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ABSTRACT:

1. Introduction
We will be considering the existence of solutions of ordinary differential

equations in Banach spaces, taking these to have the nominal form

(1.1) ẋ = Ax + f(x), x(0) = ξ̂0

on some interval [0, T ]. Here x(·) takes values in the Banach space X and
A is the infinitesimal generator of a C0 semigroup S(·) of linear operators
on X .f : X → X . We are indebted to [8] for an excellent survey of the
extensive research on this problem; see also references there, especially [6].

For uniformly Lipschitzian f : X → X , a standard formulation of ‘solu-
tion’ for (1.1) is in terms of the integral equation

(1.2) x(t) = S(t)ξ̂0 +

∫ t

0

S(t− s)f(x(s)) ds (0 ≤ t ≤ T ),
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where, through Banach’s Contraction Mapping Principle (CMP), the uniform
Lipschitz condition ensures existence. When f is merely continuous, however,
Peano [7] showed local existence for X = Rn, but Godunov [5] (following an
example by Dieudonné [3]) showed that this fails for all infinite dimensional
Banach spaces. Further, for discontinuous f a more general solution notion
is appropriate: we modify (1.2) to define a ‘solution’ of (1.1) as a pair of
X -valued functions [x, y] on [0, T ] such that

(1.3) x(t) = S(t)ξ̂0 +

∫ t

0

S(t− s)y(s) ds (0 ≤ t ≤ T )

where, rather than merely having y(s) = f(x(s)) we extend the nonlinearity,
following Fillipov [4], and require that

(1.4) y(s) ∈ F0(x(s)) (0 ≤ s ≤ T ) with F0(ξ̂) =
⋂
ε>0

Fε(ξ̂)

or, more precisely, that

(1.5)
y(·) ∈ YY0(x(·)) =

⋂
ε>0

YYε(x) with

YYε(x) =
{
y ∈ L2([0, T ] → X ) : y(s) ∈ Fε(x(s)) ae s ∈ [0, T ]

}
.

Noting that only the set-valued function F0(·) is now relevant, we also permit
f(·) to be set-valued — specifically permitting the possibility that f(ξ) = ∅
— and define

(1.6) Fε(ξ̂) = Fε(ξ̂; f) = hull
{

ζ + η : ‖η‖ ≤ ε, ζ ∈ f(ξ), ‖ξ − ξ̂‖ ≤ ε
}

.

Remark 1.1. Fillipov, working in a finite dimensional context, actually in-
cluded exclusion of nullsets in the definition (1.6). The point of this was
to restrict consideration to (locally) ‘typical’ values of f(ξ) and we can ac-
complish the same purpose, instead, by ‘trimming’ f(·) — omitting atypical
values even if this would give an empty ‘value’, which our present formula-
tion admits. Although we do not consider this here, a similar trimming might
be relevant to treating invariant sets, considering the existence of solutions
which remain in some specified subset of X .
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Especially in view of the known nonexistence examples for continuous f(·),
our interest here lies in providing a suitable condition on f to ensure exis-
tence of a solution in the sense described above. To this end, we consider a
set Φ of functions ϕ : X → X such that

(1.7)

i.] topologized by uniform convergence on compact sets,
Φ is compact,

ii.] Φ is convex as a subset of C(X → X ),
iii.] each ϕ ∈ Φ is Lipschitzian with a fixed constant L.

For ξ ∈ X we write Φ(ξ) for {ϕ(ξ) : ϕ ∈ Φ} and note that (1.7) ensures that
each such Φ(ξ) is a compact convex subset of X . Our main result, then, is
the following:

Theorem 1.2. Let A be the infinitesimal generator of a C0 semigroup S(·)
on the Banach space X and let f be a set-valued function on X . Suppose
there is a set Φ, satisfying (1.7) as above, such that

(1.8) D = D(f, Φ) =
{

ξ : f̂(ξ) = f(ξ) ∩ Φ(ξ) 6= ∅
}

is dense in X . Then the ordinary differential equation (1.1) has a global
solution x(·) in the sense of (1.3), (1.5), (1.6).

