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ABSTRACT: We consider the problem of recovering the coefficient q(x)
in the equation ut = ∆∆∆u− qu from boundary observations. Uniqueness of q
based on knowledge of the ‘Neumann 7→Dirichlet response operator’ is shown
as an implication of (known) corresponding results concerning the inverse
problem for the corresponding hyperbolic equation wtt = ∆∆∆w − qw. This is
then reduced to use of the response to a single input with some consideration
of computational approximation.
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1. Introduction
We consider the problem of identifying the (unknown) coefficient q = q(x)

in the parabolic partial differential equation

ut = ∆∆∆u− qu on Q := (0, T )× Ω,(1.1)

assuming input/output access only at the boundary Σ = ΣT := (0, T )× ∂Ω.
More precisely, we assume that we can specify the Neumann data for (1.1)
with trivial initial data

∂u

∂ν
= f on ΣT u

∣∣∣
t=0

= 0 on Ω(1.2)

and then observe the corresponding Dirichlet data:

g := u
∣∣∣
Σ
.(1.3)

Formally, then, we have a linear input/output map (‘Neumann 7→Dirichlet
response operator’)

R1 = R1(T ; q) : f 7→ g,(1.4)

defined through (1.1), (1.2) and then the observation (1.3). Our principal
result is that R1 (for any T > 0) uniquely determines the coefficient function
q(·) appearing in (1.1), i.e., that

q 7→ R1(T, q) is injective on AA(1.5)

when considered for q in some suitable set AA of ‘admissible’ functions.
We note that results like (1.5) are already available for the inverse problem

for the corresponding hyperbolic equation

wtt = ∆∆∆w − qw on (0, T̄ )× Ω.(1.6)

Our approach — exploiting the deep connection between (1.1) and (1.6) via
transforms with respect to t — is stimulated by D. Russell’s argument ([14],
see also [15]), showing how to deduce exact nullcontrollability of the heat
equation for a bounded region Ω ⊂ IRN from a corresponding wave equation
result. We may restate our description above to say that our primary result
is the implication, under fairly general hypotheses, of (1.5) from

q 7→ R2(T̄ , q) is injective on AA(1.7)
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where R2 is the corresponding ‘Neumann 7→Dirichlet response operator’ for
(1.6). This argument will be the content of Section 2.

Parenthetically, we note that a quite different argument could alterna-
tively obtain parabolic identifiability from corresponding results, to the ex-
tent that these would be available, for the elliptic, rather than the hyperbolic
case, i.e., deriving (1.5) from (cf., e.g., [11])

q 7→ R0(q) is injective on AA(1.8)

where R0(q) : f 7→ g is the ‘Neumann 7→Dirichlet operator’ for the elliptic
equation

−∆∆∆v + qv = 0 on Ω,
∂v

∂ν
= f(x)

[
g := v

∣∣∣
∂Ω

]
.(1.9)

To see this, one applies (1.1), (1.2) to f constant in t which gives u analytic
in t and, assuming q > 0, convergent to the steady state solution v of (1.9)
as t → ∞. This analyticity implies that R1(T, q)f uniquely determines

g(·) := u
∣∣∣
∂Ω

not only on [0, T ] but for all t > 0; compare the approach

of [16]. The limit as t → ∞ is then also uniquely determined so, for any
such f = f(x) and any T > 0, one sees that R1(T, q)f = R1(T, q̂) implies
R0(q)f = R0(q̂); compare [10].

Whereas it seems that the entire response operator R2 may be needed for
identifiability for (1.6), we will show in Section 3 that a single ‘experiment’,
using a suitably chosen input f∗ and observing the associated output

g∗ = ΓΓΓ(q) := R1(T ; q)f∗,(1.10)

suffices to identify q in (1.1), i.e., that f∗ can be chosen so that ΓΓΓ is injec-
tive on AA. Section 3 will also include some additional remarks on possible
computational implementation.

2. Principal results
We assume throughout that Ω is a bounded region in IRn with ‘sufficiently

smooth’ boundary ∂Ω for the relevant trace theory to apply for the operators
B : u 7→ u

∣∣∣
∂Ω

, C : u 7→ ∂u
∂ν

and for the consideration of Neumann conditions.

We also assume that the unknown coefficient q is in L∞(Ω); there is then
no further loss of generality in assuming, as we shall do, that q > 0 since
a substitution v := e−αtu replaces q by q + α — also just replacing f, g by
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e−αtf, e−αtg so q 7→ R1(T, q) will be injective if and only if q 7→ R1(T, q+α)
is injective.

