-adjoint, 
semi-definite operator on %:= L2(Sd-') with compact resolvent. 

A significant observation is that the spherical operator S does not depend on A ,  i.e. 
on the particular choice of a(.), y in (1.1) and (1.2) (iii). We write {pj:  j = 0, 1, , . .} for 
the distinct eigenvalues of S so 

o=,uu,<,Uu,<. * .  +cQ 

and, for each ,U =,U,, we let 

"U, := { u:s U =,U U} c % := L2( P - 1 )  (2.18) 

be the corresponding eigenspace. Note that each is finite dimensional and that the 
elements of (Up (eigenfunctions of S )  are just the classical 'angular' functions. The 
subspaces {QP} are orthogonal, giving a direct sum decomposition: 

~ = { ~ P : , U = o , , U u , ,  . . .}. (2.19) 

Now let % be the weighted L2(0, 1) with the inner product 

( x ,  Y ) ~ : =  r"-'x(r)y(r) dr II 
and corresponding norm. For p = 0, p1,  . . . we set 

XP := %@(Up (tensor product) 
- 

:= sp{u = R(r) U( w) :  R E %, U E Qi,} 

Rj ( r )o j (o ) :  R j e %  

(2.20) 

(2.21) 

where {U, = Up,,:J= 1, . , ., J ( p ) }  is an orthonormal basis for "11,. Corresponding to 
(2.19) we then have an Orthogonal direct sum decomposition: 

X = @{Yep: ,U = 0, ,Ul, . . .}. (2.22) 

Note that the norm I.I,corresponding to (2.20) gives IRUlae= IRIE1UIq for (2.15) and i f ,  
corresponding to (2.21) and (2.22), we consider U, v E X expanded as 

with Rp,j, RPSje %, then 

p j = 1  
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in view of the orthonormality of {Up,,:j= 1, . . ., J(p):p = 0, pl, . . .}. Note that for U as 
in (2.15) with (e.g. U =  Up,,) we have 

L*u= [(Mo+pu/r2+q)R]U 

and we are led to analyse M p : = M o + p ~ l r 2  (p  =PO, PI,  . . .). 

weak formulation of M,: 
Integrating by parts and using the boundary conditions (1.2) (iii), we obtain the 

( M p f ,  g)%=/;rd-luW ( fY+$ fg) dr -yf ( l )g( l ) .  (2.23) 

To proceed it is necessary to distinguish the two cases: p=po=O and ,U= 
pl, p2, .  . . > O .  In each case we take 9 to be a weighted H' space, but use slightly 
different norms. We take 5, to be the Hilbert spaces of functions f on (0, 1) 
induced? respectively, by the norms 

1 112 (2.24) 
llf1/0:= ( p - 1 ( l f ~ l 2 + l f l 2 )  0 dr 

l [ f l l + : =  (I' ~ ~ - l ( ( f ' ( ~ + , ~ ~ r ~ - ~ ( f / ~ )  dr . 
0 ) 112 

Observe that ( 1 - 1 1 +  dominates Il*lIo since r-2> 1 and pl > 0  so %+ ~5~ with, clearly, a 
dense embedding. We complete the weak formulation of 

M,:9+5* ( % : = 5 0 f o r p = O ; 5 = 9 +  forp>O) 

by specifying that (2.23) is to hold for f, g E 9, as appropriate. 

embeds in C112[P, 11 for any f > O  so one has an estimate 
From standard embedding results [5], one easily sees that 9J0 (U fortiori %+) 

If(1)l C1lIfllo forfE 90. 

Also, 3 embeds compactly in C[1, 11 for 1>0 from which it follows, as earlier for 
(2.12), that 

lf(1)I2G 4lfll~ + CEI f 1; for f e y o  (2.25) 

for any E > 0. We will need more precise information about the behaviour of f E %o as 
r+O+.  For O < r < l  we have 

t In defining these spaces there are three considerations at issue: regularity in (0, l ) ,  behaviour near 0 and 
behaviour at the boundary. The norms in (2.24) take care of the first two of these in taking the closure of the 
set of smooth functions. For first-order boundary conditions one can consider smooth functions satisfying 
(1.2) (iii) pointwise when a( - )  is smooth near 1 and get 'all' of H(0,1] near the boundary; this is independent 
of (smooth) a(.) and is also correct for a(.) merely measurablelbounded as in (1.3). (If we were to consider 
Dirichlet conditions then the specification of would include the requirement that f(1) = 0.) For p = 0 we 
thus have QO={constants on the unit sphere S d - ' }  so X o  is just the space of all radial functions in L2(Q) 
while (2.24) makes 90@'OUo the subspace of radial functions in I r = H ' ( Q )  (in I r = H i ( Q )  in the case of 
Dirichlet conditions) with a norm isometry. And so on. 
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whence, as ~ f ( r ) ~ S ~ f ( l ) ~ + ~ f ( l ) - f ( r ) ~ ,  we have 

(Cl + ln”*r)llfllo d = 2  
C*r’ -di211 f I10 d = 3 , 4 ,  . . . (2.26) 

with C1, C ,  depending only on d .  If we define 3” as the space of functions continuous 

on (0 ,  11 for which the norm 

I f  I[“]:= sup(r””1 f (r)(:O < r s I} (2.27) 

is finite, then (2.26) shows that ?!lo embeds (continuously, by the closed graph 
theorem) in %,, for v b Q : = d - 2  (v>V=O for d = 2 ) .  

Lemma 3.  9J0 embeds compactly in %.v for v > 3:= d - 2 (d 2 2 ) .  

