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Abstract. For the Sturm-Liouville operator L =L,:  .VP+ -p” +pv one seeks to reconstruct 
the coefficient p from knowledge of the sequence of eigen-frequencies (Aj with LJ? =Ajn for 
some y j  # 0). An implementable scheme is: for some N determine pnr so (approximately) pN 
has minimum norm with eigen-frequencies { A , . .  . . .IN/ as given. This is the method ot’ 
’generalised interpolation‘ and is shown to give a convergent approximation scheme: 
p , v i p .  The principal technical difficulties are the continuities of the functionals 
which are shown for p topologised by weak convergence in (HI)’, and the injectivity of 
p b { i , . : j =  1. 2 .... 1. 

1. Introduction 

We consider the ordinary differential operators 
L=L,: y i - t - y”+py  

: L2(-l. 1 ) 3 9  -+LZ(-l, 1) 

(where ’ = d/d.u) with homogeneous boundary conditions of the form 

-.V’(-l)+hy(-l)=O=~~(l)+hq’(l). (1.2) 

Thus, the domain 9 of L has the form 

9 =9,:={y€L2(-1,  I):(1.2)holds andLyEL2(-1.  l)}. (1.3) 

Essentially. one takes I /  to be the maximal domain for L given by (1.1) and (1.2), and this 
will make L a self-adjoint operator with compact resolvent. By standard Sturm-Liouville 
theory one has a sequence 

A I < & < & <  . . . - + C O  (1.4) 

of eigenvalues ,Ij = S ( p )  with a correspondicg orthonormal sequence of eigenfunctions 
y, = j ; ( p )  such that 

LJ; = 2, )> Yj E 9, (1.5) 
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where 11 /I denotes the norm of L2(-1, 1) and ilyjll= 1. Under the hypothesis thatp is ecen 
on (-1, 1) so 

P(X) = P(-X) forxE(--i, 1) (1.6) 

it is known (cf, [ 1,3, 81, etc) that the map 

p m ,  az,. . . ) (1.7) 

defined by (1.4) and (1.5) is injective-the sequence {Aj] of eigenfrequencies uniquely 
determines the coeficient p. 

Given the above, it makes sense to attempt to identify p from the observation/ 
knowledge of (Al,  &, . . . ), inverting the map (1.7). This is the inverse Sturm-Liouville 
problem for which we seek a constructive solution in the form of an (implementable) 
approximation algorithm. 

By analogy with the classical interpolation problem in which an approximate 
reconstruction of an otherwise unknown function is obtained from a finite set of values of 
certain functionals, the approximation scheme considered [8, 91 may be viewed as a form 
of generalised interpolation. 

Procedure (P*). For N =  1,2, .  . . , obtainp, to satisfy 

subject to 
jlPNIl* 

Aj(pN)=lj for j =  1 , .  . . , N 

where { J j }  is the given set of eigenvalues (so Ij := Al(jj) for the ‘true’ potentialp) and 11 1 1  * is 
a suitably chosen norm corresponding to a Banach space X * of admissible p-for which 
(1.1) makes sense and (1.6) holds. The functionals considered are then 

p++aj=aj(p) :  x*  + R, (1.10) 

defined by (1.4) and (1.5) for j =  1,2, . . . and, as with the evaluation functionals f t-+J(tj) 
occurring in classical interpolation, we will use the fact that specification of the complete 
set of values ( j =  1, 2, .  . .)  uniquely determines the unknown function. Our object is to 
prove, under suitable hypotheses, that 

pN+P as N+CC (1.1 1) 
using (P*). More precisely, we will introduce an approximate version of (P*)-call it 
(Pa)-in which (1.8) and (1.9) are realised only approximately in det~rmining jN and show 
that j N  + p .  

2. The operator 

The principal technical difficulty arising in the consideration of the scheme (P*) 
introduced above is the continuity of the functionalsphAj(p). As this is of some interest 
in its own right, we will present a result somewhat stronger than will be used in 5 4 for 
showing the convergence of the approximation scheme. Thus, we will consider 
p E [H’(-I, I)]’ and will show that the functionalp++Aj(p) is continuous from (HI)’ with 
its weak topology for each j =  1,2, . . . . 