Let A = Aq be the elliptic operator A = −∆∆∆ + q on H := L2(Ω) with
domain D = D(A) := {u ∈ H2(Ω) : Cu = 0}. We note at this point the
existence of an orthonormal (with respect to H) basis of eigenfunctions

Aek = λkek(2.1)

with 0 < λ1 ≤ λ2 · · · → ∞ since we have taken q > 0.
We introduce the Green’s operator G defined by G : ϕ 7→ u with

−∆∆∆u+ qu = 0 on Ω, Cu = ϕ ∈ X := L2(∂Ω).(2.2)

We certainly have u ∈ H1(Ω) for arbitrary ϕ ∈ X = L2(∂Ω) so, noting [7],
[8] the equivalence of Hs(Ω) and D(Aϑ) for ϑ = 2s, we have

A1/2G : X cont.−→ H(2.3)

(with AϑG : X → H for any ϑ < 3/4 if ∂Ω is, e.g., in C1). Then the solution
u of

u̇+ Au = 0, Cu = f(t) with u
∣∣∣
t=0

= 0(2.4)

has the representation [3]

u(t) =
∫ t

0
[A1/2S(t− s)][A1/2G]f(s) ds(2.5)

where S(·) is the (analytic) semigroup on H generated by −A so

‖AνS(t)‖ ≤Mt−ν .(2.6)

From (1.3) and the form of (2.5), we then see that R1 is a convolution
operator:

[R1f ](t) = g(t) := Bu(t) =
∫ ∞

0
K1(t− s)f(s) ds(2.7)

with the kernel K1(·) = K1(·; q) given by

K1(t) :=
{

0 for t ≤ 0
BAS(t)G for t > 0

(2.8)

where, noting (2.3), (2.6), and

BA−γ : H cont.−→ X (any γ > 1/4).(2.9)
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we may write

BAS(t)G =
[
BA−γ

] [
A1/2+γS(t)

] [
A1/2G

]
with 1/4 < γ < 1/2 to see that ‖K1(·)‖ is integrable whence R1 is, e.g., a
continuous operator from FT := L2((0, T )× ∂Ω) to itself

At this point it is convenient to shift to the Fourier representation for the
semigroup. Using (2.1) in (2.8) gives the series representation

K1(t)ξ =
∑
k

λke
−λkt 〈ek,Gξ〉Bek(2.10)

for t > 0. What we will actually need is the Laplace transform of this:

K̂1(s)ξ :=
∫ ∞

0
e−stK1(t)ξ dt

=
∑
k

λk

∫ ∞
0

e−ste−λktdt〈ek,Gξ〉Bek

=
∑
k

λk
s+ λk

〈ek,Gξ〉Bek

= BA(s+ A)−1Gξ for s > 0.

(2.11)

Note that the final form of this easily gives boundedness on X of K̂1(s) for
s ≥ 0 so we have no difficulties justifying convergence for the series and our
manipulations. More precisely, we observe that everything certainly works
well for the ‘core’ of the operator (specification for ξ in a suitable dense set of
‘nice’ functions) and then we can extend by continuity, using the final form.

With boundary conditions and initial conditions, the wave equation (1.6)
now becomes

ẅ + Aw = 0, Cw = f with w = 0 = ẇ at t = 0(2.12)

and the response operator is the map

R2 = R2(T̄ , q) : f 7→ Bw

with w defined by (2.12) for the time interval (0, T̄ ). It is well-known that
this R2 is a bounded operator from, e.g., FT̄ := L2((0, T̄ )× ∂Ω) to itself.

We proceed directly to the ‘separation of variables’ solution, again ex-
panding with respect to the orthonormal basis {ek},

w =
∑
k

yk(t)ek, Gf =
∑
k

ϕk(t)ek,
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one easily verifies from (2.12) that each yk(·) is the solution of the ordinary
differential equation

ÿ + λky = λkϕk(t) with y(0) = 0 = ẏ(0)

whence, noting that the assumed positivity q > 0 gives λk > 0, one has

yk(t) = µk

∫ t

0
[sinµk(t− s)]ϕk(s) ds

(
µk :=

√
λk

)
.