Proof. Suppose d > 2 and {fk} is bounded in 910. We can extract a subsequence (again 
denoted by { fk}) converging 90-weakly, say to f, and we will show fk+f in %,,. Note 
that fk+f uniformly on [ J ,  11 for each J > O  since the embedding: 9,4C[P, 11 is 
compact (as l l - l l o  dominates the H’(P, 1) norm); cf, e.g., [ 5 ] .  Since v>Y we have, by 
(2.26) 

r”’1fk(r) --f(r)I ~C*r”’ l / f~- f11 , ,~dr“’  (2.28) 

with 2v‘ = v - 3 > 0 and with d fixed for the sequence. Given any E > 0 we can choose J 
so the right-hand side of (2.28) is less than E on (0, J ) ,  Then, noting the uniform 
convergence fk+f on [P, 11, we can choose K = K(E)  large enough that the left-hand 
side of (2.28) is less than E on [ J ,  11 for each k 3  K ,  giving I fk-f l [ , , ]s~. 

For d = 2 we may take any V E (0, v )  and note that (2.26) gives 

lf(r)lSC,r-”’2 Ilf 110 
(C, now depending on the choice of e) ,  giving (2.28) with 2v‘ = v - Q. The proof 
concludes as before. 

Next, we consider the weighted H’(0,l) spaces 4” induced by the norms 

llfllr”l:= (I’ r”If’l’+ Ifl’) dr) 
0 

(2.29) 

for v 2 0 ;  observe that % o = % d - I .  We will set 9::=%, with Y:=2d-3 for d > 2  (any 
V > l  for d = 2 ) .  

Lemma 4. Let 9 E (%,,)* for some Y > 2d - 3 (d  3 2) .  Then (2.7) holds with 9 = 90 (a 
fortiori with 9 = 9,). 

Proof. Set V =  v - (d  - 1) so v > 2d - 3 ,  as assumed, gives G> d - 2 whence, by lemma 
3 ,  the embedding: 9,,-%+ is compact. Again this gives an estimate 
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for arbitrary E > 0 and with depending on E ,  v, d.  We have (f  2)‘ = 2 f f ’ so 

rd - ’ I f ‘ ( r ) l2  dr r’l(f2)’I2 dr =s4 s~p{r’~ffr)1~} I I 
1 ~ ” l f 2 ( ~ ) l 2 d ~ ~ ( ~ l l f l l i + ~ l f i 2 , > l f l 2 ,  

== 4(Nf / / i  + Cl f 121 f ’I& 

Ilf’llf”, G4(4f l l i  + ~lfl9llfll:. 
Setting 4&:= (also fixing e) we then have 

llf211,”l~~llfll~+ C l f l i  (2.31) 

for any C large enough that 2 ~ C 3  E + 4e and also C 2 >  e. 
For cp E (%”)* let M : =  [(%”)* -norm of cp] < CQ and note that (2.31) gives 

K V X ,  x>l= I ( v ,  x2>1 GMllx21/[v~ G (EM)IxI~ + (CM)Ixl& 
for x E % =?lo (or %+ c ”21,) and any E M  > 0 and correspondingly determined C M .  This 
is just (2.7). 

Lemma 5. With 8:=$v, as above, we have (2.5) with % =%o (afortiori with % =”21+). 

Proof. Note that J:= V - ( d  - 1) > 0 for any d 2 2. We no longer have compactness but 
(2.26) gives 

f l  f(r>12G c*I f 1; forf €9 

corresponding to (2.30) so we obtain, as for (2.31), the estimate 

/x219:= llx211,y] =s c*ix1; forxE% 

absorbing /xiz terms in lx19. From the identity 

x y = [ ( c x + y / c ) ’ - ( c x - y / c ) 2 ] / 4  

lxyl =s (C*/4) (Icx + y lc l i  + Icx - y/cl?#) 
we then obtain 

6 (C*/2) (cIxlrm+ Iyl,/c)2 

which is just (2.5) with e:= 2C* on setting c2:= Iy19/lx/%. 

With these lemmas in hand we are ready to proceed to the construction (2.2) (iii). 

Theorem 6. Let a(.) satisfy (1.3) and consider the boundary conditions (1.2) (iii). 
With P:= $-Ip as above, assume E 8* with q 3 q  for some q as in lemma 4. Then 
L,  = A  + 11, induces a closed, densely defined, self-adjoint operator A,,, on X, as in 
(2.1). 

Proof. We begin by considering the ordinary differential operator (M, + V), first for 
, u > O  so we are taking % = % +  and ~ - ~ 6 u = ~ ~ - ~ ~ + .  From (2.23), using (1.3) and (2.25), we 
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have 

(Mpx, x) Z- a 1: +prd-31~12) dr-  y+1x(1)I2 

3 4x1; + (P -P,>.lXl&- y+ (E IX / i  + C,iXlk) 

where y+ := max { y ,  O}. Choose E < a/y+ (thus also fixing C,) and one obtains (forp 2 1) 
the monotonicity estimate? 

(Mpx, x ) 4 x l k +  (w -Po)lxl~ for x E 9 = 9L (2.32) 

where a:= a - y: and Po:= apl + y+C,, i.e. (2.3) holds. The symmetry condition (2.4) 
is clear from (2.23) and lemmas 3 and 4 ensure the hypotheses on q, q for applicability 
of lemma 2. Thus we know that for each p=pl ,  p2,. . . there is a well defined 
self-adjoint operator 

hip>*: %39Ip,*+% (2.33) 

which maps: x-(Mx + qx) E % whenever x E 9p,v c 9+ c X. For p =po = 0, taking 
9 =(?Yo and 1.1% = ll-ll,,, one similarly obtains (2.3) with a and P =Po  exactly as in (2.32). 
Thus, we have (2.33) for every p =po, pl, .  . .. 

At this point we recall (2.21), (2.22) and note that each U E X has the orthogonal 
expansion 

(2.34) 
p j = 1  

where the outer sum is over p =po, pl,. . . and each Rp,j is in %. The orthonormality of 
{Up,,> gives the norm identity 

(2.35) 
p j=l 

with a corresponding formula for the X inner product. We now define, in terms of 
(2.331, 

(2.36) 
p j = l  

for U ,  given by (2.34), in 

U E X: each Rp,j of (2.34) is in CCp,* with x lMp,,,Rp,jlk < CO 

p j = 1  

It is easy to verify that this definition of A,, 9, is independent of the particular choices 
of orthonormal bases { Up,j:  j = 1,. . . , J ( p ) }  made for each "11,. 

