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ABSTRACT: For the backwards heat equation, stabilized by an a priori
initial bound, an estimator is determined for intermediate values which is
optimal with respect to the bound and the observation accuracy. It is shown
how this may be implemented computationally with error estimates for the
computed approximation which can be made arbitrarily close to the uncer-
tainty level induced by the ill-posedness of the underlying problem. Thus,
the feasibility of this for practical computation, inevitably severely limited
by that inherent uncertainty, is as good as possible.
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1. INTRODUCTION
One of the classic ill-posed problems — cf., e.g., [6] and numerous further

references there — is the backwards heat equation (BHE): if we consider the
heat equation

ut = ∇ · a∇u− qu on (0, T )× Ω with u
∣∣∣
∂Ω

= 0,(1.1)

then rough initial data smooths out as t increases, making the forward solu-
tion map S(τ) : u

∣∣∣
t=0

7→ u
∣∣∣
t=τ

(τ > 0) compact so the inverse backward map

S(−τ) : u
∣∣∣
t=τ

7→ u
∣∣∣
t=0

(although uniquely determined where it is defined at

all) cannot possibly be continuous.2 On the other hand, it has long been
known [8], [4] that this may stabilized by the presence of a suitable a priori
bound

‖u0(·)‖ ≤ M0(1.2)

on the unknown ‘initial data’ u0(·) = u
∣∣∣
t=0

. This can be expressed quantita-

tively [6]: if u1 and u2 are two solutions of (1.1), each constrained as in (1.2),
for which one has

‖u1(T, ·)− u2(T, ·)‖ ≤ 2ε̄,(1.3)

then one has, for arbitrary t ∈ (0, T ],

‖u1(t, ·)− u2(t, ·)‖ ≤ 2 [M0]
1−t/T [ε̄]t/T .(1.4)

We note that the right hand side of (1.4) goes to 0 as the measurement
accuracy is improved (ε̄ → 0) so this does mean that one can achieve arbitrary

accuracy in determining the unknown u
∣∣∣
t
if one will measure with adequate

accuracy. Of course, the ill-posedness of the underlying problem is reflected
in the rapidity with which this will become infeasible for small t. It is not
too difficult to see that this is sharp in that, given 0 < t < T , there exist
sequences ε̄ → 0 and u1, u2 satisfying (1.2) and (1.3) for which (1.4) becomes
an equality.

In this paper our problem is to determine a good approximation to u
∣∣∣
t
(for

some given t > 0) as an element of X = L2(Ω) for some unknown solution

2This is true for a wide variety of topologies but we will here be concerned exclusively
with the context of X = L2(Ω).
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of (1.1). Available as data is an ‘observation’ v̄ ≈ u
∣∣∣
T

(for some T > t) with
an estimate

‖u(T, ·)− v̄‖ ≤ ε̄(1.5)

for the X -norm of the observation error. We assume known that u is a
solution of (1.1) on a time interval including (0, T ) with the known bound
(1.2). The data for the problem are then M0 > 0, ε̄ > 0, and v̄ ∈ X — and,
of course, t, T , and the operator

A : u 7−→ −∇ · a∇u + qu

X ⊃ D(A) = H1
0 (Ω) ∩H2(Ω) → X .

(1.6)

We assume, of course, that these data are consistent — that there are, indeed,
some solutions u(·) satisfying (1.2) and (1.1) for which (1.5) holds.

Our objective is to present an implementable algorithm to determine a
computational approximation v̂(t) to the unknown u(t) with an error esti-
mate

‖u(t)− v̂(t)‖ ≤ ε̂(t)(1.7)

reflecting the effects of both sources of error/uncertainty: the inherent uncer-
tainty induced by the measurement uncertainty — which is just

ε(t) := [M0]
1−t/T [ε̄]t/T(1.8)

since (1.4) is sharp — and the computational error which we must estimate.
Our goal is to show that the appropriate use of relatively standard compu-
tational techniques enables us to come arbitrarily close to (1.8) in (1.7).