Substituting, this gives the series representation

[R2f ] (t) = Bw(t) =
∫ t

0

∑
k

µk[sinµk(t− s)]〈ek,Gf(s)〉Bek ds(2.13)

so we see that R2 is a convolution operator: f 7→ K2 ∗ f with the kernel
K2(·) given, corresponding to (2.10), by the series

K2(t)ξ =
∑
k

µk[sinµkt]〈ek,Gξ〉Bek.(2.14)

Again, we need the Laplace transform of this:

K̂2(s)ξ :=
∫ ∞

0
e−stK2(t)ξ dt

=
∫ ∞

0
e−st

∑
k

µk[sinµkt]〈ek,Gξ〉Bek dt

=
∑
k

µk

∫ ∞
0

e−st[sinµkt] dt 〈ek,Gξ〉Bek

=
∑
k

λk
s2 + λk

〈ek,Gξ〉Bek

= BA(s2 + A)−1Gξ for s > 0.

(2.15)

Again, we think of these manipulations as performed for ‘nice’ ξ with the
result then extended by continuity, using the final form. Comparing (2.15)
with (2.11) gives our key identity:

K̂2(s; q) ≡ K̂1(s2; q) for s > 0.(2.16)

Returning to (2.8), we observe that, since S(·) is an analytic semigroup,
the operator function: t 7→ K1(t; q) is itself analytic in t (for complex t with
positive real part). It follows that specification of R1(T ; q) implies specifica-
tion of the kernel K1(t; q) for 0 < t < T and so, by analyticity, uniqueness of
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the determination of K1(·; q) on (0,∞). This means that the Laplace trans-
form K̂1(·; q) is uniquely determined — as is the Laplace transform K̂2(·; q)
by the identity (2.16). By the standard uniqueness results for Laplace trans-
forms, this means that K2(t; q) is determined for t > 0 so the convolution
operator R2(T̄ ; q) is uniquely determined for arbitrary T̄ > 0. We have thus
proved2 the asserted implication:

THEOREM 1: Suppose it is known, for some bounded Ω in IRn and
a set AA of bounded functions on Ω, that (1.7) holds for some T̄ . Then (1.5)
holds for arbitrary T > 0.
[Equivalently, if q, q̂ ∈ AA with q 6≡ q̂, then R1(T, q) 6≡ R1(T, q̂) for all T > 0.]

From [12] we have, re-stated in our notation, the following3 result:

THEOREM (R-S): Let Ω be a bounded region in IRn with C1 bound-
ary ∂Ω. Then (1.7) holds for AA = L∞(Ω).

Combiming this with Theorem 1, we immediately obtain the desired inden-
tifiability result for (1.1).

2The argument also provides a partial converse to the implication: if one could indepen-
dently show uniqueness of the correspondence R1(T ; q)↔ q (for some T and some class of
q), then one would necessarily have uniqueness for R2(·; q) ↔ q — with observation now
needed on all of IR+ since analyticity in t is unavailable for R2 to get uniqueness from an
interval without further information.

3We are indebted, for the reference to [12], to a referee for a previous version of this
paper which referred, instead, to a sequence of recent papers [4], [5], [1], [2], [6] by M. Bel-
ishev and others which provide a reconstruction algorithm for q, justified under a control-
theoretic hypothesis that the pair [Ω, q] is normal — for 0 < t < T∗ the set of approximately
reachable states by boundary control on (0, t) is all of Ht := {v ∈ H : v(x) = 0 if |x−∂Ω| >
t}. Using duality, a sufficient condition for this normality is that ∂Ω and q be analytic
for applicability of the classical Holmgren–John Uniqueness Theorem — although we note
that this has quite recently been extended to the non-analytic case by Tataru [17] (see,
also, related results by Robbiano [13] and by Hörmander [9]). In comparison with [12], we
observe that considerable regularity may be needed for normality in the reconstruction,
but not for the (nonconstructive) injectivity of: q 7→ R2(T̄ , q). On the other hand, using
the results in [17] one can get uniqueness results applying to observation on a part of the
boundary while, also, the results in, e.g., [6] consider more general wave equations

ρ(x)wtt = ∇∇∇ · (µ(x)∇∇∇w)− qw(2.17)

where any two of the three coefficient functions ρ, µ, q are assumed known with the third
coefficient to be recovered. The argument in Section 2 for our key identity (2.16) is valid
also for these settings so one would obtain corresponding identifiability results for the
parabolic case. We view these as directions for future extensions of our present results.
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COROLLARY: Let Ω be a bounded region in IRn with C1 boundary
∂Ω. Assume it is known that the coefficient q in (1.1) is in AA = L∞(Ω).
Then q is uniqely determined by R1(T, q).