Since each 9p,v is dense in % we have the set (finite sums (2.34) with each 
Rp,, E 2lp,*} dense in X so A,  is densely defined. If U% z i  in X (with each uk E 9+,) and 

t We only need (2.3) immediately but emphasise that and Bo are independent of p for p =p , ,  p2, . , .. 
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alsoA,u-k+ w in X, then each R,k, j-, R,,] in X and M,,, R,k,i converges in 2,  necessarily 
to M,,,Rfi,,, with 

P I  

so 12~9, with A,Li=w:=limkAvuk, i.e. A, is closed. Next, suppose 12~9(A*,),  
meaning X-continuity (on 9,) of the functional: U-, (A,u, 12) so we have an identity 
(A,u, 12) =(U, z2) for some z2 E X. With the obvious notation, taking U:= R,,,U,,, gives 

(~,,,R,.,7 R J % =  (RPP R P . 1 )  for R,,, E 9/44 

whence, as M p , ,  is self-adjoint, we have Rpx1 E a,,, and R,,, = M,, vR ,,,]. As in (2.35), this 
(for each ,U, j )  gives 

U 1  

whence z2 E 9,. Thus 9(A*,) c 9v =:9(A,). Since one obviously has the reverse 
inclusion, it follows that A, is self-adjoint. 

We remark that A,, as defined in (2.36), has compact resolvent but it is convenient to 
defer proof of this until the discussion of spectral analysis of A, in the next section. 
The final task of this section is verification of the consistency of (2.2) (ii) and (iii). 

Lemma 7. Suppose A,,  9, are defined as in (2.14), directly by application of theorem 
2, and also as in (2.36). Then these definitions are equivalent. 

Proof. For U of the form (2.15) with U E  "Ufi we have U E 9$) if and only if R E 5ihfi,, c 
4yo. Since elements of "U, are smooth, this gives ~ € 7 ' "  and, from (2.16), etc, we have 

(A + w + A )  [RU] = [(M,+t)+A)R]U=:fiU+Au 

so M , $ : = R E %  implies  RUE^$) and A$)u=RU=A$")U. Conversely,  RUE^$') 
means (l? + A ) U E  X whence R E X so R E 9,,@. For either of the definitions one obtains 
a closed operator and the span of such u=RU is dense in each graph. Thus, the 
definitions of A,, 9, coincide. 

3. Spectral theory: continuity 

We will be considering the eigenvalues of A, (defined as in theorem 6 for w E 9* with 
suitable lower bound y ) ,  taken in increasing order with multiplicities 

A,(I f?)GA*(w)<.  . .-,a (3.1) 
as a sequence of nonlinear functionals of If?. The principal result of this section, after 
verifying (3.1), is that each functional: +*&(If?) is continuous, topologising ~f? in 9* 
(with a suitable one-sided estimate: 

From the proof of theorem 6 (and under those hypotheses) we know that each of 
the operators M,,,(p = 0, p1,. . .) is self-adjoint with compact resolvent and so we 

2 y ) .  



An inverse eigenvalue problem with rotational symmetry 1105 

have eigenpairsi Y ~ , ~ ] :  k =  1, 2, . , .} such that, for each y = O ,  yl ,  . . ., 
( 9  { Y ~ , ~ :  k = 1, . . .} is an orthonormal basis for 2; 
(ii) a p , J G a p , 2 s .  . .-+a. 

Lemma 8. Each of the functions y , , k ( r ) ~ u , j  (for p = 0, pi,  . . . ; k = 1 , 2 ,  . . . ; j = 1, . . . , 
J(y)) is an eigenfunction of A, with corresponding eigenvalue This set of 
functions is an orthonormal basis for X. 

Proof. For y ,  9 E % and U ,  U E  % we have 

( Y  U ,  P&= ( Y  > PMU, @?su 

so, since {Up,,: y=O, p l ,  . . .; j =  1, . . ., J(y)} is an orthonormal basis for % and each 
{ Y ~ , ~ :  k =  1, , . .} is an orthonormal basis for %, it follows that { ~ ~ , ~ u ~ , , }  is an 
orthonormal basis for X = %@%. Our construction of A, gives 

A,(Y U )  := (Mp. ,Y) U for U E % ~ , ~ E ~ & ,  

A,(Yp,kUp,,) = ( M P , , Y P . k )  UP,, = ( ~ , > k Y , . k >  UP., 
so each ( Y ~ , ~ U ~ , , )  is an eigenfunction of AV,. 

Lemma 9. For any 2 E R there are only finitely many y E a(S) for which a(M,+,) n 
( -  00, 21 is non-empty so (counting multiplicities in o(A,,)) the set { u ~ , ~ :  O ~ , ~ G A }  is 
finite. 

Proof. Suppose os2 is an eigenvalue of M p , ,  with corresponding eigenfunction 
x E 9&, c %, normalised so Ixlg = 1. Then 

o= (Mp.,% x) 

= (MPX, x> + (9x7 x) + (v - Y > x’) 

3 ( M p X ,  x) - IId 1lX2/l,”1 

where we take 9 in ($ Iy ) * .  From (2.32) and (2.31) 

Since a ,  a, Po, IlqlI, C, are independent of o, y, we see that a bound ,f on a boundsp. 
Since we only consider p E o(L) = (0, y1, . . .}, this restricts us to a finite set. 

In particular, given a number 6,  the set ,ni1(6):={y~a(S): B E ~ ( ? , , ~ ) }  is finite. 
Further, 6 occurs with finite multiplicity Kp for each y E A,(&). For each occurrence of 

(We are using us, to denote the eigenvalues of M e , +  to avoid 
confusion with the eigenvalues {p0, . . .} of S or {A,, . . .} of A,.  We remark at this point that in standard 
Sturm-Liouville theory one shows, using properties of the initid value problem for (M,, +palr2 + v ) y  = 0, 
that these eigenvalues are simple (strict inequalities in (3.2) (ii)) with certain nodal properties for the 
eigenfunctions. For v as rough as here it is not clear that this remains valid. 
$ Note that C, here, coming from (2.31) in lemma 5 ,  depends only o n g  and Ilqll whereas the C, appearing in 
the definition of Po for (2.32) comes from (2.25), depending only on the relation of g to the a in (1.3). 