Remark 1.3. The requirement that D be dense will ensure that F0(ξ)
is non-empty for each ξ, although it is worth noting at this point that
ξ 7→ [Aξ + f(ξ)] may actually be undefined for every ξ — the dense do-
main D of (1.8) might be entirely disjoint from the dense domain of the
infinitesimal generator A. Thus, (1.1) cannot at all be interpreted pointwise,
but only through the integrated form (1.3).

It is easy to see that in the finite dimensional case (X = Rn) the in-
troduction of Φ is not at all a local constraint, but only a growth condition
on the nonlinearity, irrelevant for local existence. It is in the infinite dimen-
sional case that our hypotheses will provide a necessary compactness, e.g.,
excluding the examples of [3] and [5].

We emphasize that our present concern is only with the existence of so-
lutions, not with uniqueness. Standard examples in R and Rn show that
additional hypotheses are generally needed to ensure uniqueness and this is,
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of course, also a major concern of semigroup theory, both linear and nonlin-
ear. For more general concerns with possible nonuniqueness we refer, e.g.,
to [4] and also note [10], [1], [2]. Nevertheless, we do have a modicum of
well-posedness, in that the solution sets turn out to depend upper semicon-
tinuously on the data.

2. Strategy
Our strategy for the proof of Theorem 1.2 will be the usual strategy for

proving Peano’s Theorem:

• Use the ‘forward Euler’ approach to construct a sequence of approxi-
mations {[xn, yn]}.

• Use compactness to show suitable convergence of some subsequence of
these approximations to a limit [x̄, ȳ].

• Verify that this limit [x̄, ȳ] satisfies (1.3), (1.5), (1.6).

It is precisely the lack of local compactness in infinite dimensional spaces
which leads to the counterexamples of [3] and [5]. The first and third steps
of this argument are quite straightforward and the point of this paper is that
that our hypothesis (1.7), (1.8) can provide the compactness needed for the
second step. Our principal tools for this will be a representation for y and a
general topological result from [9]:

Theorem 2.4. Let (S, d) be a complete metric space and M an arbitrary
index set; for m ∈M, let G(·, m) : S → S satisfy a Lipschitz condition:

(2.1) d(G(σ, m), G(σ′, m)) ≤ ϑ d(σ, σ′) (σ, σ′ ∈ S)

(for some ϑ < 1, independent of m) so there is a fixpoint σm = G(σm, m) for
each m ∈M. Now suppose that the set

G(K,M) = {G(σ, m) : σ ∈ K, m ∈M}

has compact closure in S for every compact subset K ⊂ S. Then every
sequence

(
σm(k)

)
of fixpoints contains a subsequence converging in S.

When we come to apply Theorem 2.4, the index set M will have the form

(2.2)
M = L2([0, T ] → M) where

M = {Borel measures on Φ} ⊂ [C(Φ)]∗;
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note that the measures in [C(Φ)]∗ are signed measures while the ‘Borel mea-
sures’ µ(·) in M above are positive with µ(Φ) = 1.We will then work with a
representation of the form

(2.3) y(s) =

∫
Φ

ϕ(x(s)) m(s, dϕ) with [s → m(s, ·)] ∈M.

Lemma 2.5. If we have any weak-* convergent sequence mj
∗
⇀ m̄ in M and

correspondingly define yj, ȳ by (2.3) with x = xj where xj → x̄ uniformly
on [0, T ], then we have weak convergence yj ⇀ ȳ in YY = L2([0, T ] → X ).

Proof: For any η ∈ YY∗ = L2 ([0, T ] → X ∗) and y as in (2.3), we consider

〈η, y〉YY =

∫ T

0

〈η(s), y(s)〉X ds

=

∫ T

0

〈
η(s),

∫
Φ

ϕ(x(s)) m(s, dϕ)

〉
X

ds = 〈η̂, m〉M

with η̂(s, ϕ) = 〈η(s), ϕ(x(s))〉X for ae s ∈ [0, T ], ϕ ∈ Φ.