As an intermediate step, we construct a continuous approximation R =
R(t) to the discontinuous operator S(−[T−t]) in a way which takes advantage
of the a priori bound (1.2) to achieve the minimal loss of resolution so v(t) :=
R(t)v̄ is an optimal approximation to the unknown u(t) ∈ X in terms of the
available data:

‖u(t, ·)− v(t, ·)‖ ≤ ε(t) ∀u consistent with the data.(1.9)

From this one actually recovers, somewhat more constructively, the known
result (1.4). Our approach, presented in Sections 2 and 3, is closely related to
the construction discussed in [10] and, although we will make our presentation
here independent of [10], [9], we note that it is an application of a general

3



construction proposed and analyzed in [9] for the quasi-inversion of a C0

semigroup of compact normal operators on a Hilbert space.
We then continue by describing the computational implementation,3 lead-

ing to the realizable approximation v̂ with the estimate (1.7). The analysis is
made possible partly by the observation that the general estimates leading to
(1.8) also apply, with re-interpretation, to a comparison problem associated
with the implementation, and partly to availability in the requisite form of
certain auxiliary estimates. This discussion is presented in Sections 4 and 5.

2. FORMULATION
We follow Fourier in treating the heat equation by series expansion.

Consider (1.6) as an operator on the Hilbert space X = L2(Ω), assuming
0 < α ≤ a(·) ≤ α and q(·) ∈ L∞(Ω); without loss of generality, we also
assume q ≥ 0. We note that A is then densely defined, self adjoint, and
positive definite with compact resolvent so one has an orthonormal basis of
eigenfunctions {wk(·)}:

Awk = −λkwk (〈wj, wk〉 = δjk)(2.1)

with
λk ∈ IR+ λk → +∞.(2.2)

One then has the usual ‘forward representation’ for solutions of (1.1):

u(t, ·) =
∑
k

cke
−λktwk(·).(2.3)

One has, in particular,
u(0, ·) =

∑
k

ckwk(·).(2.4)

At t = T we have the expansions

u(T, ·) =
∑
k

◦
γk wk(·) with

◦
γk:= e−λkT ck(2.5)

and ∑
k

γ̄kwk(·) = v̄ with γ̄k := 〈v̄(·), wk(·)〉 .(2.6)

3This implementation and the results of some computational experience will be dis-
cussed in further detail in [3].
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Since v̄ is known, the coefficients {γ̄k} in (2.6) are also known. Note that,
using the orthonormality of {wk}, the a priori bound (1.2) gives[∑

k

|ck|2
]1/2

= ‖u(0, ·)‖ ≤ M0(2.7)

whereas (1.5) just gives ∑
k

∣∣∣∣◦γk −γ̄k

∣∣∣∣2 ≤ ε2
T .(2.8)

The coefficients {ck} or {
◦
γk} are, of course, otherwise unknown.

From (2.3), we have the ‘exact backward representation’

u(t) =
∑
k

◦
ρk (t)

◦
γk wk = [S(T − t)]−1u(T )(2.9)

with ◦
ρk (t) := e+λk(T−t) = e+λkT (1−τ) where τ := t/T.(2.10)

If we were to attempt to apply this similarly to (2.6), one would obtain

◦
v (t) :=

∑
k

◦
ρk (t)γ̄kwk

⇒ ‖ ◦
v (t)− u(t)‖2 =

∑
k

[◦
ρk (t)

]2 ∣∣∣∣◦γk −γ̄k

∣∣∣∣2(2.11)

using the orthonormality of {wk}. Since (2.2) gives
◦
ρk→ ∞ as k → ∞ and

one only has (2.8) to work with, we see that this
◦
v (t) = [S(T − t)]−1v̄ is a

completely useless approximation: its unbounded amplification of the errors
of (1.5) is likely to be disastrous. This is the essence of the ill-posedness of
the problem.

We must modify the ill-posed procedure leading to (2.11) and construct a
bounded quasi-reversal (compare [5]) of S(T − t) — i.e., R(t) ≈ [S(T − t)]−1.
We take this in the form

v(t, ·) = R(t)v̄ :=
∑
k

ρk(t)γ̄kwk(·)(2.12)

with a suitable choice of factors {ρk(t)} such that

|ρk(t)| ≤ β uniformly in k(2.13)
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for some β = β(t) ≥ 0. Thus, the ‘filtered recovery’ operator given by

R(t) : wk 7−→ ρk(t)wk(2.14)

will be continuous (with ‖R(t)‖ ≤ β) and one has a stable error amplification
in obtaining v(t) := R(t)v̄ in (2.12).