That is, y , , , ~ 9 , , , c %  with M,,y,yc,k= 
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6 in [a(M,,,) with multiplicities], say with eigenfunction 9, it occurs J ( p )  times in 
[a(A,) with multiplicities]-with corresponding eigenfunctions { jU, , ] :  j = 1, . . . , J ( p ) } .  
Thus, the set {yp,kUF,,} contains exactly 

eigenfunctions associated with 8 as an eigenvalue of A,. 
From the above it follows that {a,,,k} is a discrete set which, when sorted in 

increasing order (with multiplicities), we can relabel as (Al,  A2,  . . .) with Ak+ CC as in 
(3.1) with an associated orthonormal basis for % consisting of eigenfunctionst of A ,  

with multiplicities] is precisely {Al, A2, . . .} with the multiplicities given by (3.4). 
which we relabel as {wk=wk(l,b): k = l ,  2, . . .} SO A,,,Wk=lkWk. It follows that [O(A,) 

An immediate corollary to the spectral expansion given by the eigenpairs {[A),, 
wk]}: 

where 

k 

is that A, has compact resolvent (since (A --lk)-'+0 for A$a(A,) ={A1, . . .}). From 
(3.5) we easily obtain 

and note, from this and (3.1), that (A,u, U) attains its minimum on 

{U E '3,: 1 ~ 1 ~  = 1 with U I wk for k < K }  (3.7) 
at, e.g., ,U = wK with the minimum value lK. It will be convenient to obtain a slightly 
different recursive variational characterisation of I L K .  For p E a(S) we set 

(3.8) Y, ,K:={~  = y o :  y E% with /yl ,= 1; UE{I!?~,,}; U I wk for k < K }  

with %:=?!lo for p = 0 and % +  for p =p l ,  . . . . 

Lemma 10. For the problem 

minimise ( (A  + V ) U ,  U) subject to: U E Up3'p,K (3.9) 
the minimum is attained with the minimum value AK. The minimiser G is an 
eigenfunction of A, which can be taken to be wK. 

t We canonically take these to have the form w=yU#., (once we have fixed the orthonormal bases {up,,} for 
each "U,) with y an eigenfunction of M p , p .  
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Proof. Let i:= inf{((A + q)u ,  U); U E U,9’,,K}. We already know from (3.5) and (3.6) 
that AK is attained at U = W ~ E  U,3’@,. so in (3.8) we need only consider U for which 
( ( A + ~ ) u ,  u)GLK. As in the argument for (3.3) we then have, for u = y U ~  LJ,~,,~, 

A K > ( A + W ) U ,  4=(Wp+V)Y,Y)% 

~ ~ 2 ~ ) l y l ~ + ~ ~ ( ~ K + P o + I I ~ l I C € ) ~ ~  

4 Y I i +  ( a ~ - P o ) - l l ~ l l ( ~ l ~ l f +  C€)  

where we have here taken ~=g/2llqIl for use in (2.31). 
If we consider a minimising sequence for (3.8), we see that only finitely many 

p E a(S) need be considered. As there are then only finitely many relevant {U,,!}, we 
may extract a (minimising) subsequence of the form ykU with U =  U,,! (p ,  j fixed), 
ykE%, and 

((A + q)uk, Uk) = ( ( M p  + v)yk, Y k ) L ’ l .  

Further, we have {lyk19} bounded so we may also assume y k - j  (weak convergence in 

Choosing A large enough that (M,+q+A):  %+%* is strictly monotonic, the 
quadratic form [ y-((M, + II, + A)y, y)%] is convex and so lower semicontinuous with 
respect to weak convergence in 9. Thus 

3). 

( (M,  + q ) j ,  Y) = ( (M,  + ly +A)Y > Y) -1 
G lim inf((M, + q + A)yk ,  y k )  - A  

= lim inf((M, + q)yk, yk) = A  
and the minimisation (3.8) is attained at Li =YO; set f:= (M,  + q ) j  E %*. 

Then yu-L Wk(k < K )  in X precisely when y I j k ( k  = 1, . . . , K ’ )  in X. We set 
Let {j,, . . . , j K j }  = { y  E %: ~ U E  {wl, . . ., wK-,}} with U:= U, ! for the fixed ( p ,  j ) .  

Y*:={yE%: J y ( , = l  a n d y I y , ( k = l , .  . .) K’)}  

p(t) = p(t; y):= ( ( M +  VJ +A> ( j  + ty), 9 + tY)% for y E Y ,  

=@+A) + 2 t ( ( ~ , y ) L + A ( j , Y ) , ) + t 2 ( ( M ~ + v + A ) Y , Y ) %  
with A as above. The minimisation property of j ensures that p(t) is minimised at 0 for 
any y E 9, withy 19. Thus, (2, y)e  = 0 for such y .  Since i is orthogonal (in the sense of 
the 9-%* duality corresponding to the % inner product) to everything in Y* which is 
orthogonal to j ,  i.e. 

f ~ { y E % : y l . s p { j l , .  . . , j K , , j H  

we must have i E sp{j$, . . . , j K , ,  j } .  Hence Z E 021 c % so j E 9,.+ and i = M , , , j .  Also, 
for k = l ,  . . ., K’ we have 

(jk, i)%=(jk>Mp,,j)% 

= (Mfl.y,jk, ?)T=Ak (9kr j ) % =  0 
where LkJ(k‘ < K )  is the eigenvalue corresponding to wk’ =jkU.  Hence, f E sp{j}, i.e. 
f = / I j  for some 2. Clearly 2 = , f 6 A K  and Li:=gU is an eigenfunction of A, with 
A&= (M,,,j)U=fU=/IKa. The ordering (3.1), i.e. the definition of AK, then ensures 
/I aAK so A& =A&. To within the arbitrariness in the specification of the eigenfunc- 
tions we can take wK = Li. 
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This argument is essentially the Courant minimax theorem (cf, e.g. [2]), adapted 
to the present definition of A,. The characterisation by (3.8) permits us, as in [1], to 
show the continuous dependence of each eigenvalue Ak = A,(?#) (and of each corres- 
ponding eigenfunction wk, to within the arbitrariness inherent in specification of the 
eigenfunctions) on q ,  topologised by the 9* norm. 