Applying the above to 〈η, yj〉YY and letting mj
∗
⇀ m̄, noting that the Lipschitz

condition ensures that ϕ(xj(·)) → ϕ(x̄(·)) uniformly for ϕ ∈ Φ, we then get
〈η, yj〉YY → 〈η, ȳ〉YY .

3. Proof of Theorem 1.2
In this section we follow the strategy described in Section 2 to prove

Theorem 1.2. For global existence it is sufficient to prove existence on [0, T ]
with T > 0 arbitrary. We now proceed sequentially with the three steps.

We first construct approximate solutions. Fix N , let tn = nT/N for
n = 0, 1, . . . , N , and then recursively define the approximate solution pair
[xN , yN ] on the intervals [tn, tn+1] as follows:
Take ξ̂0 as given in the initial condition and then, given ξ̂n for n < N ,
arbitrarily choose some ξn ∈ D with ‖ξn − ξ̂n‖ ≤ T/N — possible as we
have assumed D = D(f, Φ) is dense in X . We can then arbitrarily choose
ζn ∈ f̂(ξn) 6= ∅ and define

(3.1) yN(s) ≡ ζn xN(s) = S(s− tn)ξ̂n +

∫ s

tn

S(s− r) ζn dr
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for s ∈ (tn, tn+1]. Finally, we set ξ̂n+1 = xN(tn+1. Note that this construction
gives the integral relation (1.3) for [xN , yN ].

The next step is the compactness argument. This will be the longest part
of the proof and will rely entirely on (1.3) and the fact that for nT/N < s ≤
(n + 1)T/N we have

(3.2) yN(s) = ζn ∈ Φ(ξn) with ‖ξn − xN(nT/N)‖ ≤ T/N.

Note first that ζn ∈ Φ(ξn) just means that ζn = ϕn(ξn) for some ϕn ∈ Φ
so, defining a Borel measure µn ∈ M by

µn(A) =

{
1 if ϕn ∈ A
0 else

for Borel sets A ⊂ Φ,

we have ζn =
∫

Φ
ϕ(ξn) µn(dϕ). Collecting these, we define a piecewise con-

stant mN : [0, T ] → M by

(3.3) mN(s, ·) = µn(·) for nT/N < s ≤ (n + 1)T/N (0 ≤ n < N).

This gives us

(3.4)

yN(s) = ζn =

∫
Φ

ϕ(ξn) mN(s, dϕ)

=

∫
Φ

ϕ(xN(s)) mN(s, dϕ) + ηN(s) where

ηN(s) =

∫
Φ

[ϕ(ξn)− ϕ(xN(s))] mN(s, dϕ).

We now set XX = C([0, T ] → X ) and define G(·, m) : XX → XX ) by

(3.5) [G(x(·), m)] (t) = S(t)ξ̂0 +

∫ t

0

∫
Φ

S(t− s) ϕ(x(s)) m(s, dϕ) ds,

parametrized by m ∈M. Note that (3.1) then gives

(3.6) xN(t) = [G(xN , mN)] (t) +

∫ t

0

ηN(s) ds,

i.e., xN is a fixpoint of [G(·, mN) + eN ] : XX → XX where eN =
∫ t

0
ηN .

At this point we use a standard trick: selecting for XX the exponentially
weighted norm

‖x‖XX = max
{
e−2γLt ‖x(t)‖X : t ∈ [0, T ]

}
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where γ is a bound for ‖S(t)‖ on [0, T ]. We then have, for 0 ≤ t ≤ T ,

e−2γLt‖ [G(x1, m)−G(x2, m)] (t)‖X

= e−2γLt

∥∥∥∥∫ t

0

S(t− s)