Whenp is smooth-or, indeed, whenp E Y :=L2(-1, 1)-one has 

9 = 8 , : = { y € H 2 ( - - 1 ,  1):(1.2)} 
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since this gives y N  E Y and, as y is then continuous, one also has py E Y. On the other hand, 
for p Y one cannot take the domain of L, to be contained in go since smooth y then 
gives py Y. Thus, before proceeding, it is necessary to discuss briefly the interpretation of 
8,, L, for generalp E (HI)’. 

First, note an elementary functional analysis inequality: given Banach spaces A, B and 
C and linear maps E :  A-, B and F: B -, C with E compact and Finjective, one has 

IIExllB <EilxliA + c&I/FExl/C 
for all X E  A, for all E >  0 (some C&). Since the embedding H1(-I, l)c,V[-l, 13 is 
compact, it follows that 

IlYIle <EllYll* + CellYll (2.1) 

(all E > O ,  some C,) where, now and hereafter, we use II /le, jl I l l  and 11 I /  to denote, 
respectively, the norms in $?[-1, I], in H 1 ( - l ,  1) and in Y :=L2(-1, 1). Note, also, that 
H’ is an algebra with 

Iiu41 < l l ~ l l ~ l i ~ l l l  + 1 1 ~ 1 1 1 1 1 ~ 1 1 ~  
so that, using (2. l), one has 

Now consider y and z such that y E H i ,  z E Y and 

-y” +py = z + Ay 

(z, U) + VJJ, U) = (Y’ ,  0 9  + h[yvI, + Y ~ l - l l +  (P, YO>. 

-y’(-l) + hy(-l)=O=y’(l) + hY( 1 )  (2.3) 

so, for any U E H ‘  one has 

(2.4) 

One can view (2.4) as a weak definition of Lp as a map: H1+(H1)’ with the domain 8,  
taken as the pre-image of Y so that it remains necessary to show Lp: Y I> gP+Y is closed 
and deasely defined. (As usual, for smoothp and y one can recover the boundary condition 
(1.2) as well as the definition (1.1) from the weak formulation (2.4).) 

denotes the norm of (HI)’ dual to that of HI, 
one takes U = y  to obtain 

l ~ ~ l f = l ~ y ’ l ~ 2  + ~IY~~~=(Z, .Y)  +(A+ l)ll.~l12-h[y2!l)+?~2(--!)l-(p,y2) 

Assuming ilpll* <A4 (where, now, 1 1  1 1  

Q ( Z , Y >  +(A + 1)llYlI2 + 2Ihl IIY2IIe + lIPll *llY2111 

<(Z,Y) + (1 + l)lIY1l2 +41hl[E211yll: + ~,2llullZ1 +M[4EllYll: + (c:/2E)IIuI121~ 

Setting 
KM:=l + C:/~E= with ME + lhIE2 Qi  (2.5) 

this gives the fundamental estimate 

lluIl:<2(~,Y) +2(A+~M)IlYl12 (2.6) 

Now choose 1=1* with 1, < - ( K M +  1) and (2.6) gives llyll~+211vl12<211z11 Ilvll so 
given (2.3) with llpll* <A4 and (2.5). 

that 
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and the map z w y  determined by (2.3) is then continuous (from Y to H ’ 4 Y )  where 
defined. 

For smooth p the map z b y  is defined on all of Y. Given generalp E (H  ‘ ) I  let ( p k )  be a 
sequence of smooth functions with pk -+j in (H ’)’ and, with z E Y fixed, let y ,  be defined by 
(2.3) using P k  for p and ,? * for 1.. Then, uniformly, l1yk\Il < f i j z l l  so we may assume weak 
convergence in H‘, i.e. y k - j  for s o m e j  E H ’. For any U E H 1  one then has as in (2.4) 

(z, v ) + A * ( Y k ,  u)=(y i ,  U’> +h[ykull  fYkUI-11 + ( P k 3 Y k U ) .  

Since y k - j  weakly in H’,  one has y k + j  in %[-1, 11 by the compactness of the 
embedding so, going to the limit, one has 

( z ,  U >  +I * (Y, U) = ( Y ,  ut> + h[YUll + j v l - l l  + (j, Y v )  
which was the interpretation of (2.3) for j. Hence, the map 2-y defined by (2.3) using p 
and 1, is defined for all Z E Y  and continuous to HI (well defined as the bound 
l/jlll < fi1izlI gives uniqueness as well as continuity so j j  is independent of the choice of the 
approximating sequence (pk)). 