Theorem 11. Let q = yz+ $ strongly in 9* and assume there is a bounded sequence 
{q = q,} in 

/ l k  = / Ik , , :=Ak(q , )+ j j ;k :=A, (2Y)  (3.10) 

such that ql 2 q,. Then as i-+ one has 

for each k =  1, 2, . . .. Correspondingly, we have 

w k =  wk,,:= ~ ~ ( t p , ) - - + v ~ ~ : =  wk($) inr/‘=X’(Q) (3.11) 
to within the arbitrariness inherently associated with our specification of the eigen- 
functions. 

Proof. The argument is essentially the same as the corresponding argument in [I], 
inductively using the variational characterisation: 

(3.12) A K ( V )  = min{((A + v > u ,  4: E U, Y,, K ( V ) )  

given by lemma 10. The inductive hypothesis is to assume the result (3.10), (3.11) 
known for k < K  and fix K .  We now write , l=A, ,  w =  w,, 2, and w for LK=AK, , ,  
wK= w K  ,, AK, and W K .  

We first wish to show that lim sup / l8SA.  To this end, obtain Li = Liz by applying the 
Gram-Schmidt procedure to {w~,,, . . . , W }  so 

/ \ 

Q = N (  w - T ,  C Y W k )  (3.13) 
k<K 1 

where N =  N,  is a normalising constant and, noting the orthonormality of {w, = wi ,: 
k <  K},  we have C, = C, = (wk, w). Since, by the inductive hypothesis, wk* W k  and 
w k l w f o r  k < K ,  we have 

N=N,+1 CL= Ck ,-+0 fo rk<  K .  (3.14) 

From (3.13), (3.14) it follows that LZ--+ w in T. Actually, we know that W has the form 
gUwith U=U,,,(some fixedp,,) a n d y 6 9  with (glx=l  andM,,j=/ly.  In (3.13) we 
have CA = 0 for any wk not corresponding to the same ( p ,  j )  so we can set 

where w, = ykU,, , (anyp, j )  and have Li = j U  (same U as for w). We have j =y,-+g in 3 
whence also { j f }  is convergent in 9’. Now lemma 10 gives 

,l - A K  , ( ( A  + q)Q, tl) 

= ( (M,< + $ ) y *  J 9 d  + (q - $ > P2)x. 
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We have 

w, + w ) j >  ?)+ ( (M,  + $)Y?  Y )  = J  

(w - w, Jj2)-, 0 

as j + y  in 94 and 

a s j 2 + j 2  in 8 and w+$ in 8* (even weak convergence would suffice). Thus, lim sup 
LaJ. 

We now wish to show, conversely, that lim inf L K , , B l ,  giving (3.10), and that 
(3.11) holds. Each w= has the form y o  by our specifications and, as for lemma 10, 
the upper bound on L which we have just obtained restricts attention to U =  U/z,, for a 
finite set of relevant ( p ,  j ) .  Thus, possibly subdividing {wK,!} into alternative? 
subsequences, we may assume a fixed U and that this U is to be used in specifying W .  
F o r e a c h w = ~ , , ~ ,  thenwe havew=yUwwithyE%, lyl,=l, andM,,,y=ily. Thesame 
estimate (3.9) as in lemma 10 (recalling the assumed boundedness of {v, = y!}) bounds 
{y=y,} in 9 so we may assume (again possibly taking a subsequence) that {y,} 
converges (weakly in 94 so strongly in %) to some j E 94 with ijla= 1. For k <  K we 
need consider only {jl, . . ., )jK,}={y: w,=yU with k < K }  as earlier, except that 
jj=j,,l now (but we are considering the fixed U as for w, a)  and, similarly, j , : = j j ( $ ) ;  
note that the corresponding indices are independent of i by our inductive assumption. 
Then 

(Y,  (Y,  j j - j j ) % + O  

since (y,  j J Z = O  and, inductively, (3.11) giving w k = j j + W k = j ,  in X corresponds to 
ljj-j,l,+O. Hence, in the limit (8, Y,)&=O and ( Y U ,  W ~ ) ~ = O  for each k <  K .  We also 
have 

(V-&Y2)+0 
since we have assumed q+$ strongly$ in 8* and {y’} is bounded in 9 by lemma 5 .  
Now choose 2 large enough that ( M P +  $ + A ) :  %+%* is (strictly) monotonic so the 
functional: yt+((M, + $ + A ) y ,  y) is (strictly) convex on 9 and so lower semicontin- 
uous with respect to the weak topology of 9. We have 

L = ( (Mjl  + IC, + l ) y ,  y)c -2  + (w - $> Y2), 
so, as y-8 in 94, we have 

lim inf il 3 ( ( M ,  + $ + l ) j ,  j )  - l 
=((M,+w)j ,Y)z=((A+w)(jU)’) ,YI;?.xr  

amin{((Af$)u, U ) :  U E  U ~ Y ~ , ~ } = A ~ ,  

This shows that A = LK(Vi)+AK along subsequences for which wK,! =yiO with U fixed 
and {yi} weakly convergent in 94. The uniqueness of the limit shows ,lK,,+iK along the 
entire original sequence, proving (this step of the induction for) (3.10). 
t These alternatives would correspond to equally valid ways of specifying W K ,  as is shown by the subsequent 
argument. 
$ This corrects a minor error in [l] where, at the corresponding point, only weak convergence q, - @ in 9* 
was assumed-which seems inadequate if one has only weak convergence: y ,+ j  in 9. Note that we need 
only lim sup (q, - $, y 2 )  c 0 so weak convergence would be adequate if supplemented by a one-sided bound: 
l y ~ $ + O ,  with strong convergence: O,+O in 9*. It remains open as to whether weak convergence could 
suffice in general. 
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As in lemma 10, we now have  EGO^,, and that p U  is an eigenfunction of A ,  
corresponding to the eigenvalue L K  so we could sett  W K : = g U  in constructing the 
sequence of eigenpairs recursively. Note that 

is an equivalent Hilbert space norm for 9 and we have just shown that 

which, with the weak convergence (y l+p in 9) implies norm convergence: Ily, -&+ 0, 
i.e. y,+p strongly in 9. Thus, y I + j  in 9o and W ~ . ~ = Y , U + J U = : W ~  in V=9,@%, as 
desired$. 