∫
Φ

[ϕ(x1(s))− ϕ(x2(s))] m(s, dϕ) ds

∥∥∥∥
X

≤ e−2γLt

∫ t

0

‖S(t− s)‖
∫

Φ

‖ϕ(x1(s))− ϕ(x2(s))‖X m(s, dϕ) ds

≤ e−2γLt

∫ t

0

γ

∫
Φ

L ‖x1(s)− x2(s)‖X m(s, dϕ) ds

= γL

∫ t

0

e−2γL(t−s)
[
e−2γLs ‖x1(s)− x2(s)‖X

]
ds

≤ γL

∫ t

0

e−2γL(t−s) ds ‖x1 − x2‖XX ≤ 1
2
‖x1 − x2‖XX

Thus, using this norm, each G(·, m) is contractive on XX with the uniform
contraction constant ϑ = 1/2. As in Theorem 2.4, we will denote the unique
fixpoint of G(·, m) by σm for each m ∈M.

We now complete verification of the hypotheses of Theorem 2.4, i.e., we
proceed to show that G(K,M) is compact in XX for any compact set K ⊂ XX .
To this end, note that continuity of the evaluation map: [x, t] 7→ x(t) shows
that the image K1 of K × [0, T ] is compact. Similarly, the image K2 of
Φ × K1 under [ϕ, ξ] 7→ ϕ(ξ) is also compact in X and K3 = {S(τ)ζ : 0 ≤
τ ≤ T, ζ ∈ K2} is compact. Also, K0 = {S(t)ξ̂0 : t ∈ [0, T ]} is compact. The
definition of G(·, m) then ensures that each z ∈ G(K,M) takes its values in
the compact set

K = K(K) = K0 + [0, T ] hull {0, K3} ⊂ X .

Now let

β(K) = max ‖ζ‖X : ζ ∈ K(K)}
ω(h,K) = max{‖S(τ)ξ − ξ‖ : ξ ∈ K(K), τ ∈ [0, h]}.

By the compactness of K = K(K), we have β(K) < ∞ and ω(h,K) → 0 as
h → 0 since S is a C0 semigroup. Next, we note that, for any z(·) ∈ G(K,M)
and any 0 ≤ t < t′ ≤ T , one has from (1.3)

z(t′) = S(t′ − t)z(t) +

∫ t′

t

S(t′ − s)ζ(s) ds
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with ζ(s) ∈ K. It follows that for |t′ − t| ≤ h one has

‖z(t + h)− z(t)‖X ≤ ω(h,K) + hγβ(K)

so G(K,M) is uniformly equicontinuous. The desired compactness of G(K,M)
now follows from the (generalized) Arzelà-Ascoli Theorem.

We can now apply Theorem 2.4 to show that the ‘fixpoint set’ K∗ =
{σm : m ∈M} is compact in XX . In particular, for the sequence (σmN

),
there is a convergent subsequence, with N = N(j) → ∞. Abusing nota-
tion slightly, we write σj for σmN(j)

so we have σj → x̄ uniformly on [0, T ].

4. Proof of Theorem 1.2 (continued)
In the previous section we constructed a sequence of approximate solu-

tions (xN) which were fixpoints of maps [G(·, mN) + eN ] : XX → XX . Applying
Theorem 2.4, we showed subsequential convergence σj → x̄ for the fixpoints
σj = G

(
σj, mN(j)

)
.

Our next task is to show that also xj → x̄ (again abusing notation slightly
in writing xj for xN(j)). Returning to (3.1) and (3.2) and taking N = N(j),
we now write

(4.1)

xj(t) = S(t)ξ̂0 +

∫ t

0

∫
Φ

S(t− s)ϕ(x̂j(s)) mN(s, dϕ) ds

where x̂j(s) = ζn for s ∈ [nT/N, (n + 1)T/N ]
with ‖ζn − xj(nT/N)‖X ≤ T/N,

σj(t) = S(t)ξ̂0 +

∫ t

0

∫
Φ

S(t− s)ϕ(σj(s)) mN(s, dϕ) ds.

