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ABSTRACT: A ‘correct’ interpretation of the computational complexity
of an ill-posed problem is formulated as a cost/effectiveness balance for the
use of available data to obtain adequate solutions for an application. This
composition with an application, is seen as the real problem, leading to the
conclusion that some apparently ill-posed problems are, in context, really
well-posed with a reasonable associated ‘compositional complexity’.
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Our concern in the present discussion is with the identification2 of some
issues, formulated here as issues of computational complexity, arising in con-
nection with the analysis of ill-posed inverse problems. Our hope is to propose
a suitable framework for analysis — perhaps in the sense of the title of [15]
— rather than to present much in the way of technical results within such a
framework. We also note a likelihood that some of the comments on compu-
tational complexity, made here in connection with applications to ill-posed
problems, are actually of more general applicability.

Beginning with somewhat malicious paraphrases of the original arguments
presented by Hadamard [10], we note three ‘classical’ arguments against ever
working with ill-posed problems:

1. hopeless: Any possible computation from ‘real’ data (finite; with
finite precision) must fail since such data is necessarily consistent with arbi-
trarily widely separated solutions.

2. artificial: If one were not so perverse as to make the ‘wrong’ mea-
surements, then one could avoid any necessity of considering ill-posed prob-
lems.

3. illusory: If one were not so perverse as to select inappropriately
mismatched topologies for the notions of small uncertainties of data and of
solutions, then these problems would not be ill-posed.

These arguments are classical because they are well-founded. Except, per-
haps, for 2, which represents an assertion of faith on Hadamard’s part, com-
parable to [36], they are the natural reaction of a Mathematician to the very
definition of an ‘ill-posed problem’ and, of course, are responsible for the in-
troduction of the pejorative term ‘ill-posed’. To these classical arguments we
may adjoin a more recent result by Werschulz [33] which provides a some-
what different aspect of the hopelessness of 1:

1+. even more hopeless: In a precise sense, the computational com-
plexity of an ill-posed problem is infinite.

Since we must acknowledge the essential ‘rightness’ of these arguments

What are we doing here?
Obviously there must be something to be said in response or we would not

be here. Indeed, a principal stimulus to this analysis was a desire to respond

2As those working with distributed parameter systems know, ‘identification’ is typically
an ill-posed problem!
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to Werschulz’s result 1+ by introducing a different ‘precise sense’ for which
our problems have finite complexity; compare [35].

One possible answer is that, as Mathematicians, we find these problems
of interest — so that the analysis of ill-posed problems is enjoyed as an intel-
lectual recreation — and, as in playing a game, that suffices for justification.
However, our present ‘game’ is to view this area as a part of Applied Math-
ematics and the ‘rules of the game’ then require a more utilitarian answer.
For present purposes we take it that one only considers an ill-posed problem
when there is some use for the answer. This teleological viewpoint will not
only determine our concerns but will also suggest our approach. The issues
involved, when addressed quantitatively, do seem to be essentially issues of
computational complexity, providing the rationale for our title.

Roughly corresponding point-by-point to the rather negative arguments
1–3, above, we note the following counterarguments:

1’. successful: We must be doing something right — this stuff gets
used, e.g., hospitals buy CAT scanners.

2’. real: The selection of problems to be treated (including the nature
of the available measured data) is presented to us by the real world and the
available technology.

3’. imposed: The appropriate choices of topology are imposed by the
necessity to reflect the genuine costs involved — of increasing the accuracy
of the measurements and of accepting the effect of error in the solution.

We need a framework which permits analysis with higher resolution to
make a start at resolving these (apparently) conflicting sets of arguments;
our task is to address the paradox:

How can both sets of arguments be right?
It would seem that 2’ and 3’ are adequate responses to 2 and 3 in indicating
why our behavior is not, in fact, perverse in the specific contexts of our
applications even if one feels that 2 and 3 are normally correct. The principal
concern to be addressed is the ‘conflict’ between 1 (self-evident from the
definition) and 1+ (proved) as against 1’ (an observable fact). In general,
the thrust of our discussion is that it is precisely the utilitarian aspect of
2’ and 3’ which enables us to resolve this conflict — suggesting that the
interpretation of ‘success’ is to be made in terms of some ‘real’ problem so
we anticipate that ill-posed problems can successfully be treated precisely
when this real problem is such that the ill-posedness is no longer an issue.
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We will indicate, by examples, a number of ways in which this may reasonably
be the case.

In view of 1’, above, one expects that some modification of the framework
for analysis in [33], giving 1+, must permit a new analysis showing that
what is actually being done should not be impossible. Our approach here is
to focus on the interpretation of 3’ as an argument for a ‘balance of costs’.
A quantitative approach to that can be formulated along the lines of the
theory of ‘information-based complexity’ [31], extended to include a notion of
‘compositional complexity’, and we will indicate some of these considerations.

The ‘flavor’ of the present discussion, develops some considerations arising
in a number of earlier papers of the author’s (e.g., [5], [25], [28], [26]) and in
conversations with A.G. Werschulz, R.S. Anderssen, and P. Sabatier, among
others. This has been influenced by the teleological viewpoints of Control
Theory and Statistics and we must also acknowledge the influences of [33]
and [31], of Hadamard [10], of the discussions of Backus and Gilbert [2] and
Parker [22], of the treatments in [12] and [1], etc.