This completes the inductive step and, since the inductive hypothesis is vacuous for 
K = 1, the proof of the theorem is complete by induction on K.  

4. The approximation scheme 

The method of generalised interpolation [3,  41 is a quite general approach to the 
approximate solution of ill-posed problems. Typically, one must first observe the 
equivalence of the problem to specification of the values for a sequence of functionals 
{&(-)&but here, as in [l], the nature of the problem already presents it in this form. 

The simplest version of the method is the procedure ( P N )  described in $1. The 
relevant hypotheses§ are as follows. 

The norm I/./l* (determining a reflexive Banach space 9,) 
topologising the relevant potentials is such that if q,,+ 
weakly in 9, with ~ ~ q ~ ~ ~ + ~ ~ $ ~ ~ , ,  then qv-$ strongly in 9*. (4.1) 

Weak convergence qv-$ in 9, implies & ( q v ) + L k ( $ )  for 
each k =  1, 2, . . .. 
The constraint set W, c 9, is such that the problem 
&(I#) = A k  for k = 1, 2, . . . with q E VI, has at most one 

(44 

(minimum norm) solution $J. (4.3) 

t This is not unique but is within the inherent arbitrariness associated with our specification of eigenfunc- 
tions, especially when 1, is not simple. 
$ Again, this is only along the subsequences for which one already has weak convergence y,-j in 9 and U 
fixed. This time, however, the limit is not unique. If i ,were simple (not counting the multiplicities induced 
by multiplicity of y in a(S) which are easy to handle), then one could just reorient w=w,,, as 
necessary-e.g. replacing w by - - w  i f ,  otherwise, one had ( w ,  *,)<O-to ensure w+W for the full 
sequence. In general, the 'correct' result when 6,-, < A , = .  . . = A L < / i L + ,  is to let P, be the X-orthogonal 
projection on sp{w,, . . ., wL} and observe that this converges to P in the operator norm for V ,  

In any case, our application of this theorem will only use (3.10). One needs (3.11) inductively for the 
argument but it is adequate to extract the subsequence repeatedly and then to rely on  the uniqueness of the 
eigenvalue sequence (3.1) to have (3.10) for the full original sequence. 
$ T h e  property (4.1) is referred to as the 'Efimov-Stefkin property'. We refer to (4.2), (4.3) briefly as 
' (weak)  continuity' and 'uniqueness', respectively. 
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Under these hypotheses (4.1)-(4.3) it is a general result [6] that 

qN+ li, (strongly in 9.J as N+ (4.4) 
where we assume the data {A,}  are consistent (i.e. a solution exists in (4.3)) and, as for 
( P N ) ,  each qN ( N =  1 , 2 ,  . . .) is defined as the minimum norm element of Y, subject to 
matching the given values 2, of A,(.) for k =  1, . . ., N .  

Rather than prove the result in this form, we turn instead to consideration of a 
more general version which permits the use of (implementable) approximate pro- 
cedures for the 'Nth stage' computations. Before doing this we comment on the 
hypotheses. 

It is known that (4.1) holds for any uniformly convex Banach space, in particular 
for Hilbert spaces. Our major effort, to this point, has been to show that one obtains 
continuity of the eigenvalues, viewed as nonlinear functionals on the (radial) potential 
q,  using anorm convergence in the specific space vP* and subject to a lower bound 
condition. Our first observation is that (4.1) and (4.2) need only hold on the constraint 
set Y*. We will assume?: 

the constraint set Y* is in 9* and for each 9*-bounded 
subset YocY,, there exists a suitable Y and a number m 
such that each q E Yo has a lower bound q E (@")* with 
q 2 q, Ilvll " @ " I *  norm) (4.5) 

and obtain (the restricted form of) the condition (4.2) by requiring compact embed- 
ding: 9*+9*. We would like to permit consideration of potentials 11, involving 
(radial) measures and note that our efforts in working with such a weak space as 9* 
do, indeed, have the value of permitting this, even after the norm is strengthened 
(defining vP*) to have this compact embedding. Note that we are not assuming that Y* 
itself is compact$ in 9* but only a relative pre-compactness in Y* of sets bounded with 
respect to 9* norm without having to specify any particular such 9* bound in 
specifying Y *.  

The uniqueness property (4.3) is, at present, terra incognita for EVP, even for the 
case of radial potentials. In the one-dimensional case (Q:= ( - 1, 1) c R') radiality just 
means that the potential is known to be symmetric on the interval and that is known to 
ensure uniqueness [7]. This suggests the possibility that (4.3) may hold§ for quite 

t The simplest form of this, of course, would be to have v30 for WEY* or, slightly more generally, a 
one-sided condition that 
$This assumption (corresponding, e.g., to an assumed apriori bound on Y* in a space as 9,) would permit 
a simpler approach. The map 

for a constant C depending only on the 8* norm of v .  