For a n y p  E (HI)’, then we may take 8, to be the range of the map z b y .  (Note that 

- y”+py=z+A*y=i ’+2’*y  (2 := z + (1 * - x:, )y) 

so this range is independent of the choice of ,I*.) We must finally show that 8,, so 
obtained, is dense. If not, one would have the existence of V E Y  orthogonal to all y 
satisfying (2.3) for some z; let U ,  corresponding to y ,  be obtained from (2.3) with U for 
z-i.e., Lpu = U + A U with U E Y,. Then, for any y and z, as in (2.3), 

O= ( 4 y >  

Remark. For smooth p and for y E H 2  one can interpret (2.3) almost classically: taking y” 
as a distributional derivative which is then a function in Y and actually evaluating y and y’ 
at 2 1 to verify the boundary conditions (1.2). For more general p we have used the weak 
interpretation (2.4)-actually viewing L, as 2 map from H1 to (E’)‘ (with y” ana the 
boundary conditions considered weakly and, as y ,  U E H gives yv E H ’, interpreting 
py E (H’)’ by (py ,  U) := ( p , y u ) )  and then restricting to %,cH such that the result is 
actually in Y. This interpretation embeds the boundary conditions in the definition of the 
operator by (2.4) together with the construction of 9,. We do note, however, that if one 
were to have P E L : ,  for neighbourhoods of 21 (i.e., if there were a and ,8 with 
-1 < a < ,8 < 1 and ) E Y such that ( p  -$, f) = 0 for f with support in [a, ,8]) then one 
would have correspondingly y E HLc near 2 1 for y determined by (2.4) with, say, 3, =Ib * 
(i.e., for ally E 9,) and so could then interpret (1.2) classically. 

We have constructed L, as a densely defined operator-basically by defining T* = 
(Lp --I*)-‘ and taking L, to be [T;’ +A,] with 8,:=.%’(T,) as domain. Clearly L,. so 
constructed, is closed and, as in (2.8), is self-adjoint. Since T ,  : Y +HI,  the operator L, 
has compact resolvent. 
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We finally show that L, is semi-bounded, i.e. that A, := inf { ( y ,  L,y): y E 8,, llyil= 1) 
is finite. It is sufficient to consider y for which ( y ,  L,y)<O (else A I  20). For such y one 
applies (2.6) with A = 0 to obtain 

( Y ,  ~,~)ZllYlIt-2Kwllu1l2 >-2K, 

whenceI,  >-2K~w. 
The standard spectral theory for self-adjoint operators (on a Hilbert space) having 

compact resolvent gives A, E G ( L ~ ) - I ~  is the smallest eigenvalue. More generally we 
know that the spectrum G(L,) is a sequence 

Al < A 2  < A 3  < ... (2.9) 
(multiplicities are permitted but each is, at  most, finite) with a corresponding set of 
eigenfunctions (yk) satisfying 

L p Y k  =lkyk Y k  E y~ (2.10) 

with jlykll= 1. If no non-trivial multiplicities occur, the sequence (yk) is automatically 
orthonormal but can be taken orthonormal in any case. Since T* is injective and 
G(L,) = l/o( T ,  )-A *, one has Ak -+ CO and (yk) is an orthonormal basis of y. One easily 
obtains from this that 

(2.11) 

and hence 

inf { ( y ,  ~ , y ) :  y E H‘, ~ ~ y ~ ~ =  1, y l y k  for k < j )  = Aj. (2.12) 

Note that in the inf in (2.12) one need not require y E 8, but only y E H’ c 9,. Note also 
that if the inf in (2.12) is attained at  any j~ H‘ with IIpII= 1 a n d j l  y k  for k < j ,  then one 
necessarily has Lpj  = Ajj so one may take j to be yj.  

Proof. T o  see that the inf in (2.12) is actually attained, note that for a minimising sequence 
(y’) in ~ : = { J J E  H I :  liyll= 1 , y l y k  for k < j }  one has from (2.6) with y=y’, A = o  and 
z=z‘:=Lpyy that {Ily’lil} is bounded, so y”-j” for a sub-sequence. Since, then, 
Iljjll <lim inflly’ll, and since (2.4) gives 

(Y”,  zy)=ll~yll:- 1-(P,YU)-h(~YY(1)1~ + [y”(-1)l2), 

the minimum is attained at j (and Ijyyl/l -+ lijli, so y”-j  in HI).  Clearly j E yj. Now, for 
w E q, with w l j ,  one sets $(t)= $(t; w):= (j + tw, L p ( j  + tw)) and has $’(O)=O, so 

Thus 2 E sup { j) and L,j =Aj; clearly I = Ij .  Since i E HI c Y, one necessarily has 9 E $ p .  