Of particular relevant interest in the Statistical literature we note, e.g.,
[21], [32], [9] as well as the developments of ‘maximum entropy’ and of ‘se-
quential decision theory’; we also point out, for the historical parallel to regu-
larization [29], the recent article [23] and its bibliography. From the Control
Theoretic literature we note the development of the theory of ‘adaptive (op-
timal) control’ and, as instances of the introduction of information-based
complexity analysis into control theory, the recent papers [4] and [11].

2. WHAT IS THE REAL PROBLEM?

Let us expand on our earlier utilitarian ‘rule’ that one only seeks to solve
an ill-posed problem if one has a use for the solution. For definiteness we
consider an inverse problem

(2.1) Solve F(x) = ȳ for x = x̄

which will be an ill-posed problem if, e.g., F is (injective but) compact. The
point is: Why do we want to know x̄?

We emphasize the situation in which the inverse problem under consid-
eration is to be used as a precursor to some particular3 application (possibly

3In many applied settings the application may not be specifically known at the time of
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involving other, known, data which we do not consider here) for which x̄
appears in the model as, e.g., a coefficient. From this point of view,

The solution of the ill-posed problem is only an intermediate construct in-
tervening between the available data and the intended application.

Our efforts are thus teleologically directed: we have some application which
may be taken in the form of a map A : P → R : x 7→ z where ‘what we
really want’ is the result z. In isolation, this problem would be a ‘standard’
well-posed problem but of course, we have an obvious difficulty — the ‘value’
of x ∈ P is no longer ‘given’ a priori but is to be obtained from the data
y via the inverse problem: (ill-posed) inversion of F. Symbolically we have:

y
F←−7 x A7−→ z and in this form it becomes clear that our real problem is

the approximate implementation of a composed map

(2.2) G :
y 7� F x 7 -A z

D -F−1
P -A R

Observe that it is the continuity of this ‘genuine’ map G = A◦F−1 : D → R
which really concerns us and that it is entirely possible for G to be continuous
even though one of its factors, corresponding to the ill-posed problem (2.1)
of inverting F is not, when considered in isolation. We emphasize that

Our involvement with an ill-posed problem stems from this factorization of
the ‘whole’ problem4 G as A◦F−1 — the composition of an ill-posed inverse
problem with an application.

To the extent that, at each stage, our computational procedures maintain
this factorization, we do actually work with the ill-posed problem but the
representation and topology for the intermediate variable x ∈ P are now seen
to be arbitrary — subject to our convenient choice with respect to (2.2). We
can thus acknowledge to a certain extent the validity of the original argument
3, that the ill-posedness may be somewhat illusory.

Let us look at some examples:

measurement and analysis — one is gathering data, etc., to be used later for a possible
variety of applications. While we recognize this possibility — indeed, the recommendation
below for a sequential mode of analysis is related to this — our treatment here considers
only the case in which this application is already known.

4This observation was already made in [5], the author’s first foray into the application
of ill-posed problems.
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EXAMPLE 1: We begin by noting a class of nominally ill-posed prob-
lems which really are well-posed. A standard theorem in Topology asserts:

Let F∗ : P∗ → D be a continuous injection with P∗, D Haussdorf; let
D∗ := F∗(P∗) ⊂ D. If P∗ is compact, then D∗ is also compact and the
inverse map F−1

∗ : D∗ → P∗ is also continuous.

We note also that this compactness and the resulting uniform modulus of
continuity for F−1

∗ lead to convergence rates for computational approxima-
tions, etc.

For a typical situation we have F : P → D (without any compactness
of P) but the model provides an assumption that the desired solution x̄ of
F(x̄) = ȳ is actually in a space X with a compact embedding E : X → P .
(This does not yet make the theorem above applicable!) Now suppose one
also has a bound M on ‖x̄‖X — again given by the model as an a priori
assumption. If we now let P∗ be the closure in P of the image E(BM) (where
BM := {x ∈ X : ‖x‖ ≤ M}), then this P∗ is compact and we may take F∗
to be the restriction of F to P∗ and apply the theorem. With the additional
information from the modelling assumptions, the problem has ceased to be
ill-posed. See [25] for some specific estimates in the linear case in a Hilbert
space setting. We do note that to use this effectively it is important that
the bound M be known explicitly — this M (together with the estimates
of measurement accuracy which we take as part of the data) is an essential
ingredient in approximating F−1

∗ computationally.

EXAMPLE 2: The simplest example in which ill-posedness ‘disap-
pears’ in our present framework of considering the composed problem is that
in which R = IR in (4.5), particularly when A is linear; compare [1].

Let us suppose that the (direct) map F : P → D is also linear and write
A = a ∈ P∗. Since we have G := F−1A : D → R = IR by definition, we now
can solve the equation

(2.3) F∗g = a

to obtain g ∈ D∗ — provided, of course, one has a ∈ ran(F∗). Since F−1

is unbounded (by assumption), so is [F∗]−1; the problem (2.3) is ‘just as ill-
posed’ as the original ill-posed problem: solving Fx = y for x ∈ P , given
data y ∈ D. BUT: while y is only ‘given’ approximately (by measurement),
the functional a is given analytically a priori in defining the application so
we may use analytic methods to solve the new ‘ill-posed problem’ (2.3). Once
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one has precomputed g in this way the problem is no longer ill-posed: the
genuinely significant map: y 7→ z is now easily realized as: y 7→ 〈g, y〉 and
this computation is well-posed.