Here, β(t) and ρk(t) (suitably related to
◦
ρk (t), of course) are to be

determined so as to minimize ε(t) in (1.9); this is one rationale for the term
‘method of optimal filtering’. We also note that one may think of viewing
R(t) as S(−[T − t])F(t) where

F(t) : wk 7→ ϕkwk with ϕk := ρk(t)/
◦
ρk (t)(2.15)

defines a ‘filter’ with respect to the spectral decomposition (2.1) with ‘form

factor’ [k 7→ ϕk] — we will have ρ ≤
◦
ρ so 0 ≤ ϕk ≤ 1. The point of our

construction will be to use knowledge of the ‘noise–to–signal ratio’ ν := ε̄/M0,
which we view as part of the available data, to make the filtering v̄ 7→ F(t)v̄
produce a minimal loss of resolution at t — i.e., minimal ε(t) in (1.9) — in
this quasi-inversion of S while damping the observational noise (1.5) in the
data to stabilize (2.14).

3. OPTIMAL FILTERING
We will use the forms of (2.12), (2.14) in an estimate of the error (1.9).

An inner optimization, subject to (2.13), will then determine each ρk = ρk(t)
and give an error estimate in terms of β as a parameter; a subsequent outer
optimization then determines β = β(t). Each ρk(t) is to depend only on T ,
on ν := ε̄/M0, and on the eigenvalue λk so the mapping: v̄ 7→ v(t, ·) will be
linear; each coefficient in the expansion of v(t) will depend on the particular
observation v̄ through the corresponding coefficient γ̄k appearing in (2.6) but
the operator R(t) is independent of this.

Setting v(t) := R(t)v̄, as above, we decompose ‖u(t)− v(t)‖ as

‖u(t)− v(t)‖ = ‖[u(t)−R(t)u(T )] + R(t)[u(T )− v̄]‖
≤ ‖u(t)−R(t)u(T )‖+ β(t)ε̄.

(3.1)

We also have, using (2.3), (2.14), etc.,

‖u(t)−R(t)u(T )‖2 =
∑

k

∣∣∣∣ρk(t)−
◦
ρk (t)

∣∣∣∣2 ∣∣∣∣◦γk

∣∣∣∣2
=

∑
k

{∣∣∣ρk(t)− eλk(T−t)
∣∣∣ e−λkT

}2
|ck|2
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so, from (2.7), one has

‖u(t)−R(t)u(T )‖ ≤ M0 sup
k

{∣∣∣ρk(t)− eλk(T−t)
∣∣∣ e−λkT

}
.(3.2)

Assuming, for the inner optimization, that β = β(t) is already specified
as a parameter, we define ρ = ρk(t), separately for (each t ∈ (0, T ) and) each
k = 1, 2, . . ., by considering the problem (with λ = λk)

minimizeρ

{∣∣∣ρ− eλ(T−t)
∣∣∣ e−λT

}
subject to: |ρ| ≤ β.

(3.3)

This minimization is trivial: elementary calculus gives the choice

ρk(t) :=


◦
ρk (t) = eλk(T−t) when

◦
ρk (t) ≤ β

β when
◦
ρk (t) ≥ β

k = 1, 2, . . . ,(3.4)

i.e., ρk = min
{
eλk(T−t), β

}
. Thus, provided we will have 0 < β,

ϕk = 1 when λk ≤ log β
T−t

0 < ϕk < 1 else: ρk = β <
◦
ρk .

Using (3.4) in (3.2), we have

‖u(t)−R(t)u(T )‖ ≤ M0 supk

{[
e−λkt − βe−λkT

]
: eλk(T−t) > β

}
≤ M0 supλ

{
[e−λt − βe−λT ] : λ ∈ IR

}
= M0(1− τ)[τ/β]τ/(1−τ) (τ := t/T ),

(3.5)

by elementary calculus. Using this in (3.1) gives

‖u(t)− v(t)‖ ≤ M0

{
(1− τ)[τ/β]τ/(1−τ) + νβ

}
(3.6)

with ν := ε̄/M0. At this point we must do the outer optimization: choose
β = β(t) so as to minimize the right-hand side of (3.6), noting that all other
ingredients there are known. Thus, dividing by M0, we consider the problem

minimizeβ

{
µβ−s + νβ : β > 0

} (
s :=

τ

1− τ
, µ := (1− τ)τ s

)
.(3.7)
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By elementary calculus once again, we obtain the optimal choice