Thus,j=yj.  0 

L,j=:?LLw and hence .?E SUp{y,, . . . , y j - i , j ) .  But (Ykr i )=(LpYk, - i ( )=Ak(yk ,9)=0’  

3. Continuity of the spectrum 

The construction of the preceding section-(2.6) and (2.1 1) in particular-can now be 
used to show the desired continuity result for the functionalspi--tAj(p). Throughout we will 
define L,, k,, etc, for p E (HI)’ as in 5 2 and let { [&(p), yk(p)]:  k =  1, 2, . . . ) denote the 
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corresponding sequence of eigenpairs. These are taken so A,(p)<&(p)< . . . with { yk (p ) )  
orthonormal. We topologisep E (HI)’ by (sequential) weak convergence. 

Theorem 1. Supposej E (H’)’ andp=p,- j  (weak convergence in ( H  ’)’). Set 1, =&(j )  

Then &+,& and (with some modification allowing for the non-uniqueness in the 
determination of {yk, 

and j k  :=yk(p) for each k and dk=ak,, :=Lk(pY) and yk=yk,v :=Yk(PY) for each k and V. 

and j k )  yk, , + j k  (strong convergence in H I )  for each k = 1,2, . . . . 

ProoJ The proof is by induction, using the characterisation (2.12) to show firstly, that 
lim sup >Ik (so A k , p + I k )  and finally, that Y k , , + j k  in 
H’ (for a sub-sequence and with possible respecification O f j k ) .  

Given j ,  suppose that the result is known for all k < j .  Define y by applying the 
Gram-Schmidt procedure to { y l ,  . . . , yj-  1, j j }  so 

<&, secondly, that lim inf 

(3.1) 

where Nu is a normalising constant and ck,p=N,(yk,u,j j j) .  Since y k , ” + j k  in Y, one has 
( yk , , , j j )+  ( j k , j j )  =o for k < j ,  and SO 

Nv+ 1 ck,v*o (3.2) 

,Ij = ,Ij, = min{ ( y ,  L p y ) :  y E H’, I /  y/l = 1, y l y k  for k < j }  

4 (j”, J q u )  

=119:112 + h [ j t ( l )  +jX-N +(P3,2). 

(jfixed, k < j ) .  From (2.12) and (2.4) withp=p,, 1=0 and u=j , ,  we have 

(3.3) 

Since (3.1) and (3.2) give yu + j j  in HI (as yk, +jk in H’ so { yk, ,} is bounded in H ’) one 
has 11j:11+ IljjlI and j j ;  -+$ in $7 [-1, 11 and in H’.  It follows, noting that p,-+j, that the 
right-hand side of (3.3) converges to 

l l j#  + h[j$( 1) +jj(-I)] + ( j ,  jj) = ( j j ,  Lj j j )  = I p  

Iim sup djs < 5. 
Hence, 

(3.4) 

Now, using the characterisation (2.10) of yj, , ,  we have from (2.6) with d=dj,,, and z=O 
that 

It%, Y I  I? < ZLj, v + KM) 

which is uniformly bounded. Thus, there is a sub-sequence for which y j , , - j  (weak 
convergence in H’ and so strong convergence in $?[-1, I ]  and in Y). Thus, lijil= 1 and, 
since 

(3, Y 3 j k )  = (yj ,  Y ,  yk, U? + (yj ,  U? j k  -Yk,  U) 

= ( Y j , v r j k  - Y k , u ) + O  for k < j ,  
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one has jlj, for k < j .  Also, 
- 
Jj9 w (Yj, w 3 Lp Yj, w ) (P"PW) 

=IIYj,wII;- 1 +h[~ j fw( l )  +~.?w(-l)I + (pv'yjtw) 
and 

l iminfJj ,p>lly~f- 1 + h [ j 2 ( 1 ) + j 2 ( - 1 ) ]  + ( j , j 2 )  

= (.k 4 8 )  
~ m i n ( ( y , L ~ Y ) : y E H ' , l l v l i =  l , y i y k f o r k < j } = J j  (3.5) 

Aj, y + Ij as v+ W .  (3.6) 

This was shown only along sub-sequences (V = vi) for which yj, converges weakly in H 
but a standard argument, noting the uniqueness of the limit, shows that (3.6) holds along 
the full sequence (Aj, y :  v = 1,2, . . . ). 