The observation that verification of our manipulations on a dense set is
sufficient could become more significant if we wished to consider variations
on the operator. In particular, if we wished to use Dirichlet data as input
instead and then observe the corresponding Neumann data (reversing the
roles of B, C), then the regularity results would not be as cooperative and
it is useful to observe that equality on a core suffices. Alternatively, one
could obtain continuity using other boundary operators B,C by suitable
adjustment of the spaces, perhaps admitting different Xin for f and Xout for
g so that one can then proceed exactly as we have done. For such possible
generalization, we also note that we do not need the full strength of the
present self-adjointness of A, giving orthonormality of the eigenfunctions in

(2.1) but only, e.g., that Σαkek 7→ [Σ|αk|2]
1/2

is an equivalent norm.

3. Identification with a single input
Theorem 1 and its Corollary require complete knowledge of R1 in order

to determine q. Interpreted directly, this would mean that one would need
knowledge of ‘all possible’ input/output pairs [f, g] corresponding to (1.1),
(1.2), (1.3) — requiring an infinite number of input/output ‘experiments’.
Using the form of R1 given in (2.7), (2.8) together with the regularity asso-
ciated with (1.1), we now wish to show that a single experiment, observing
the output g∗ for a single properly chosen input f∗, will suffice to determine
K(·) and so q.

Taking any total set (e.g., an orthonormal basis) {ξk} for X = L2(∂Ω)
and a sequence of times 0 = t1 < t2 < . . .→ T , we may set

f∗(t) :=
∑
tk<t

ckξk (0 < t < T )(3.1)

with, e.g., ck := 2−k ensuring convergence in FT . We set Ik := (tk, tk+1),
Îk := (0, tk+1 − tk) for k = 1, 2, . . . so I :=

⋃
k Ik = [0, T ) \ {t1, t2, . . .}.

Clearly, g∗ := R1f∗ will be analytic in t on I with

ġ∗(t) =
∑
tk<t

ckK(t− tk)ξk (t ∈ I).(3.2)
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Although g∗ certainly depends on q, we note that no a priori information
about q is needed for this construction of f∗.

From (3.2) one first notes that knowledge of g∗ on I1 just gives K(·)ξ1

on Î1 by differentiation and therefore determines K(t)ξ1 for all t > 0 by
analyticity. Next, knowing g∗ on I2 we may subtract the now-known 1

2
K(t)ξ1

from ġ∗ to obtain K(·)ξ2 on Î2 whence, again by analyticity, K(t)ξ2 would
be known for all t > 0. Recursively, we similarly obtain each K(·)ξk on Îk
and so on IR+ for k = 3, 4, . . . . Thus, a single pair [f∗, g∗] constructed in this
fashion will uniquely determine K(t)ξk for each k and all t > 0, hence will
determine q.

The input function f∗ is here piecewise constant in t but we note that
replacing f∗ as input by its time integral just produces the time integral of
g∗ as output and so also determines the original ġ∗ of (3.2). Iterating this
idea, we can use an input which is Cm in t for arbitrary m. We can get any
desired spatial regularity by a suitable choice of {ξk(·)} as smooth functions
on ∂Ω.

THEOREM 2: Given Ω and any T > 0 one can select a suitable
(smooth) function f∗ ∈ FT such that the corresponding map ΓΓΓ of (1.10) is
injective when considered on AA ⊂ L∞(Ω).

Fixing Ω, T, f∗ as above, the injectivity of ΓΓΓ in Theorem 2 means that (ex-
act) observation of the output g∗ = ΓΓΓ(q) uniquely determines q. The obvious
next question is whether this determination can be realized computationally:
we would like an implementable procedure to recover q to any desired degree
of accuracy provided we are able to compute to arbitrary accuracy and to
produce the input and measure the output with arbitrary accuracy. This is
far from obvious in view of the ill-posedness of the problem for any reasonable
topologies.

The argument for justification of any computational schema for the prob-
lem sets this in the context of a sequence of increasingly accurate approximat-
ing problems and then asserts the convergence of the computed approximants
qj to the true coefficient q. We begin by writing our a priori information
about q in the form:

q ∈ K ⊂ AA ⊂ L∞(Ω).(3.3)

Our principal assumptions, here, are that K is a closed subset of L∞(Ω)

and that ΓΓΓ : K cont.−→ G for some suitable G topology with respect to which
we can assume an increasingly accurate sequence of measurements gj → g∗.
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Standard techniques of numerical analysis enable us to provide computational
solutions for the defining equations, giving a sequence of approximations
ΓΓΓj → ΓΓΓ. We assume here that this is uniform convergence on K but note
that the convergence need only be at q if, instead, we would have uniform
equicontinuity on K of the ΓΓΓj. The various approaches to ill-posed problems
now each provide some selection procedure: given gj,ΓΓΓj (with some accuracy
estimate), there is a way to select qj ∈ K so that ΓΓΓj(qj) ≈ gj and we may
assume this is done in such a way as to have