β = β(t) := (1/ν)1−τ τ (τ := t/T ),(3.8)

which completes the construction.
With the aid of the estimates above, we have:

THEOREM 1: Let u(·) be any solution of (1.1) satisfying (1.5) and
(1.2). Then one has

‖u(t)− v(t)‖ ≤ ε(t) := [M0]
1−t/T [ε̄]t/T (0 ≤ t ≤ T )(3.9)

with the approximation v(t) = R(t)v̄ to u(t) defined as

v(t, ·) :=
∞∑

k=1

ρk(t)γ̄kwk(·) where
ρk(t) := min

{
eλk(T−t), t

T

(
M0

ε̄

)1−t/T
}

γ̄k := 〈v̄, wk〉
for k = 1, 2, . . .

(3.10)

Proof: Use (3.4), (3.8) in (2.14), (2.6) and then (3.8) in (3.6).

We note that at T we have ρk(T ) = 1 for each k so that (2.6), (3.10) give
v(T ) = v̄ consistent with (3.9) giving ε(T ) = ε̄; similarly, at 0 we see that
ε(0) = M0 with v(0) = 0. The estimate (3.9) stabilizes for 0 < t < T in
that the error bound goes to 0 as ε̄ → 0, but is not directly4 useful at t = 0.
We observe also that (3.9) subsumes the previously known estimate (1.4) by
taking v̄ = [u1(T ) + u2(T )]/2.

4. COMPUTATIONAL IMPLEMENTATION
We now wish to consider the computational implementation of (3.10)

in somewhat greater detail: effectively, we must obtain approximations to
the eigenpairs {λk, wk(·)} with a truncation to {k ≤ K} for some finite
K. To obtain explicit direct estimates of the approximation errors and then

4One can, in fact, approximate u0 itself by a slight re-interpretation: Consider a se-
quence of increasingly accurate measurements v̄n with ε̄ = ε̄n → 0 and let v∗n be obtained
as v(tn) in (3.10), using v̄n, ε̄n and times tn → 0 chosen so tn log ε̄n → −∞. Then v∗n → u0

since u(tn) → u0 by definition and (3.9) gives ‖u(tn)−v∗n‖ → 0. This gives no convergence
rate, which would only be available with stronger a priori information about u0.
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to estimate the propagated effects of these on the computation of v(t, ·)
is prohibitively complicated for analysis and gives an unrealistically poor
estimate.

It is much better to proceed from a different viewpoint, noting that a quite
standard procedure for approximately computing {λk, wk(·)} would consist of
selecting a finite element basis to define an approximation Ã to the operator
A of (1.6), realized in terms of the selected basis by a matrix A, and then
using some algorithm to compute the eigenpairs for A approximately for use
in (3.10). We artificially introduce, as a comparison problem, the Galerkin
approximation to (1.1) using Ã for which we can take advantage of available
error estimates; we will also use backward error estimates [12] for the spectral
computation. Some preliminary comments are in order before we see how to
use these estimates.

Letting X̃ be the finite element subspace of X = L2(Ω) and P̃ be the
orthonormal projection on X to X̃ , one sets Ã := P̃AP̃ which may be viewed
alternatively as an operator on X or on X̃ , as convenient. The product P̃AP̃
makes sense directly if one has X̃ = R(P̃) ⊂ D(A) and this can be extended5

to considering X̃ ⊂ H1
0 (Ω). The Galerkin approximation is now obtained as

an ordinary differential equation on X̃ (i.e., on IRK by parametrization):

ũ˙= Ãũ, ũ(0) = ũ0 := P̃u(0)(4.3)

so ũ(t) = S̃(t)u(0) where S̃(t) = etÃ is the semigroup generated by Ã. For
our purposes we will need an estimate of the form