A: v-[A,(v), . . . I :  Y*+R"  

(taking R" with the product topology) would be a continuous injective map from a compact Hausdorff 
space, By a standard result of point-set topology, A would then have compact range and a uniformly 
continuous inverse. The (uniform) continuity of the inverse would mean that, in specifying Y, we have 
assumed away the ill-posedness of the inverse problem EVP. The difficulty lies in justification of any specific 
a priori bound on the potential $. 
§ An interesting stronger conjecture is that one might be able to recover v from knowledge only of those 
eigenvalues of A ,  associated with purely radial eigenfunctions, i.e. from u(Mo,v) .  This seems unlikely, 
however, as in'the one-dimensional case it would correspond to knowing I) symmetric but only giving 
alternate eigenvalues-those with even eigenfunctions. More plausible would be to conjecture, for 
example, that a(Mo,,) together with one other spectrum-i.e. cr(M#,,) for some other p E @)-would 
suffice for uniqueness. 
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general Y.+ c P*, satisfying (4.5), but this remains entirely conjectural at present. 
Here we take the uniqueness condition (4.3) as an a priori hypothesis without 
investigating specific settings (i.e. more concrete conditions) permitting its direct 
verification. 

We turn now to the more general approximation procedure, relaxing (PN) 
somewhat. For this we assume that we are given 6,>0 and positive functions 
e,, , (q) > 0 for k E N and 11, E Y*. The procedure (at this ‘Nth stage’) is then 

k = 1, . . . , N }  and select q , , , ~  Y, such that llqN/l.+ 
sinf{IIqII*: ~ E Y ~ } + B ~ .  

We note that (Pa,,,!) does not determine q, uniquely. 
It is important to realise, at this point, that this approach implicitly addresses the 

difficulties normally associated with noisy correlated (redundant) data; compare, e.g., 
[6, 81. We envision, here, a sequence of (measured) data sets {&}N of the following 
nature: (i) while each set may include only finitely many k ,  all the (necessary) 
eigenvalue measurements become eventually included and (ii) each individual eigen- 
value measurement (i.e. fixed k )  becomes arbitrarily accurate as N-, w .  Thus, with 
no loss of generality we may assume {Ak}N={jN,k: k =  1, . . ., N }  and that we have 
available accuracy estimates &N,k > 0 bounding each measurement error: - Akl s 
tN,k ( k  = 1, . . . , N ;  N = 1 , 2, . . .) with tN,k+ 0 as N-, for each fixed k .  Now choose 
numbers E ~ , ~ > E ^ ~ , ~ ,  6,>0 in such a way that E ~ ? , ~ - , O ,  dN+0. Then, regardless of the 
nature of any redundancies or consistency requirements of the problem (which will 
necessarily be satisfied by the true, exact data set { A k = A k ( $ ) } )  the set YN defined in 

must always be non-empty (since, by construction, we will always have, e.g., 
q E YN for each N-although this does not give q, = $ or even force v,,, to be close to 
$ for any particular N ) .  Thus, implementation of our computational procedure (Pa,,,,) 
is always feasible (by the definition of ‘inf‘) and the conclusion of the theorem is that- 
however (Pd,N) may be implemented-the approximating sequence {qN} always 
converges to the correct $ (in the sense of the norm used for the minimisation). There 
is thus no need, when employing this approach, to make a preliminary data reduction 
to a ‘minimal’ (independent) set. 

(pa,,) Let Y,,~:={~EY.+: lAk (q ) -Ak l~~N,k (q )  for 

Theorem 12. Let P* be as in theorem 11 and let P* be a reflexive Banach space (with 
norm 11.11*) embedding compactly in 9* and satisfying (4.1). Let Y* be a closed 
convex? subset of 9*c9* satisfying (4.5). Assume O<d,+O and O<E,,~(.)+O for 
each fixed k ,  uniformly on P’,-bounded subsets of Y*. The operator A, is defined (as 
in 8 2) for radial potentials + E Y * and the spectrum [&(q): k = 1, 2, . . .] = o(A,) is as 
in (3.1), in increasing order with multiplicities. Suppose, for k =  1, 2, . . ., we have 
&=A,($) for some unique$ $ EY,. Then (4.4) holds for any sequence {qN} in Y* 
obtained by the procedure (Pa,,,,) for N =  1, 2, . . .. 

Proof. The first observation is that $ E YN so 

f It is sufficient that Y+ be closed in the weak topology of 8*. 
$ It is sufficient that $ be unique among minimum norm solutions. The general condition (4.3) asserts that 
for any eigenvalue sequence (Ik) which can arise (consistency) the minimum norm solution in Y* is unique 
as asserted. 
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We may then assume (extracting a subsequence if necessary) qhr+ $: weak conver- 
gence in 9, for some $. As we assumed Y* closed and convex, it follows that $ E Y* 
and we will show that $ is a (minimum norm) solution of 

A,(w> = L k  f o r k = 1 , 2 , .  . . (4.7) 
whence $ = $ by the assumed uniqueness. The uniqueness of the limit shows that the 
possible extraction of a subsequence above was nugatory: one has qN+ $ for the full 
sequence {q,}. 

eN,,(qN)-+O so 
Ak(qN)+Lk  by (Pa,,)-considering only N a k ,  of course, for each k = l ,  2, . . .. On 
the other hand, the assumed compactness of the embedding: B,+9* means that 
weak convergence: qN $ in 9, implies strong convergence: qN+$ in 9,. The 
condition (4.5), with boundedness in 9, of {qN) also gives the ‘lower bound condition’ 
(qN>qN) of theorem 11, so theorem 11 applies to give? Ak(qN)+A,($) for each k 
whence A,($) = &. 

At this point we have weak convergence qN-$ in 9, (along the subsequence). 
The convexity of the norm gives lower semicontinuity with respect to the weak 
topology so q,-$ implies 

To see (4.7) for $, note that boundedness of {qN} in 8, gives 

1 1 $ 1 1 *  s l i m  infllvNll* ll$ll,. (4 * 8) 
Since $ is a minimum norm solution of (4.7) by assumption, the solution cannot 
have smaller norm; hence 1 1 $ 1 1 * = 1 1 $ 1 1 *  from (4.8) and $ is also a minimum norm 
solution. The assumed uniqueness of $ then implies $ = $. As noted above, this gives 
weak convergence qN-$ in 9, (along the full sequence) without yet using (4.1). 