Using (3.6) in (3.5) shows that (9,  L j j ) = x j  and, as noted following (2.12), this means 
that j may be taken as j j  since we have already seen that 11j11= 1 and j l j k  for k c j .  If 
(2.10) uniquely characterises j k  apart from the inevitable arbitrary choice of orientation, 
then one can consistently select orientations for yj, so yj, + j j  without extracting a sub- 
sequence. ( I fp  E Y, classical Sturm-Liouville theory ensures that this is the case since non- 
trivial multiplicities cannot occur; it is not immediately clear whether this remains valid for 
general p E  (HI)'. Otherwise, if multiple eigenvalues could occur for L,, one could not 
be certain that yj, -+jj without extracting sub-sequences, although one would still have 
suitable convergence for the projections on spj  yj,,,, . . . 

Comparing with (3.4) gives 

w )  where ,Ij= .: . =,Ij+m.) 
Observe that the argument giving (3.5) now shows, with (3.6) and Lpj=Lj j ,  that 

iIYj,vtI? +II j I I?* 

Yj, -+B = J j  (3.7) 

This, with weak convergence in HI, implies the desired strong convergence 

in HI along the sub-sequence-or for the full sequence as noted above. 
Since the inductive hypothesis is vacuous for j =  1, this shows (3.6) and (3.7) for each 

j =  1, 2, . . . . Note that, if necessary, we proceed from j to j +  1 after extracting a sub- 
sequence but, since tine iimit in (3.6) is the same for any such (repeated) extraction of sub- 
sequences, one nevertheless has (3.6) for the full sequence. (It is only (3.7) which may 
require modification in view of non-uniqueness in the specification of&) U 

4. The approximation scheme 

The arguments of this section, given theorem 1 and uniqueness, are quite simple, following 
[ 7 ] .  We show convergence for an abstract approximation procedure (P,) and then remark 
on implementation. The basic assumptions are 

(i) 9 is a closed convex subset of a dual Banach space X *  embedded in [H'(-l, l)]'; 
we now let / I  / /  * denote the norm of X * . 

(ii) F o r p  E X * one defines Lp, etc, as in $ 2 (with h fixed). 
(iii) j E 9 is such that the sequence (Ij :=Aj@): j =  1, 2 ,  . . . } uniquely determines j. 

(This is known to hold for moderately smooth and symmetricj:p(x)=p(-x) on (-1, l).) 
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The approximation procedure under consideration is a relaxed version of ‘generalised 
interpolation’. 

Procedure (Pa). For each N =  1,2, . . . considerp E .y satisfying 

and supposep, satisfies (4.1) and that 

Theorem 2.  Let i, E 9 satisfy conditions (i), (ii) and (iii) and suppose ( p N :  N =  1,2, . . . ) is 
obtained as in procedure (Pa) above with 0 < & k , N - + O  (as N-+ CO for each k ;  N > k )  and 
0 < &+O. Then p,” j  (weak * convergence in X*). Further, //pNll * -+lijI * so, if in 
addition X * has the Efimov-SteEkin property (e.g., for any uniformly convex space such 
as Lp with 1 < p < CO), one has strong convergence: pN-+i ,  in X, . If 9 is compact in X 
(in this case one may omit the hypothesised convexity of y), then there is a convergence 
rate. 

ProoJ Clearly j itself satisfies (4.1) so (4.2) gives 

llPNll* < llPll* + 6, (4.3) 

which is uniformly bounded. By Alaoglu’s theorem there is then a sub-sequence (p , )  such 
that pu to some j E 9). Since X * embeds in (HI)’, this 
gives p , - j  (weak convergence in (HI)’) so theorem 1 gives 

(weak * convergence in X 

d j , u : = ~ i ( p ” ) - + ~ : = A j ( j )  f o r j = l , 2 , .  ... (4.4) 

On the other hand, (4.1) gives (for each j )  dj, -+Ij since &k, -+ 0, so one has dj(j) = xj(j7) 
for j =  1, 2 , .  . . . By the uniqueness assumption (iii) this implies j = j .  Since the limit is 
independent of the extracted sub-sequence, one hasp,-+i, as desired. 

The weak* lower semicontinuity of the norm then gives 11j1/* <lim inf/(p,ll, and 
combining this with (4.3) shows ili,ii * = l i m ~ ~ p N ~ ~ *  since &+O. Hence one has strong 
convergence pN-+i,  in X * if, for example, X * is uniformly convex. Note that if 9 is 
compact in X then no such assumption on X * is needed to ensure strong convergence. 