‖ũ(t)− u(t)‖ ≤ δf (t)‖u(0)‖(4.4)

where δf = δf (t; X̃ ) is expected to go to 0 as X̃ → X , i.e., as one refines the
discretization. This is slightly non-standard in its use of L2-norms throughout

5A extends as a continuous (coercive, self adjoint) operator: H1
0 (Ω) → H−1(Ω) and

for X̃ ⊂ H1
0 (Ω) we may consider

P̃ : X → X̃ ↪→ H1
0

P̃ = P̃∗ : H−1 → X̃ ∗ = X̃ ↪→ X
(4.1)

and, again, the product P̃AP̃ makes sense and represents a continuous self adjoint positive
operator on X or on X̃ . The Galerkin approximation for (1.1) is then usually formulated
as

〈ξ, U̇〉 = 〈ξ,AU〉 ∀ξ ∈ X̃ with U(t) ∈ X̃(4.2)

taking U(0) = P̃u(0) and (4.1) shows that this is just (4.3).
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but we note, e.g., that [1] (see also [11]) gives an estimate of the requisite
form (4.4) with

δf (t : X̃ ) = Crh
rt−r/2(4.5)

for certain finite element schemes where h ≈ [mesh scale] → 0 in refinement;
this is closely related to approximation results for Hr(Ω), noting the equiva-
lence ‖Ar/2ξ‖ ≈ ‖ξ‖Hr(Ω) and the inequality ‖Ar/2S(t)‖ ≤ Ct−r/2 since S(·)
is an analytic semigroup.

The approximation (4.3) above is usually constructed in terms of a specific
finite element basis Ẽ = {ẽ1, . . . , ẽK} for X̃ so Ã is represented by a (sparse)
symmetric positive K×K matrix A. To approximate the (first K) eigenpairs
of A, one computes those of this matrix A and then maps the eigenvectors
from IRK to X̃ using the given basis Ẽ . In computing the eigenpairs for
A one must cope with round-off and propagated error effects, especially for
large K, so this computation is not exact. A typical form for the error
analysis here (compare [12], which also suggests that one may reasonably
hope6 ‖B‖ = O(K)δp with δp giving the numerical precision) is particularly
useful for our purposes: the computed approximations to the eigenpairs of A
are exactly those of a perturbed matrix [A + B] with the matrix B ‘small’.
This perturbation may, of course, be taken as including also the inaccuracies
in computational specification of the entries 〈ẽj,Aẽk〉 of A due to numerical
quadrature, etc. The perturbation B of A corresponds to a perturbation B
of Ã — in fact, one has B = Ẽ−1BẼ where Ẽ : X̃ → IRK is the coordinate
map for the basis Ẽ . Typically Ẽ will not be orthonormal but is ‘almost’ so
(due to controlled overlap of supports of the basis elements) so that Ẽ has a
condition number of (uniformly) moderate size. Thus, any available estimate
for B may reasonably be translated into an estimate

‖B‖ ≤ δs(4.6)

in terms of the X̃ -norm (i.e., the L2(Ω)-norm) so the eigenpairs {(λ̂k, ŵk) :
k = 1, . . . , K} which we will actually use are exactly those of Â := [Ã + B]
with B satisfying (4.6).

For simplicity, we ignore, as an additional source of error, the imple-
mented computation of γ̂k := 〈v̄, ŵk〉 and assume either that this is exact or
that the quadrature method used to obtain {γ̂k} is embedded in the specifica-

6E.g., using LAPACK [2].
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tion of the finite element method, so that its treatment is already subsumed
by the error analysis provided above.

It is clear that the numbers δf and δs (respectively estimating the accuracy
of the finite element and spectral computations) can, in principle, be made
arbitrarily small: δf is made small by, e.g., refining the mesh (h small in
(4.5)) at the expense of having large K and δs is then made small by using
higher precision, etc., for the spectral computation. While this always works
in principle, we do remark that the form of the (sharp) estimate (1.8) makes
it clear that this will become infeasible quite rapidly for small t > 0. This is
the inevitable price associated with ill-posedness.