Somewhat similar considerations apply to nonlinear problems although
the analysis may then be rather more complicated. The issue, however is the
same: to precompute (analytically) an effectively usable realization of the
functional g = a ◦ F−1 under hypotheses ensuring that this is continuous.

One can also treat, in almost the same way, the situation in which R
is finite dimensional by working with A ‘component by component’. For
the linear case (compare [24]) we would now precompute [F∗]−1A and then
proceed as above.

EXAMPLE 3: Now suppose A : x 7→ z : P → R represents finding
the solution z of a PDE with coefficients involving a parameter x ∈ P (sys-
tem identification). Then the result may well be quite insensitive to certain
(structured) perturbations of x ∈ P . In this context it is very possible that
Fis roughly the same as A, say, with a diffent choice of initial or boundary
data for the PDE. This can be expected to make inversion of F ill-posed as
we well know — but the structure of the uncertainty is precisely such that
this uncertainty probably does not really matter much! The general principle,
here, is that if some ‘aspects’ of the unknown parameter x do not (signif-
icantly) affect the output y for purposes of identification, then those same
aspects will not (significantly) affect the result z desired for the application —
the compactness of A ‘cancels’ the compactness of F so one may reasonably
hope that G = A ◦ F−1 is continuous.

We note an instructive example of this phenomenon in a rather different
context, adaptive control; cf., [3]. Consider the linear discrete-time control
problem xk+1 = axk + buk + ek where uk is the control and ek is noise. One
wishes to stabilize the system (i.e., minimize the expected long term aver-
age variance of the random variable {xk}) but the parameters a, b ∈ IR are
unknown. If one controls ‘optimally’ (on the basis of the current maximum
likelihood estimate of the pair [a, b]), then one’s expectation is (asymptot-
ically) as good as if the parameter pair had been correctly known initially
— despite the fact that with probability 1 the sequence of estimates [ak, bk]
converges to some incorrect pair [ā, b̄]. The explanation of the unexpected
success, here, is that the optimal control strategy depends only on the ratio
a/b and this ratio is correctly obtained in the limit.
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EXAMPLE 4: We emphasize that the argument of Example 3 about
the ‘inevitable cancellation of structured insensitivity’ depends essentially
on the presumed structural similarity of the two problems represented by
F and A. On the other hand, if we look, e.g., at the situation where F
is the Radon transform involved in a CAT scan and the application corre-
sponds to surgical intervention, requiring information as to the location of
a tumor, then that argument is entirely inapplicable. We may ask, then,
whether the ‘success’ here is again explicable in terms of well-posdness of a
composed ‘genuine’ problem. The relevant observation, here, is that inver-
sion of the Radon transform is, indeed, an ill-posed problem but that the
application requires only limited resolution; we do not need the exact den-
sity distribution corresponding to the tumor. The issue is very much one
of ‘δ-ness’ in the language of Backus and Gilbert [2]. Mathematically the
question is like having infinitely many cases of Example 2: [A ∈ AA] with
each A corresponding to a ‘local’ functional. The ‘limited resolution’ noted
earlier corresponds, in this formulation, to precompactness of the family AA
of functionals. It is this compactness which permits effective computation,
uniformly for A ∈ AA especially since one also has some compactness for the
set of densities ‘admissible’ in this model.

We remark that one might also think of this situation as part of a sequen-
tial investigation in which, to limit the expected radiation dose, one first asks
(at a level of rather low resolution) only for detection — with a ‘Yes/No’ an-
swer or, perhaps, ‘Possible: need more information’, leading to a more refined
repetition of the detection phase. If/when the answer is ‘Yes’, one then might
proceed to localization at a higher resolution. Similar considerations arise in
oil exploration, etc.

3. THE ROLE OF THE MODEL

At any stage when we might actually be doing computation/estimation we
will always have:

the model: This specifies the spaces and mappings involved and also
includes all a priori assumptions, constraints, and ‘prior information’.

the data: The data set is here always a finite set of numbers (resulting
from a finite number of measurements of finite precision); an estimate of the
measurement accuracy is part of the data.
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a representation: Both the input (data set) and output of computation
are finite sets of numbers. These correspond to parameters in some fixed
representation giving the interpretation within the model.

teleology: Specification of what constitutes an ‘adequate’ solution in
relation not only to the intrinsic ‘economics’ of the problem but also to the
application in which the output will be used.

We wish here to emphasize the roles of the teleology and of the model, which
in part, is to be given in the form:

(3.1)

P -F D : x 7 - y

?

M

?

IRn η

where M is the ‘measurement operator’ and the data we are given is η̂ to-
gether with some estimate ε for (some IRn-norm of) the ‘error’ ν := [η̂ − η].