Finally, if 9 is compact and (iii) holds for every PE 9, then a standard topolcgica! 
theorem (a continuous bijection from a compact metric space is a homeomorphism) shows 
that the map 

(4.5) A : p w ( d j ( p ) :  j =  1, 2, . . , ): 9 -+ R m  

has a uniformly continuous inverse. Here, the sequence space R 
the metric 

is topologised say, by 

which makes (A)-+@) iff dj-+xj  for each j .  Continuity of A is then given by theorem 1 and 
uniform continuity of A - ’  (from its range) means that the inverse problem is no longer 
ill-posed in this context (i.e,, subject to the a priori constraint i, E 9) and there is a 
convergence rate for (Pa); for a discussion of a related situation see [5]. U 
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Remark. The uniqueness condition (iii) may obviously be weakened to require only that 

(iii’) there is a unique ) E 9 of minimum norm such that I j=Aj( ) )  for j= 1 , 2 , .  . . 

without modifying the result and the procedure will give convergence to this ). If no 
uniqueness condition is imposed at all, then the result still holds (after possibly extracting a 
sub-sequence) with convergence to some j of minimum norm in 3 c X * . Note, also, that 
there is essentially no change in the argument for theorem 2 if in (4.2) one were to minimise 
(approximately) the distance to some more convenient estimatep *, not necessarily 0, so 

IIPN-P* I /  * <inf{Ilp-p* II * : p  E 9, (4.1)) + 6, (4.2’) 

would replace (4.2). 
If the given sequence { I j }  does not actually correspond to {Aj())} for some) E 9, then 

either (4.1) becomes impossible (for N > No the set of p E 9 satisfying (4.1) is empty) or, 
provided 9’ is unbounded in X *, one could have a sequence {p,) with l ~ p w ~ ~  * -+ CO. 0 

Remark. Especially since there exist other computational approaches to the inverse 
Sturm-Liouville problem, such an abstract convergence theorem is of practical interest 
only to the extent that one can propose a computationally feasible implementation. The 
present paper, although inspired primarily by [9] and conversation with T Suzuki, may be 
considered a simplification and generalisation of the considerations of [4] (see also the 
references therein for other computational studies). We observe that the method of 
generalised interpolation-procedure (Pa)-requires precisely what is made available by 
standard approaches to the direct problem. 

Consider, for example, the Galerkin approximation as an approach to the eigenvalue 
problem. Given a subspace V’of H’ andp E (HI)’, recursively define 

q ( p ;  Y) := {yeV ’ :  llylj= l , y l y k ( p ;  ”Y)fork<j}  

A.( J p  ; Y):=min{(y,L,y):ye .q.(p; V ) }  (4.7) 

y j (p ;~’ ) :=argmin{(y ,L ,y) :y~~. (p ;V’) )  f o r j = l ,  . . . ,  dim?. 

If one considers a sequence {Yh} of such subspaces ‘becoming dense’ in H’ (so, for any 
3 E HI, there is a sequence pm -+j in H‘ with j, E y/,) then the proof given for (2.12) 
shows 

A ~ ( P ;  ”t’m)-tiv(P) as m+co (for j= 1,2 , .  . .). (4.8) 

At the same time we introduce (finite dimensional) subspaces {%,J becoming dense in 
X * (in particular, for any ) E 9 there exists p n  E pn c %,, such that pn -i, in X *). If we 
assume that { E ~ , ~ :  j < N ,  N =  1, 2 , .  . . ), { J N :  N =  1,2, .  . . } are given with E ~ , ~ - + O ,  dN-+O 
as N-+ cc and that suitable dependencies m(N), n ( N )  are specified, then the basic step of 
the Galerkin-implemented procedure is defined as follows. 

Procedure (PG): Given N ,  consider the coefficientsp satisfying 
p E 9 ’ n c % n  with n = n(n) 
IAk(P; v m ) - I k l < & k , N  

(4.9) fork= 1 , .  . . , Nwith m=m(N) 

and then findp, satisfying (4.9) and also 

IIPNII* <min{llpll*: (4.9)) +Jw (4.10) 

The significance of a ‘suitable’ dependence of n and m on N is essentially that the set 
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defined by (4.9) not be empty (at least for large enough N ) ,  more specifically, that one 
knows a priori the existence of a sequence jN-+jj with each j N  satisfying (4.9) for that N .  
Exactly what this means as a specific growth rate for n( ), m( ) depends on how rapidly 
{%n} and { K }  become dense, the moduli of continuity for the functionals p b l j ( p )  a t p  
and how rapidly &k, -+ 0. 