5. COMPOSITE ERROR ESTIMATES
Given 0 < t < T , our computed approximation to u(t), replacing that of

(3.10), will actually be

v̂(t, ·) :=
K∑

k=1

ρ̂k(t)γ̂kŵk(·) where
ρ̂k(t) := min

{
eλ̂k(T−t), t

T

(
M0

ε̂

)1−t/T
}

γ̂k := 〈v̄, ŵk〉
for k = 1, . . . , K

(5.1)

with ε̂ yet to be specified. We now wish to estimate ‖u(t)− v̂(t)‖ for v̂ given
by (5.1).

We begin with the important observation that the form of (5.1) is exactly
that of the previous approximation formula (3.10) — the only differences are
the replacements of the operator A on X by the new operator Â on X̃ , of
ε̄ by ε̂, and of v̄ by P̃v̄ = v̂(T ) (noting that only P̃v̄ is needed to obtain
{γ̂k} in (5.1)). Thus the entire analysis of Section 3 again applies here to the
comparison problem: If û(·) is any solution of

û̇ = Âû = Ãû + Bû with ‖u(0)‖ ≤ M0,(5.2)

and if we have at T the estimate

‖û(T )− P̃v̄‖ ≤ ε̂,(5.3)

then the computed approximation v̂(·), given by (5.1), satisfies the error
estimate

‖û(t)− v̂(t)‖ ≤ [M0]
1−t/T [ε̂]t/T(5.4)
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for 0 ≤ t ≤ T .
In terms of the unknown initial data u0 for (1.1), we will take

ũ0 := P̃u0, ũ(t) := S̃(t)ũ0 û(t) := Ŝ(t)ũ0 .(5.5)

Note that (1.2) gives ‖ũ0‖ ≤ M0 so û(·) is a solution of (5.2). Further, since
A, hence also Ã, is positive, one has ‖S̃(t)‖ ≤ 1 so ‖ũ(t)‖ ≤ M0. The
‘variation of parameters’ formula for (5.2) in terms of S̃(·) gives

û(t) = S̃(t)û(0) +
∫ t
0 S̃(t− s)Bû(s) ds

= ũ(t) +
∫ t
0 S̃(t− s)Bũ(s) ds +

∫ t
0 S̃(t− s)B[û(s)− ũ(s)] ds

whence, using (4.6),

‖û(t)− ũ(t)‖
≤

∫ t
0 ‖S̃(t− s)‖‖B‖‖ũ(s)‖ ds +

∫ t
0 ‖S̃(t− s)‖‖B‖‖û(s)− ũ(s)‖ ds

≤ M0δst + δs

∫ t
0 ‖û(s)− ũ(s)‖ ds.

Using an argument much as for the Gronwall inequality, one sees that this
integral inequality bounds ‖û(t)−ũ(t)‖ by the solution for the equality [η(t) =
M0δst + δs

∫ t
0 η], i.e.,

‖û(t)− ũ(t)‖ ≤ M0

[
eδst − 1

]
.(5.6)

Combining (5.6) with (4.4) then gives

‖û(t)− u(t)‖ ≤ δ∗(t) := M0

([
eδst − 1

]
+ δf (t)

)
.(5.7)

Note that for each t ∈ (0, T ] one has δ∗(t) → 0 as δs → 0 and δf (t) → 0.
Now consider (5.3). From (5.7) at T one has

‖û(T )− v̂(T )‖ = ‖P̃[û(T )− v̄]‖
≤ ‖û(T )− u(T )‖+ ‖u(T )− v̄‖ ≤ δ∗(T ) + ε̄

and we obtain (5.3) on taking

ε̂ := ε̄ + M0

([
eδst − 1

]
+ δf (t)

)
(5.8)

for use both in (5.1) and in (5.4).
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THEOREM 2: Let u(·) be any solution of (1.1) satisfying (1.5) and
(1.2). Let the approximation v̂(t) to u(t) be defined by (5.1) with ε̂ given by
(5.8) and with {(λ̂k, ŵk} the eigenpairs of Â := [Ã + B] where Ã is such as
to give7 (4.4), i.e., ∥∥∥etÃ − etA

∥∥∥ ≤ δf (t)(5.9)

and the perturbation B satisfies (4.6). Then one has

‖u(t)− v̂(t)‖ ≤ δ∗(t) + [M0]
1−t/T [ε̄ + δ∗(T )]t/T(5.10)

with δ∗ as in (5.7).

Proof: Combine (5.4) and (5.8) with (5.7).
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