We distinguish three possible ‘modes’ of analysis (compare [28]) depend-
ing on whether the analyst is able to determine (or influence) the nature of
the measurements made. One may alternatively view this as a distinction in
timing — are we doing the analysis before or after the data collection. The
principal differences, of course, lie in the nature of the relevant questions to
be addressed by the analysis, a decision which must precede addressing the
question: ‘What is a solution?’

a posteriori The measurement operator is already fixed (e.g., the data
may have already been collected) and we can only ask what this is good for:

What questions can be answered using this fixed set of measurements?
What usable information can be extracted?

a priori We have a goal, giving a specification of ‘adequate solution’,
(i.e., an acceptable level of error in the computed ‘answer’) and we ask:

What combinations of feasible measurements and computations might
provide this — and which is ‘optimal’?

sequential This is a mixed mode in which one’s actions at an inter-
mediate time, including possibly the choice of subsequent measurements,
may depend on analysis of the (partial) data set obtained so far. We have

9



a goal (which now may involve a sequence of ‘questions/actions’ to be an-
swered/performed in ‘real time’ with some notions of adequacy and/or opti-
mality) and we ask: What should we do next?

We may think of these modes as forming a hierarchy in which such analyses
of the a posteriori mode as in [2] and [22] are prerequisite to the appropri-
ate a priori analysis while this, in turn, is a prerequisite to the more general
sequential analysis.

It is the sequential mode which, perhaps, corresponds most closely to the
way we should be working.5 The appropriate phrase (for which we are in-
debted to Sabatier) is ‘navigating in information space’. We will concentrate
our attention in this paper on the other modes but first comment very briefly
as to what would then be needed to continue to a sequential analysis. At
this point we emphasize the value of noting the comparable experience and
paradigms in Statistics and in Control Theory for which similar modes of
analysis have been developed — in particular, what we have just called the
sequential mode corresponds roughly to ‘sequential decision theory’ and to
‘adaptive optimal control’ in these fields. The key to this analysis is the
observation of ‘invariant embedding’: for such a problem one often may look
at the situation at any intermediate (future) time as a problem of exactly
the same sort with respect to the ‘future’ relative to that time. If one can
make provision for ‘updating’ estimates (efficiently?) as data collection con-
tinues, then the estimation made on the basis of the partial information
obtained so far simply becomes part of the ‘model’. For Statistics this is
essentially a Bayesian approach; in system theory it may be associated with
the distinction between the Kalman filter and the earlier Wiener filter. An-
other interesting paradigm for comparison is that of ordinary conversation
in which some uncertainty/ambiguity is initially tolerated and then resolved
by asking questions for further clarification.

Now consider the a posteriori setting, with the measurements already
performed. Since there is inevitable uncertainty in this measured data (in-
deed, we have taken an estimate ε of this accuracy to be part of the data), we
actually have a ball Bε in IRn consisting of ‘all (potential) η consistent with
the given data [η̂, ε]’ and so a region U ⊂ P , corresponding to this, consisting

5Compare the remark in Example 4. Note also that one often wants a general proce-
dure/analysis for a class of such problems. E.g., one cannot redesign the CAT scanner for
each patient! In such a context we should emphasize the initial design/analysis — which
would put us back in the a priori mode.
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of ‘all values of x consistent with the given data’, the uncertainty region In
one sense, the ‘correct’ solution of the inverse problem is the determination
of this set U . Usually, however, we select some particular element x̂ ∈ U and
refer to this as ‘the (approximate) solution’ so one has an ‘approximating so-
lution algorithm’ ϕ̃ : η̂ 7→ x̂ : IRn → P . Much is often made of the ‘stability’
of this algorithm, i.e., the continuity of this ϕ̃, but it is not clear what useful
purpose is really served by this or even why one should care whether ϕ̃ is
obtained from a problem with a unique solution or involves some arbitrary
‘selection’ from such solutions. Concern for this stability seems to be primar-
ily a concession to our prejudices. Indeed, observation of ‘wild’ variation of x̂
with small perturbations in the data η̂ might carry important (and possibly
useful) information about the ‘size’ and ‘shape’ of the uncertainty region.
For a particular selection to be desirable, one would have to show that it is
significant — e.g., selecting a ‘most probable’ or ‘central’ element, if such ex-
ists. Certainly, if we do make such a selection then we wish to know that the
result — here identified with what one gets in the application by using this
approximation, i.e., A(ϕ̃(η̂)) — is a good approximation to z := A(x) but
there seems to be no intrinsic condition to be imposed on ϕ̃ itself. Compare
the phenomenon noted from [3] in Example 3.

If we identify the ‘application’, for example, with specification both of
A and of some region N in R (say, a specified neighborhood of some z̄),
then a legitimate ‘question’ is: Can we know (by our computations) that
A(U) ⊂ N (or, conversely, that A(U) and N are disjoint) so that we can
say definitively6 that z̄ is the correct result (at the level of accuracy specified
by N ) or that it is not? This assumes M is given; for an a priori analysis
we would wish to find some7 [M, ε] in a set MM of ‘admissible measurement
operators’ for which such questions are answerable.

We next assert that the model itself may also be treated as part of the
data, to be exploited in the computation — with the advantage that this
part of the data is assumed to have no associated ‘measurement error’. For
the considerations of Example 2 we note that we were precisely able to ex-
ploit the assumption that the the model itself was given analytically, exactly.
Similarly, the assumptions and constraints built into the model often provide

6One would correspondingly look to answer such a question at some specified confidence
level in the stochastic case. In this form we have reduced the problem to the Statistical
formulation of Hypothesis Testing.