For s ∈ [nT/N, (n + 1)T/N ] we have

‖x̂j(s)− σj(s)‖X
≤ T/N + ‖xj(nT/N)− σj(nT/N)‖X + ‖σj(nT/N)− σj(s)‖X
≤ T/N + ρj(nT/N) + ω̂(T/N) ≤ [T/N + ω̂(T/N)] + ρj(s)

where

(4.2) ρj(s) = max {‖xj(t)− σj(t)‖X : 0 ≤ t ≤ s}

(making ρj(·) nondecreasing, so ρj(nT/N) ≤ ρj(s)) and

(4.3) ω̂(h) = max {‖σ(t′)− σ(t)‖X : |t′ − t| ≤ h, σ ∈ K∗} .
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Note that the compactness of K∗ in XX ensures that ω̂(h) = ω̂(h,K) is well-
defined with ω̂(h) → 0 as h → 0. We now proceed to estimate ρj: For any
t ∈ [0, T ] we have

‖xj(t)− σj(t)‖X

=

∥∥∥∥∫ t

0

∫
Φ

S(t− s) [ϕ(x̂j(s))− ϕ(σj(s))] mN(s, dϕ) ds

∥∥∥∥
X

≤ γL

∫ t

0

‖x̂j(s)− σj(s)‖X ds

so, again noting that ρj(·) is nondecreasing, we have

ρj(t) ≤ γLt [h + ω̂(h)] + γL

∫ t

0

ρj(s) ds

with h = hj = T/N(j) → 0. Applying the Gronwall Inequality to this,
we have ‖xj − σj‖XX ≤ C[h + ω̂(h)] with a constant C depending only on
K∗, T, γ, L. Since σj → x̄, this shows that we also have xj → x̄ uniformly
on [0, T ] for some x̄ ∈ XX .

We turn now to the sequence (yj) which, corresponding to (4.1), is given
by

(4.4) yj(s) =

∫
Φ

ϕ(x̂j(s)) mN(j)(s, dϕ),

i.e., yj is given by (2.3) with m = mN(j) and x = x̂j; note that we have shown
uniform convergence x̂j → x̄ on [0, T ]. Clearly M is closed and, since µ ∈ M
gives 0 ≤ µ(·) ≤ 1, is bounded as a subset of the dual space

L2 ([0, T ] → [C(Φ)]∗) =
[
L2 ([0, T ] → C(Φ))

]∗
.

Hence, by Alaoglu’s Theorem, M is weak-* compact and (again extracting

a further subsequence, if necessary) we have mN(j)
∗
⇀ m̄ for some m̄ ∈ M.

We may then apply Lemma 2.5 to have weak convergence yj ⇀ ȳ in YY =
L2([0, T ] → X ) with [x̄, ȳ] also related by (2.3) using m̄. Given any ξ ∈ X ∗

and t ∈ [0, T ] we set η(s) = [S(t− s)]∗ξ on [0, t] and η(s) = 0 for s > t. Then
η ∈ YY∗ and

〈ξ, xj(t)〉X = 〈ξ,S(t)ξ̂0〉X + 〈η, yj〉YY
since our construction gave (1.3) for [xj, yj], as noted following (3.1). Since
we have xj(t) → x̄(t) in X and yj → ȳ in YY as j → ∞, we also have (1.3)
for [x̄, ȳ] in the limit.
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To complete the proof of Theorem 1.2, we now verify (1.5) for ȳ. Note
that each YYε (for ε > 0) is closed and convex, hence weakly closed in YY , with
YYε ⊂ YYε′ for 0 < ε < ε′. Our construction selected

yj(s) ∈ f̂(x̂j(s)) ⊂ f(x̂j(s))

so yj(s) ∈ Fε(x̄(s)) whenever ‖x̂j(s) − x̄(s)‖X ≤ ε. Since we have already
noted that x̂j → x̄ uniformly on [0, T ], we have (for every ε > 0) yj ∈ YYε

for large enough j, depending on ε. The weak convergence yj ⇀ ȳ then also
ensures that ȳ ∈ YYε in the limit. This, for each ε > 0, gives (1.5).

This shows that [x̄, ȳ] is a solution of (1.1) in the sense we have deter-
mined and so completes the proof of Theorem 1.2.
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