[ΓΓΓj(qj)− gj]→ 0 as k →∞.(3.4)

If K is compact, the generic argument is to obtain (for a subsequence)
convergence qj → q̄ for some q̄. We then have

ΓΓΓ(q̄)− g∗ = [ΓΓΓ(q̄)− ΓΓΓ(qj)] + [ΓΓΓ(qj)− ΓΓΓj(qj)] + [ΓΓΓj(qj)− gj] + [gj − g∗]

and, since each term on the right goes to 0, we conclude that ΓΓΓ(q̄) = g∗. By
our uniqueness theorem, we must then have q̄ = q. Finally, uniqueness of
the limit makes the subsequence extraction irrelevant so, as desired, one has
convergence of the sequence of computed approximants to the true solution
(qj → q) in the sense of the K topology.

As a variant of this, suppose one were to know a priori only that q ∈
L∞(Ω) but did not know any specific bound. We then propose the selection
procedure: Choose

‖qj‖L2(Ω) + ‖qj‖L∞(Ω) ≤ min +εj(3.5)

subject to a constraint on the residual error

‖ΓΓΓj(qj)− gj‖ ≤ ε′j.(3.6)

We make the assumptions that εj → 0 and also that ε′j → 0, giving (3.4)
but with ε′j large enough (in comparison to the error estimates for the com-
putational map ΓΓΓj and for the observation gj) that q, itself, is permitted to
compete in the minimization, i.e., that (3.6) is satisfied with qj = q.

THEOREM 3: The computational procedure determined by (3.5),
(3.6) provides a sequence (qj) which converges strongly to the true q in Lp(Ω)
for all finite p.

Proof: If we set

αj := ‖qj‖L2(Ω), α := ‖q‖L2(Ω), βj := ‖qj‖L∞(Ω), β := ‖q‖L∞(Ω),
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then (3.5), with the admissibility of q in (3.6), gives

lim sup[αj + βj] ≤ [α + β].(3.7)

Since this means {αj} is bounded, we must have, for a subsequence, weak
convergence in L2(Ω), i.e., qj ⇀ q̂. Further, convexity gives

‖q̂‖L2(Ω) =: α̂ ≤ lim inf αj, ‖q̂‖L∞(Ω) =: β̂ ≤ lim inf βj.(3.8)

The hypotheses, together with (3.6), ensure that

lim ΓΓΓ(qj) = lim ΓΓΓj(qj) = lim gj = g∗ := ΓΓΓ(q).

Now let uj be the solution of

ut = ∆∆∆u− qju, uν = f∗, u
∣∣∣
t=0

= 0(3.9)

and observe that the uniform L∞ bound on qj gives the standard (uniform)
bound on uj in L2([0, T ] → H1(Ω)) and so also a uniform bound on u̇j in
L2([0, T ] → H−1(Ω)). Using the Aubin Compactness Theorem, we may ex-
tract a further subsequence to have uj → û in, say, L2([0, T ] → Hs(Ω))
for any s < 1. From the weak formulation of the problem, one easily sees
that for qj ⇀ q̂ one has û satisfying the limit equation. Since the boundary
trace is closed when applied to solutions of (3.9) and we already know that
Cuj = gj → g∗, it follows that ΓΓΓ(q̂) = g∗, i.e., ΓΓΓ(q̂) = ΓΓΓ(q). Since (3.8)
gives q̂ ∈ L∞(Ω), Theorem 2 now gives q̂ = q and uniqueness of this limit
means that we may ignore the previous extractions of subsequences. Since
this gives α̂ = α and β̂ = β, it follows from (3.7), (3.8) that αj → α. This,
together with the weak convergence qj ⇀ q, gives strong convergence qj → q
in the Hilbert space L2(Ω). As Ω is bounded, this immediately gives Lp(Ω).
convergence for p ≤ 2 and the presence of an L∞(Ω) bound also gives Lp(Ω)
convergence for all p <∞.
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[9] L. Hörmander, A uniqueness theorem for second order hyperbolic differ-
ential equations, Comm. PDE 17, pp. 696–714 (1992).

[10] B. Lowe and W. Rundell, Unique recovery of a coefficient in an elliptic
equation from input sources, TAMU preprint (1993).

[11] A. Nachman, Reconstructions from boundary measurements, Ann. Math.
128, pp. 531–576 (1988).

[12] Rakesh and W.W. Symes, Uniqueness for an inverse problem for the
wave equation, Comm. PDE 13, pp. 87–96, (1988).
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