7We may, then, also wish to select this measurement operator ‘optimally’, to answer
the question at minimal ‘cost’.
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the important regularizing estimates which permit effective computation; see
the (brief) discussion of this point in Section 5.

We wish also to emphasize at this point that our situation is extremely
sensitive to perturbations of the data — this, after all, is the defining as-
pect of ill-posed problems — but also is extremely sensitive to specification
of the model. Certainly, one has the responsibility to consider the effect of
this irreducible model uncertainty.8 We observe that this may (and usually
is) subsumed in the analysis of data uncertainty but that the relevant per-
tubations of the model correspond to rather structured uncertainties in the
data and this structuring should be noted and exploited. The compositional
framework introduced here relieves this burden somewhat but, as it is itself
posed in the framework of the model as paradigm, remains dependent on
this.

4. COMPLEXITY

Before we can reasonably ask how complex it may be to do what we want to
do, we first must ascertain what it is that we do want to do. We will now be
using as our answer to the question “What is a solution?” that a solution
is (an algorithm to provide) an approximand ẑ ∈ R with an estimate of its
accuracy. In preparation for this we note the basic paradigm of information-
based complexity; see [31] or, more briefly, cf. the review [17].

Given a map D : X → Y with X ,Y Banach spaces, suppose one wishes
to ‘solve’ equations of the form D(x) = y for given y ∈ Y . For computation,
of course, one only works with finite sets of numbers (i.e., in IRn). Further,
one cannot suppose that y is actually ‘given’ but only that we can ‘extract
information’ about y using an ‘information operator’ N : Y → IRn. Then,
using N(y) as input, one will construct some computationally feasible map

8We point out that one of the primary uses of our analysis may be to reject the model
entirely if one would find that the uncertainty region U is actually empty. This possibility,
after all, is part of what ‘scientific method’ is about!
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ϕ̃ : IRn → X . Thus we consider the problem:

(4.1)

X -D Y

@
@
@

@
@
@
@I

ϕ̃

?

N

IRm

Find n, N, ϕ̃ so
ϕ̃ ◦N ≈ S = D−1

On explicitly introducing the finite dimensional spaces IRn ≡ Yn (codomain
of N) and IRm ≡ Xm (corresponding to the range of ϕ̃), this diagram becomes

(4.2)

X -D Y
6

Im

?

N

Xm � ϕ Yn

where the map ϕ : IRn → IRm represents the actual computation and Im :
IRm = Xm → X provides the ‘interpretation’ of ϕ(η) as an element ϕ̃(η) =
x̃ ∈ X . In this paradigm we may refer to the ‘upper level’ as the ‘model’
and to the ‘lower level’ as a computational ‘stage’ with N and Im relating
these through suitable parametric ‘representations’ in the infinite dimensional
spaces X ,Y . Typically, the components of N in IRn are obtained by func-
tion evaluations which may be taken to be ‘expensive’ compared to the rest
of the computation so n dominates a cost analysis. Clearly, N cannot be
injective and Im cannot be surjective whence, inevitably, there is an error of
approximation (truncation error). We ignore round-off, modeling the com-
putation itself as infinitely precise, but one should include the possibility of
some corrupting ‘noise’ ν̂ in the action of N; compare [19].

Thus the problem of (4.1) is to make µ(y) small where

(4.3) µ(y) := ‖S(y)− ϕ(N[y + ν̂])‖ with ‖ν̂‖ ≤ ε̂.

Following [31], one may consider, among other possibilities, the worst case
error (µ := sup {µ(y) : ‖y‖ ≤ c, ‖ν̂‖ ≤ ε̂}) or an average case error (µ :=
expectation of µ(y) for some probability distribution of y ∈ Y and ν̂ ∈
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Yn). The parameters of the analysis are then ε̂, ε, n — one estimates the
minimal ε (best choice of N, ϕ) for given n (and given ε̂) and then inverts
this to determine the n, ε̂ required to attain some given output accuracy
ε. This optimization problem is the core of information-based complexity
analysis but later in this section we will modify it somewhat. We remark
that the typical formulation is to view this whole setting asymptotically, i.e.,
embedded in a family of such problems parametrized by ε→ 0; see Section 5.

Our paradigm for ill-posed problems is initially parallel to the above. The
model involves a ‘direct map’ F : P → D where we view P as a ‘parameter
space’ in which we are to do identification and D as the space of (observable)
data. Rather than an ‘information operator’ N, we here have a ‘measurement
operator’ M from D. Just as the complexity formulation in (4.1) noted that
computation must take place in a finite dimensional context, we here note
that in the real world any actual implementation of measurement must lead
to a finite set of numbers, with finite precision ε. Parallel to (4.1), then, we
have

(4.4)

D � F P

?