The assumptions already made do ensure, however, that it is always possible to have 
n( ) and m( ) grow rapidly enough for this to hold. Assume one has moduli of continuity 

for k = 1,2,  . . . ; let & := min {dk(Ek,N/2): k =  1, . . . , N } .  Now take n = n(N) large enough 
to ensure existence OfjN E p,, such that / lpN-jI/  * Q 6,. Then take m = m(N) large enough 
so that 

llk($N; " y , ) - & ( j N ) l  < &k,N/2 fork= 1,. . . , N. 

It follows that jN so constructed satisfies (4.9) with jN-+j.  As in the proof of theorem 2, 
this ensures that {p,} satisfying (4.10) is bounded in X * and converges (weak * or strong, 
as appropriate) top. 0 

Remark. There is a sense in which it is unnecessary, in the construction above, to 
introduce { @n}. Observe that in the definition of dk(p; "Y) one applies L, only t o y  E ?"and 
p appears only in the term ( p ,  y 2 )  for y E Y? If Y" "Ym is finite dimensional with a basis 
{v i} ,  theny=Cciqi and 

so it is sufficient to know the effect o fp  acting as an element of the finite dimensional space 
[sp{viq}]*, indeed, in a certain subspace of this since the matrix ( ( ( p ,  qivj))) is, for 
example, necessarily symmetric. This actually embeds (H ')' in the space of symmetric 
linear maps: H'-+(H*) '  (i.e.,ywpy defined bypy: v t -+ (p , yv ) )  and not all such maps are 
associated with 'multiplication' operators as desired here. For the spline spaces "t:, 
typically used for the Galerkin approach to the eigenvalue problem one has 'localised 
bases' (each vi with 'small' support near si E [-I, I ]  so uivj=O unless si, sj are close) and 
use of generalised j E {symmetric matrices ( p ,  virj)} with an appropriate norm gives 
'loca!isatisn in the Liiiit' and-wifn suitable interpretation-convergence to j. This would 
mean that N and "Ymm(N) alone would determine a finite dimensional space in which to s e e k j  
satisfying (4.10) but this does not seem worth the interpretative complications. 0 

5. Discussion 

After discussing the definition of the Sturm-Liouville operator formally given by (1.1) and 
(1.2) in the context of 'rough'p (PE H- ' ( - l ,  l)), it was shown that the spectrum U@,) 

depends continuously on p ,  topologised by weak sequential convergence in H- '  with a 
corresponding continuity result (strongly in H I )  for the associated eigenfunctions (subject 
to possible modification for multiple eigenvalues). 

The choice of boundary conditions (1.2) was determined by the availability of the 
simplest uniqueness result (subject to symmetry) for the inverse problem but, clearly, the 
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identical discussion would apply to the slightly more general boundary conditions 

-y’(- 1) + h1y(- 1) = 0 =y’( 1) + h2y( 1) 

(without taking h ,  =hJ .  With slight modification one can also treat the Dirichlet 
conditions in a similar fashion. At present we are not certain as to whether (with or without 
such extensions) the classical Sturm-Liouville theory generalises to ensure for p E H -’ 
that all eigenvalues of Lp are simple. 

This continuity result, theorem 1, was used in demonstrating convergence for the 
method of generalised interpolation, theorem 2. A brief discussion was also given 
indicating an approach to computational implementation. Note that in the presence of 
compactness-for example, an a priori estimate of jjpljE for a space E which embeds 
compactly in the space X * corresponding to the norm used for convergence-there will be 
a convergence rate for the approximation scheme, including the considerations involved in 
the implementation (PG). While we have indicated some elements to an approach to explicit 
determination of convergence rates (compare, also, the related considerations of [ 7 ]  in the 
context of linear ill-posed problems), no such complete computation has been carried 
through here. 

The method of generalised interpolation used for the approximation scheme here was 
initially proposed, in the special context of [2], by the late William Chewning. An 
indication of its applicability to the inverse Sturm-Liouville problem was noted in [SI in 
connection with system identification, a connection which has provided much of the 
motivation for work in this area [5, 6, 10, 1 I ] .  
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