Now if we combine (4.6) with (4.8) we see that llqNll*-+ll$ll*. This, with the weak 
convergence, gives (4.4) subject to the assumption (4.1). 

For implementation we note that one does not attempt to construct Y, and need 
not even construct V,eYN directly as in (Pa,,,). If one could produce any element 
G N  E 9, for which one would have an estimate (for some qN as in (Pa,N), N = 1 ,2 ,  . . .): 

with b;(-)+O uniformly on B,-bounded sets in Y,, then as an immediate corollary of 
theorem 12, one also has $,,,+ $ in 9, as N+ W .  We will not, however, attempt to 
reduce the proof of convergence of our computational implementation to theorem 12, 
but instead will use an essentially similar argument to prove convergence directly. 

Parametrised by h > 0, we will need a family of computational approximations 
Y , ( h )  to Y, and an algorithm+ which takes h,  N and (a representation of) q E Y * ( h )  
as inputs and returns 

h ( q ;  h)  = [&(w; h ) ,  . . ., t d w ;  h)l 

t For present purposes (3.10) suffices: (3.11) is relevant only as part of the inductive argument for theorem 
11. 
$ One could attempt a finite-element discretisation of (A + V,) from (2.11), using a finite-element subspace 
corresponding to a mesh parameter h ,  if V, were moderately smooth (or first approximate V, by a smoother 
6). In view of the analysis above, one might more plausibly use such finite-element discretisations to (M,,,,,) 
for relevant p ,  assuming a(S) accurately known. This effectively produces (sparse) n(h) x n(h)  symmetric 
matrices whose ‘first’ N eigenvalues could be computed and taken as giving A,&; h) .  In general, such a 
procedure would give ik(V,; h)+&(@) as h+O. 
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approximating [ A , ( q ) ,  . . ., qN(q)]. Reasonable properties of such a computational 
procedure would be: 

given any q E Y, there exists $ E Y, (h )  with llq - $l l *  < 
d ( q ;  '3) and given any $ E Y*$) there exists q E Y* with 
~ ~ q - ~ ~ ~ ~ ~ d ( $ ;  h)  where d(.; h)+O as h+O uniformly on 
B,-bounded sets; we may also assume (4.5) for Y* (h ) ,  
uniformly in h for small h ;  (4.10) 

Ilk@; h)  - A k ( q ) l + O  as h-0 for each fixed k = 1, 2, . . ., 
uniformly on 9'*-bounded sets. (4.11) 

Without further concern for the details of possible construction of such algorithms, we 
indicate how the availability of a computational implementation satisfying (4.10) and 
(4.11) could be used to obtain a computable sequence {$,} converging in 9, norm to 

We wish to replace the approximation procedure (Pa,,) by a more explicitly 

(Pc,,) 

w. 
implementable computational procedure: 

choose h = hN small enough that Y,(h) 
:= {IC, E Y *(h): ljk(q; h )  & d for k d N} 
is non-empty and select q , ~  $,:_= Y,(h,)-such that 
I/$ Jl* < G N +  8 ,  where GN:= inf{//ql/,: ly E Y,}. 

The actual computation involved in ( P c , N )  would be the use of some (standard) 
algorithm for nonlinear constrained optimisation to minimise 11$11. (using a stopping 
criterion giving approximate minimisation to within 8,> 0 of the infimum S,) subject 
to the constraint: $ E Y,. The computational difficulty of this will depend on the 
nature of I/.Il,, on the sizes of E ~ ~ , ~ ,  on the size of hN and the computational difficulty in 
implementing A N ( - ;  h,), etc. 

Theorem 13. Let A ,  9 * ,  9 ,, Y*, {AJ be as for theorem 12 and assume implementable 
computational approximations Y , ( h ) ,  AN(-; h)  are available (for small h > 0) satisfy- 
ing(4.10), ( 4 . 1 1 ) . A s s ~ m e O < 8 ~ - - + 0 a n d E ~ , ~ + O f p r k = 1 , 2 , .  . . asN-m.Then, for  
each N =  1, 2, . , ., one can choose h = h ,  so YN:=YN(hN)  is non-empty (further 
requiring that hN+O) and select GNe\VN as in (Pc.N).  For any such computed 
sequence I$,} we have 

$,v- II, in Q * norm as N-. CO 

where $ is given by (4.3). 

(4.12) 

Proof. Since $ E  Y* one has, by (4.10), existence of $(h )  E Y,(h) with I / $  - $(h)ll* d 
8($; h)+O. This makes {$(h): O<h<h,} bounded so (4.11) gives 

f o r k =  1, . . ., N I ~ k ( $ ( Q  h)  -4d$W)I <EN,!& 

for small enough h. On the other hand, $( I t )+$  in Q* (afortiori in 9*) and we have 
assumed (4.5) for Y*.h) so theorem 11 applies to give 

iAk($(h)) - A k l  <E,N.k/2 f o r k = 1 , .  . .,N. 
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Combining these gives $ ( h ) E Y N ( h )  for h small enough so then Y N ( h ) # O .  Also 
requiring h,<h, for any given sequence: O<h+O lets us fix? hh. This fixes 
Y,:=YN(hN) and we can find GNeYN, approximately minimising the norm, as in 

To-show (4.12), we proceed as in the proof of theorem 12. Since $(hN),  as above, 
( P c , N ) .  

is in Y, for each N and $(h~v)-+$, we see that 

so {G,} is bounded and, as in (4.6), we have 
(4.13) 

so (extracting a subseque.nce if necessary) we may assume weak convergence: $,-$ 
in 9.+. By (4.11) and the definition of YN (noting that F N . k + O )  we have / Z k ( $ , ) - + &  
while theorem 11 gives / Z k ( $ N ) - + & ( $ ) .  It follows that $ is a solution of (4.7) with 
ll$ll, 4 lim inf //GNl1 G ll$ll*; the uniqueness property (4.3) then gives $ = $ and weak 
convergence $,-+$ for the full sequence. From (4.13) we also have ~~$,,,~*-+/~$~~.+ so, 
by (4.1), we have (4.12) as asserted. 
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