Mk

6

Ik

Dk � ϕk Pk

As earlier, we identify Dk with IRn(k) and Pk with IRm(k), i.e., using m(k)
numbers as parameters in some appropriate representation for (an approxi-
mation to) the desired infinite dimensional variable x. This notion of ‘rep-
resentation’ then induces some notion as to what we mean by asking that
ϕk ≈ F−1

k with Fk ≈ F. We refer to the lower level of (4.4) as a stage —
again invoking an embedding of the problem in an asymptotic formulation
in which, in principle, one can make more and more increasingly accurate
measurements, giving n(k) → ∞, εk → 0 as k → ∞ (where εk estimates
the magnitude of the measurement error ν intrinsically associated with the
measurement operator Mk).
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In isolation, the application problem treated as in (4.1), (4.2), becomes:

(4.5)

P -A R

?

Nk

6

P̂k -Ak Rk

and setting the diagrams (4.4) and (4.5) side by side we have:

(4.6)

D � F P P -A R

?

Mk

6

Ik

?

Nk

6

Dk -F−1
k Pk P̂k -Ak Rk

Observe that these can be concatenated to obtain

(4.7)

G : D � F P -A R

?

Mk

6

Gk : Dk -F−1
k Pk -Ak Rk

if the spaces Pk, P̂k in (4.6) are actually the same with the ‘compatibility9

condition’:

(4.8) Nk ◦ Ik ≈ id(Pk).

With a little diagram chasing, we note that in applying (4.3) to the applica-
tion A we have

(4.9) ν̂ = ν̂k = [F−1
k [Mk(F(x)) + νk]−Nk(x)].

9Essentially, this corresponds to the use of the same (approximating) representation.
To the extent that one might alternatively be working with different representations, the
conversion from one to the other may be subsumed either in [Fk]−1 or in Ak — with
attendant costs of computation.
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This, of course, induces a relation between a bound ε = εk on (some norm
of) νk and a bound ε̂ on (some norm of) ν̂.

This construction shows us that for the complexity analysis of such prob-
lems it is necessary to augment the paradigm (4.1) to consider a notion of
compositional complexity corresponding to the transition from (4.6) to
(4.7) via (4.8).

We asserted earlier that the core of information-based complexity anal-
ysis is an optimization for the choice of [n, ϕ̃ ◦ N] in (4.1). The notion of
‘optimization’ is usually taken as minimizing n over ‘all’ possible (feasible)
choices of N, ϕ̃, corresponding to a computational model in which, e.g., each
component of N(y) corresponds to a function evaluation which is quite ‘ex-
pensive’ compared to computation; more generally, one can introduce a set
NN of ‘admissible information operators’ and a cost functional Ĵ (with the
possibility that simply Ĵ (N, ϕ̃) := n). Here Ĵ can take into account all
three types of cost: (i) the cost of ‘evaluations’ to obtain N(y) as above, (ii)
the computational costs in using ϕ, and (iii) the (economic) cost with respect
to the application of uncertainty/error in the determination of z ∈ R. The
optimization problem associated with (4.1), (4.3), etc., then becomes

(4.10) Minimize {Ĵ (N, ϕ̃) : N ∈ NN , µ ≤ µ̄}.

Here µ̄ is viewed as a given condition on the acceptibility of the computation
for the application. We note that this may be omitted, subsumed in the
definition of Ĵ by taking Ĵ to be infinite when µ > µ̄. This formulation
would also permit more general criteria for admissible accuracy.

In this form we have a closely corresponding formulation for the inverse
problem (4.4). We introduce a setMM of ‘admissible measurement operators’
(or, at each stage, a set MMk) — with the convention that specification of
M ∈ MM includes specification of n, giving the codomain IRn, and of the
measurement accuracy (corresponding to a suitable ‘uncertainty region’ in
the codomain), typically indicated by a bound ε for some IRn-norm. We then
introduce a cost functional J0 and, in view of our teleological formulation,
associate with (4.4) the optimization problem:

(4.11) Minimize {J0(Mk, ϕk) : Mk ∈MMk, ϕk ◦Mk = N},

where we have (temporarily) fixed some information operator N ∈ NN for the
application problem (4.5) rather than a bound on the ‘output error’ — but
noting (4.9).
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We note that Example 2 provides another way of looking at (4.11): at
each such stage one may simply replace the original A appearing in (4.5) by
the information operator Nk so

(4.12)

D � F P -Nk Pk

?

Mk

�
�
�
�
�
�
��

id

Dk -ϕk Pk

and our concern is then to find feasible Mk and ϕk so that: ϕk ◦Mk ≈
Nk ◦ F−1.

The infimum for (4.11), say, for a fixed x ∈ P , can then be denoted by
J (N) = J (N;x). Note that in this context the relevant set of ‘admissible
information operators’ for (4.5) is just given by

(4.13) NN = NNk := {ϕk ◦Mk : Mk ∈MMk}.

and the relevant cost functional is

(4.14) Ĵ (N, ϕ) := Ĵ0(N, ϕ) + J (N)

where Ĵ0 is the cost functional to be associated with information-based com-
plexity analysis of the application, considered as a problem ‘in isolation’.
Note that in specifying N ∈ NN and defining Ĵ0, etc., we again use the con-
vention that this includes a specification of the associated ‘noise’ level ε̂ and
here obtain this through (4.3).

Remark 1: Most of the current analysis of ill-posed problems concen-
trates on the relation between ε and ε̂ corresponding to (4.3). This amounts
to taking J0 ≡ 0 and to considering the inverse problem in isolation. The
first of these seems somewhat ingenuous — even neglecting computational
costs, the costs of measurement are often considerable for these problems
(especially as one asks for greater accuracy) and this practical consideration
is likely to dominate the treatment. The effect of the second is, of course,
the principal point of this paper; see also the discussion in the next section.

Remark 2: These considerations seem forced on us in the context of
ill-posed problems in order to see how one may have problems with finite
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computational complexity in which there is involved an ill-posed problem,
having infinite complexity (when considered in isolation) by [33]. On the
other hand, it is by no means uncommon in ‘real world’ contexts to have the
output of one problem become the input of another (a data ‘pipeline’, to use
an image from UNIX) and these considerations seem to be more generally
applicable than merely to our present analysis. Using (4.13) and (4.14), given
by (4.11) with (4.3), in (4.10) is the essence of our new notion of ‘composi-
tional complexity’.

5. ASYMPTOTIC ANALYSIS

Earlier, we remarked that the typical formulation for complexity (or, for that
matter, numerical analysis in general) is to view the whole setting asymptot-
ically, i.e., embedded as a family of ‘stages’ for which one will have increasing
accuracy for the result: ε→ 0.

In the context of (4.4) we are here talking about constructing Ik ◦ ϕk
with Mk given although, more precisely, we are in the context of (4.11)
constructing ϕk with both the input and output operators (Mk and Nk)
given — these provide specification of the ‘representation’ above except that
we take the specification of ‘error level’ associated with Mk as part of the
‘data’, along with the value of Mk(x). The ‘teleology’ corresponds to (4.14)
with (4.11) defining J .

One has both a local and a global analysis on the basis of (4.11), (4.14),
etc. The preceding discussion has had a primarily ‘local’ relevance: Assuming
Ĵ0 in (4.14) is already ‘known’, we have been concerned with the analysis of
the function: N 7→ J (N) which defines the ‘teleology’ through (4.14). Note
that we actually have J (N) = J (N;x) and a significant part of our concern
is with the effect of this dependence on the unknown x.

A ‘global’ treatment corresponds, essentially, to the usual asymptotic
analysis, in which we embed this problem as a ‘stage’ in a family of similar
problems, envisioning potential requests for answers to similarly structured
questions at increasing levels of precision (N shrinking to {z̄}) and wish
simultaneously to treat the whole family. For simplicity, one takes N to
be a ball in R, characterized by its radius µ̄ which we take as a bound on
µ(y) as in (4.3). One then considers only the asymptotic relation between µ̄
and parameters n, ε characterizing some MM∗. In the formulation of the last
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section, this10 corresponds to taking J0 ≡ 0 and letting Ĵ0 (depending on µ̄
as a parameter, µ̄→ 0) be 0 when µ ≤ µ̄ and infinity when µ > µ̄.

For well-posed problems the usual analysis leads to the result that:

One can find the desired result to any degree of specified precision — pro-
vided one is prepared to work hard enough.

Here, what we mean by ‘working hard enough’ is: making enough mea-
surements with enough accuracy and then doing enough computation. The
history of analysis of ill-posed problems has consisted primarily of demonstra-
tions that this remains true for ill-posed problems even without considering
the composed framework introduced here. The principal difference is that
the ill-posedness shows up in an explosive growth of the accuracy require-
ments for the measurements as one seeks more and more precision in the
result. We observe that ill-posedness resides only in the asymptotics so that
for any specific level of desired precision it is quite possible that the problem
may be entirely reasonable; compare Example 4.

It is not at all clear, however, that our concern for convergence of an
approximation scheme11 has much relevance to actual computation. In prac-
tice one never actually approaches the asymptotic limit so these results are
significant only as a guide when used to provide error estimates at any stage
so as to select appropriate computational parameters. Note, too, that one is
only guessing the magnitudes of any ‘constants’ appearing in an asymptotic
expression unless it is reasonable to view these as available a priori from the
model — there is a big difference between knowing that some constant exists
and knowing (even a rough estimate of) its value.

The traditional way (in numerical analysis) of using a priori bounds on
the solution or on data uncertainty is to work with algorithms in which these
bounds do not appear explicitly but to have them appear in the subsequent
error estimates. For ill-posed problems, on the other hand, relevant bounds
appear in two ways: (i) as ‘stabilization’, defining compact sets for which the
considerations of Example 1 apply12 and (ii) in ‘controlling’ the computation

10For the more general formulation envisioned in (4.14), one could similarly consider let-
ting J0 and especially Ĵ0 depend on some parameter and ask for the asymptotic behavior
of Ĵ (optimized as in (4.11), (4.10)) with respect to this parameter. For the present we
do not pursue this greater generality.

11Cf. [26] or, for that matter, any of the myriad of papers on regularization for ill-posed
problems — or most of the ‘standard’ numerical analysis literature!

12This seems to lie behind many of the known results here, typically through compact-
ness of some embedding.
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— e.g., determining the optimal value of the parameter in Tikhonov regu-
larization [30]. Without a priori information on such bounds, one can only
show convergence, using some asymptotic determination of this parameter;
with the appropriate choice of the regularization parameter (made compu-
tationally on the basis of model-provided information) one obtains explicit
optimal convergence rates as in [7] and [20].

EXAMPLE 5: For a variety of problems the method of Optimal Fil-
tering [27] uses such bounds explicitly in the formulation of algorithms for
which one then may have optimal error estimates. Implementation of this
has been worked out specifically for two well-known ill-posed problems: the
sideways [6] and the backwards [8] heat equations; we consider the latter
problem.

For a bounded region Ω ⊂ IRm and 0 < t < T , consider the heat equation

(5.1) u̇ = ∆u with u |∂Ω= 0; u |t=0= x.

We assume that x ∈ L2(Ω) is unknown but that we have (as a given con-
straint) the fixed bound ‖x‖ ≤ M . We have observation/measurement of
y := u |t=1 and seek z := u |τ for some fixed τ ∈ (0, 1); This is the ‘backward
heat equation’.13 It has long been known [13] that this classical ill-posed
problem is stabilized by the presence of the a priori bound on x. Our data
for computation are then: M , the approximate observation ŷ, and a bound
ε on the measurement error ‖y− ŷ‖; from these (and the equation itself) we
wish to obtain an ‘optimal’ approximation ẑ to z. Note that this formulation
explicitly omits direct consideration of the unknown x, which appears only
as the ‘subject’ of the stabilizing constraint. Without giving details, we note
that one can construct, by ‘optimal filtering’, a solution estimate ẑ with the
guaranteed accuracy

(5.2) ‖ẑ − z‖ ≤M1−τετ .

It can also be shown that this estimate is optimal in the sense that one can
find examples (for a sequence ε → 0) for which the region of uncertainty
contains points z, z′ with twice this separation. Certainly (5.2) gives an
asymptotic convergence rate: the accuracy of the computed solution is O(ετ )

13We recall a talk on this problem in the 50’s by F. John under the title, “Recherche de
la temperature perdu”.
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as ε→ 0 but, of course, it also provides an assured estimate (in terms ofM, ε)
for any fixed level of measurement accuracy.

Remark: Suppose the actual value of M were not known but we take
M̂ = M̂(ε) with M̂ →∞ as ε→ 0. If we apply the method above replacing
M by M̂ in the computation, then the bound ‖x‖ ≤ M̂ is certainly valid for
ε small enough so (5.2) is then true! This gives, asymptotically, almost as
good a convergence rate as if M were known since one can take the growth
of M̂(·) to be arbitrarily slow. BUT: this is entirely useless for any fixed ε
since, without the information about the ‘true’ M , one cannot know when ε
is actually ‘small enough’ to validate the estimate.14

Finally, we note that the earlier view of model uncertainty applies only at
a particular stage of analysis, corresponding to a particular level of precision,
since no model, as used, is ever really exact — models ‘as used’ always nec-
essarily involve simplifications. For asymptotic analysis, however, the model
uncertainty would also have to disappear as the measurement error is made
to disappear so one would be forced to deal with a succession of increasingly
accurate and comprehensive models; in principle one would need an exact
‘limit model’. The history of science assures us that we may hope to have
such a succession but it is far from clear that one could anticipate any such
thing as an exact limit model. Indeed, the very context of analysis may
disappear in such a limit — e.g., at increasingly smaller scales continuum
mechanics becomes statistical mechanics which, in turn, becomes quantum
mechanics. As another example of this, consider the old question of deter-
mining precisely (sic! ) the ‘total length of the coastline of the United States’
— a figure which continues to increase unboundedly as one insists on refining
the measurement by tracking the ins and outs of first every bay, then every
cove, then every clod of dirt, . . .

Note that we asserted, just above, that ill-posedness resides in the asymp-
totics and now claim that the nature of the real world does not admit of any

14One might then ask: How useful is an asymptotic estimate?
We also note a related computation: if our problem were to approximate x itself — an

ill-posed problem even with the bound M — then we could similarly apply the method
replacing τ by τ̂ = τ̂(ε) with τ̂ → 0 as ε → 0. This actually provides an estimate ẑε for
u |t=τ̂ and we note that, if this τ̂(·) is chosen so that ετ̂(ε) as ε → 0, then the estimate
(5.2) together with the continuity of u as t → 0, given by the usual theory for the heat
equation, ensure convergence of ẑε, although without any convergence rate (unless one can
bound x in some higher order norm to provide a suitable modulus of continuity for the
solution u).
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such asymptotics. Perhaps this paradox, too, can be addressed — at a later
time!

6. SUMMARY

In summary, we merely list some of our conclusions:

• Ill-posedness is often the result of a factorization of the ‘genuine’
problem.

• Our successes (counterargument 1’ of the Introduction) do not re-
ally contradict the negative arguments 1, 1+ asserted in [10], [33]. The
occasions when we have ‘succeeded’ with an ill-posed problem seem only to
occur when this has appeared as merely one component of a genuine problem
which, altogether, is actually well-posed.

• Any useful analysis of the complexity of such problems must em-
phasize the context : it is the problem as a whole which gives the appropriate
notion of ‘complexity’ as a balance of costs.

• It is useful for us to look at related modes of analysis (e.g., adaptive
control theory and Statistics) for related paradigms which may be ‘trans-
lated’ or adapted.

• The model is part of the data, to be used for computation as well
as for the analysis.

• Ill-posedness resides in the asymptotics but one must be very care-
ful in the interpretation and application of asymptotic analyses.
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